Skip to main content

Overview of Biobased Polymers

  • Chapter
  • First Online:
Thermal Properties of Bio-based Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 283))

Abstract

Awareness of the environmental issues results in increasing attention paid to biobased polymers as their development and commercialization can help to limit exploitation of fossil resources and global warming. The article presents an overview of biobased polymers comprising most abundant natural polymers, bio-engineered polymers, and polymers synthesized fully or partially from biobased substrates, including analogs of petrochemical resins. The structure, important properties, synthesis, and applications are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okkerse C, van Bekkum H (1999) From fossil to green. Green Chem 1:107–114

    CAS  Google Scholar 

  2. Kausch-Blecken von Schmeling HH (2011) Eighty years of macromolecular science: from birth to nano-, bio- and self-assembling polymers – with slight emphasis on European contributions. Colloid Polym Sci 289:1407–1427

    CAS  Google Scholar 

  3. Steinbuechel A (2001) Biopolymers. Wiley, Weinheim

    Google Scholar 

  4. Domb AJ, Kost J, Wiseman DM (1997) Handbook of biodegradable polymers. Harwood Academic Publishers, London. ISBN 90-5702-153-6

    Google Scholar 

  5. Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 9:523

    PubMed Central  Google Scholar 

  6. Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8:243

    PubMed Central  Google Scholar 

  7. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8

    PubMed  PubMed Central  Google Scholar 

  8. Wróblewska AA, Lingier S, Noordijk J, Du Prez FE, De Wildeman SMA, Bernaerts KV (2017) Polyamides based on a partially bio-based spirodiamine. Eur Polym J 96:221–231

    Google Scholar 

  9. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226

    CAS  Google Scholar 

  10. Llevot A, Grau E, Carlotti S, Grelier S, Cramail H (2016) From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun 37:9–28

    CAS  PubMed  Google Scholar 

  11. http://news.bio-based.eu/bio-based-polymers-worldwide-ongoing-growth-despite-difficult-market-environment/. Accessed 4 June 2019

  12. Kimura Y (2009) Molecular, structural, and material design of bio-based polymers. Polym J 41:797–807

    CAS  Google Scholar 

  13. Nakajima H, Kimura Y (2013) Chapter 1, General introduction: overview of the current development of biobased polymers. In: Kimura Y (ed) Bio-based polymers 1st edn. CMC Publishing, Tokyo, pp 1–23

    Google Scholar 

  14. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    CAS  PubMed  Google Scholar 

  15. Poletto M, Pistor V, Zattera AJ (2013) Chapter 2, Structural characteristics and thermal properties of native cellulose. In: van de Ven T, Godbout L (eds) Cellulose – fundamental aspects. InTech, Rijeka, pp 45–68

    Google Scholar 

  16. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  17. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  18. Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578

    PubMed  Google Scholar 

  19. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    CAS  PubMed  Google Scholar 

  20. Bisanda ETN, Ansell MP (1992) Properties of sisal-CNSL composites. J Mater Sci 27:1690–1700

    CAS  Google Scholar 

  21. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    CAS  Google Scholar 

  22. Picker KM, Hoag SW (2002) Characterization of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry. J Pharm Sci 91:342–349

    CAS  PubMed  Google Scholar 

  23. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    CAS  PubMed  Google Scholar 

  24. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and applications. Prog Polym Sci 26:1605–1688

    CAS  Google Scholar 

  25. Jedvert K, Heinze T (2017) Cellulose modification and shaping - a review. J Polym Eng 37:845–860

    CAS  Google Scholar 

  26. Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487–5527

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119

    Google Scholar 

  28. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    CAS  Google Scholar 

  29. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    CAS  Google Scholar 

  30. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    CAS  Google Scholar 

  31. Oksman K, Aitomaki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18

    CAS  Google Scholar 

  32. Donald AM (2004) Understanding starch structure and functionality. In: Eliasson AC (ed) Starch in food: structure, function and applications. Woodhead Publishing, Cambridge, pp 156–184

    Google Scholar 

  33. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C 44:231–274

    Google Scholar 

  34. Bertoft E (2017) Understanding starch structure: recent progress. Agronomy 7:56

    Google Scholar 

  35. Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Biorefin 3:329–343

    Google Scholar 

  36. Shah PB, Bandopadhyay S, Bellare JR (1995) Environmentally degradable starch filled low-density polyethylene. Polym Degrad Stabil 47:165–173

    CAS  Google Scholar 

  37. Russell PL (1987) Gelatinization of starches of different amylose amylopectin content – a study by differential scanning calorimetry. J Cereal Sci 6:133–145

    CAS  Google Scholar 

  38. van Soest JJG, Hulleman SHD, de Wit D, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind Crop Prod 5:11–22

    Google Scholar 

  39. Jane J (1995) Starch properties, modifications and applications. J Macromol Sci Part A 32:751–757

    Google Scholar 

  40. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    CAS  Google Scholar 

  41. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. eXPRESS Polym Lett 3:366–375

    CAS  Google Scholar 

  42. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96

    CAS  Google Scholar 

  43. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    CAS  PubMed  Google Scholar 

  44. Nanayakkara B, Manley-Harris M, Suckling ID, Donaldson LA (2009) Quantitative chemical indicators to assess the gradation of compression wood. Holzforschung 63:431–439

    CAS  Google Scholar 

  45. Wagner A, Donaldson L, Ralph J (2012) Lignification and lignin manipulations in conifers. Adv Bot Res 61:37–76

    CAS  Google Scholar 

  46. Brebu M, Vasile C (2010) Thermal degradation of lignin – a review. Cell Chem Technol 44:353–363

    CAS  Google Scholar 

  47. Gregorova A, Kosikova B, Stasko A (2007) Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene. J Appl Polym Sci 106:1626–1631

    CAS  Google Scholar 

  48. Kirschweng B, Tatraaljai D, Foldes E, Pukanszky B (2017) Natural antioxidants as stabilizers for polymers. Polym Degrad Stab 145:25–40

    CAS  Google Scholar 

  49. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    CAS  Google Scholar 

  50. Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, Kennedy JF (2007) Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym 70:451–458

    CAS  Google Scholar 

  51. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  52. Villetti MA, Crespo JS, Soldi MS, Pires ATN, Borsali R, Soldi V (2002) Thermal degradation of natural polymers. J Therm Anal Calorim 67:295–303

    CAS  Google Scholar 

  53. Raabe D, Al-Sawalmih A, Yi S, Fabritius H (2007) Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater 3:882–895

    CAS  PubMed  Google Scholar 

  54. Wang Y, Chang Y, Yu L, Zhang C, Xu X, Xue Y, Li Z, Xue C (2013) Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydr Polym 92:90–97

    CAS  PubMed  Google Scholar 

  55. Cabib E (1981) Chitin: structure, metabolism and regulation of biosynthesis. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encyclopedia of plant physiology (New series), vol 13 B. Springer, Berlin, Heidelberg, pp 395–415

    Google Scholar 

  56. Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci 5:370–375

    CAS  PubMed  Google Scholar 

  57. Blackwell J (1969) Structure of β-chitin or parallel chain systems of poly-β-(1-4)-N-acetyl-D-glucosamine. Biopolymers 7:281–298

    CAS  PubMed  Google Scholar 

  58. Minke R, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120:167–181

    CAS  PubMed  Google Scholar 

  59. Rudall KM (1963) The chitin/protein complexes of insect cuticles. Adv Insect Physiol 1:257–313

    CAS  Google Scholar 

  60. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633

    CAS  Google Scholar 

  61. Atkins E (1985) Conformations in polysaccharides and complex carbohydrates. J Biosci 8:375–387

    CAS  Google Scholar 

  62. Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stab 59:117–120

    CAS  Google Scholar 

  63. Kim SS, Kim SJ, Moon YD, Lee YM (1994) Thermal characteristics of chitin and hydroxypropyl chitin. Polymer 35:3212–3216

    CAS  Google Scholar 

  64. Kaczmarek MB, Struszczyk-Swita K, Li X, Szczesna-Antczak M, Daroch M (2019) Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol 7:243

    Google Scholar 

  65. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    CAS  Google Scholar 

  66. Baklagina YG, Klechkovskaya VV, Kononowa SV, Petrova VA, Poshina DN, Orekhov AS, Skorik YA (2018) Polymorphic modifications of chitosan. Crystallogr Rep 63:303–313

    CAS  Google Scholar 

  67. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30:5849–5855

    CAS  Google Scholar 

  68. Naito PK, Ogawa Y, Kimura S, Iwata T, Wada M (2015) Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J Polym Sci B Polym Phys 53:1065–1069

    CAS  Google Scholar 

  69. Sakurai T, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056

    CAS  Google Scholar 

  70. Hirano S (1996) Chitin biotechnology applications. Biotechnol Annu Rev 2:237–258

    CAS  PubMed  Google Scholar 

  71. Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331

    CAS  PubMed  Google Scholar 

  72. Mormile P, Petti L, Rippa M, Immirzi B, Malinconico M, Santagata G (2007) Monitoring of the degradation dynamics of agricultural films by IR thermography. Polym Degrad Stab 92:777–784

    CAS  Google Scholar 

  73. Shah AA, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeter Biodegr 83:145–157

    Google Scholar 

  74. Tanaka Y, Sakdapipanich JT (2001) Chemical structure and occurrence of natural polyisoprenes. In: Koyama T, Steinbüchel A (eds) Biopolymers. Polyisoprenoids, vol 2. Wiley, Weinheim, pp 1–25

    Google Scholar 

  75. Rose K, Steinbuchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yikmis M, Steinbuchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78:4543–4551

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Subramaniam A (1995) The chemistry of natural rubber latex. Immunol Allergy Clin North Am 15:1–20

    Google Scholar 

  78. Wood LA, Bekkedahl N (1946) Crystallization of unvulcanized rubber at different temperatures. J Appl Phys 17:362–375

    CAS  Google Scholar 

  79. Huneau B (2011) Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem Technol 84:425–452

    CAS  Google Scholar 

  80. Loadman MJR (1985) The glass transition temperature of natural rubber. J Therm Anal 30:929–941

    CAS  Google Scholar 

  81. Hamed GR, Kim HJ, Gent AN (1996) Cut growth in vulcanizates of natural rubber, cis-polybutadiene, and a 50/50 blend during single and repeated extension. Rubber Chem Technol 69:807–818

    CAS  Google Scholar 

  82. Coran AY (1978) Vulcanization. In: Eirich FR (ed) Science and technology of rubber. Academic Press, New York, pp 291–338

    Google Scholar 

  83. Gehman SD, Field JE (1939) An X-ray investigation of crystallinity in rubber. J Appl Phys 10:564–572

    CAS  Google Scholar 

  84. Gehman SD, Field JE (1940) X-ray structure of rubber-carbon black mixtures. Ind Eng Chem 32:1401–1407

    CAS  Google Scholar 

  85. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827

    CAS  Google Scholar 

  86. Maeda M, Tani S, Sano A, Fujioka K (1999) Microstructure and release characteristics of the minipellet, a collagen based drug delivery system for controlled release of protein drugs. J Control Release 62:313–324

    CAS  PubMed  Google Scholar 

  87. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    CAS  PubMed  Google Scholar 

  88. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  89. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Release 114:1–14

    CAS  PubMed  Google Scholar 

  90. LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53

    CAS  PubMed  Google Scholar 

  91. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Ecl Quim J 29:57–63

    CAS  Google Scholar 

  92. Nesic A, Onjia A, Davidovic S, Dimitrijevic S, Errico ME, Santagata G, Malinconico M (2017) Design of pectin-sodium alginate based films for potential healthcare application: study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity. Carbohydr Polym 157:981–990

    CAS  PubMed  Google Scholar 

  93. Zhao SP, Cao MJ, Li H, Li LY, Xu WL (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(epsilon-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res 345:425–431

    CAS  PubMed  Google Scholar 

  94. Lee KY, Kong HJ, Larson RG, Mooney DJ (2003) Hydrogel formation via cell crosslinking. Adv Mater 15:1828–1832

    CAS  Google Scholar 

  95. Bernier B (1958) The production of polysaccharide by fungi active in the decomposition of wood and forest litter. Can J Microbiol 4:195–204

    CAS  PubMed  Google Scholar 

  96. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    CAS  PubMed  Google Scholar 

  97. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473

    CAS  PubMed  Google Scholar 

  98. Chen CT, Chen KI, Chiang HH, Chen YK, Cheng KC (2017) Improvement on physical properties of pullulan films by novel cross-linking strategy. J Food Sci 82:108–117

    PubMed  Google Scholar 

  99. Singh RS, Kaur N, Rana V, Kennedy JF (2017) Pullulan: a novel molecule for biomedical applications. Carbohydr Polym 171:102–121

    CAS  PubMed  Google Scholar 

  100. Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    CAS  Google Scholar 

  101. Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin – a review. Crit Rev Food Sci Nutr 37:47–73

    CAS  PubMed  Google Scholar 

  102. Blibech M, Maktouf S, Chaari F, Zouari S, Neifar M, Besbes S, Ellouze-Ghorbel R (2015) Functionality of galactomannan extracted from Tunisian carob seed in bread dough. J Food Sci Technol 52:423–429

    CAS  Google Scholar 

  103. Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC (2013) Galactomannan: a versatile biodegradable seed polysaccharide. Int J Biol Macromol 60:83–92

    CAS  PubMed  Google Scholar 

  104. Dos Santos VRF, Souza BWS, Teixeira JA, Vicente AA, Cerqueira MA (2015) Relationship between galactomannan structure and physicochemical properties of films produced thereof. J Food Sci Technol 52:8292–8299

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cerqueira MA, Pinheiro AC, Souza BWS, Lima AMP, Ribeiro C, Miranda C, Teixeira JA, Moreira RA, Coimbra MA, Goncalves MP, Vincente AA (2009) Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydr Polym 75:408–414

    CAS  Google Scholar 

  106. Srivastava M, Kapoor VP (2005) Seed galactomannans: an overview. Chem Biodivers 2:295–317

    CAS  PubMed  Google Scholar 

  107. Doi Y, Kasuya K, Abe H, Koyama N, Ishiwatari S, Takagi K, Yoshida Y (1996) Evaluation of biodegradabilities of biosynthetic and chemosynthetic polyesters in river water. Polym Degrad Stab 51:281–286

    CAS  Google Scholar 

  108. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    CAS  Google Scholar 

  109. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Google Scholar 

  110. Macrae RM, Wilkinson JF (1958) Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Microbiol 19:210–222

    CAS  PubMed  Google Scholar 

  111. Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeter Biodegr 126:45–56

    CAS  Google Scholar 

  112. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5:620–634

    Google Scholar 

  113. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 6:621–632

    Google Scholar 

  114. Varsha YM, Savitha R (2011) Overview on polyhydroxyalkanoates: a promising biopol. J Microb Biochem Technol 3:99–105

    CAS  Google Scholar 

  115. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Google Scholar 

  116. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174

    CAS  PubMed  Google Scholar 

  117. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    CAS  Google Scholar 

  118. Chen GQ (2010) Industrial production of PHA. In: Plastics from bacteria: natural functions and applications. Microbiology monographs, vol 14. Springer, Berlin, pp 121–132

    Google Scholar 

  119. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763

    CAS  Google Scholar 

  120. Avérous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohyd Polym 66:480–493

    Google Scholar 

  121. Gadgil BST, Killi N, Rathna GVN (2017) Polyhydroxyalkanoates as biomaterials. MedChemComm 8:1774–1787

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hazer DB, Kilicay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications. A state of the art review. Mater Sci Eng C 32:637–647

    CAS  Google Scholar 

  123. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654

    CAS  Google Scholar 

  124. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163

    CAS  PubMed  Google Scholar 

  125. Cooper JS, Vigon B (2001) Life cycle engineering guidelines. Chapter 5: new design. National Risk Management Research Laboratory. Office of Research and Development, U.S. EPA, Cincinnati, EPA/600/R-01/101, pp 50–52

    Google Scholar 

  126. Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur Polym J 75:431–460

    CAS  Google Scholar 

  127. Soccio M, Lotti N, Finelli L, Gazzano M, Munari A (2008) Influence of transesterification reactions on the miscibility and thermal properties of poly (butylene/diethylene succinate) copolymers. Eur Polym J 44:1722–1732

    CAS  Google Scholar 

  128. Almeida LR, Martins AR, Fernandes EM, Oliveira MB, Correlo VM, Pashkuleva I, Marques AP, Ribeiro AS, Duraes NF, Silva CJ, Bonifacio G, Sousa RA, Oliveira AL, Reis RL (2013) New biotextiles for tissue engineering: development, characterization and in vitro cellular viability. Acta Biomater 9:8167–8181

    CAS  PubMed  Google Scholar 

  129. Gigli M, Lotti N, Gazzano M, Finelli L, Munari A (2013) Synthesis and characterization of novel poly(butylene succinate)-based copolyesters designed as potential candidates for soft tissue engineering. Polym Eng Sci 53:491–501

    CAS  Google Scholar 

  130. Liu G, Zheng L, Zhang X, Li C, Jiang S, Wang D (2012) Reversible lamellar thickening induced by crystal transition in poly(butylene succinate). Macromolecules 45:5487–5493

    CAS  Google Scholar 

  131. Ihn KJ, Yoo ES, Im SS (1995) Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 28:2460–2464

    CAS  Google Scholar 

  132. Ichikawa Y, Suzuki J, Washiyama J, Moteki Y, Noguchi K, Okuyama K (1994) Strain-induced crystal modification in poly(tetramethylene succinate). Polymer 35:3338–3339

    CAS  Google Scholar 

  133. Ichikawa Y, Kondo H, Igarashi Y, Noguchi K, Okuyama K, Washiyama J (2000) Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 41:4719–4727

    CAS  Google Scholar 

  134. Tatsuoka S, Sato H (2018) Stress-induced crystal transition of poly(butylene succinate) studied by terahertz and low-frequency Raman spectroscopy and quantum chemical calculation. Spectrochim Acta A Mol Biomol Spectrosc 197:95–102

    CAS  PubMed  Google Scholar 

  135. Yarici T, Kodal M, Ozkoc G (2018) Non-isothermal crystallization kinetics of poly(butylene succinate) (PBS) nanocomposites with different modified carbon nanotubes. Polymer 146:361–377

    CAS  Google Scholar 

  136. Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2005) Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta 435:142–150

    CAS  Google Scholar 

  137. Hemsri S, Thongpin C, Moradokpermpoon N, Niramon P, Suppaso M (2015) Mechanical properties and thermal stability of poly(butylene succinate)/acrylonitrile butadiene rubber blend. Macromol Symp 354:145–154

    CAS  Google Scholar 

  138. Diaz A, Katsarava R, Puiggali J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 15:7064–7123

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Deng Y, Thomas NJ (2015) Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur Polym J 71:534–546

    CAS  Google Scholar 

  140. Gumede TP, Luyt AS, Müller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. eXPRESS Polym Lett 12:505–529

    CAS  Google Scholar 

  141. Li J, Luo X, Lin X, Zhou Y (2013) Comparative study on the blends of PBS/thermoplastic starch prepared from waxy and normal corn starches. Starch 65:831–839

    CAS  Google Scholar 

  142. Qiu Z, Ikehara T, Nishi T (2003) Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 44:2503–2508

    CAS  Google Scholar 

  143. Hwang SY, You ES, Im SS (2012) The synthesis of copolymers, blends and composites based on poly(butylene succinate). Polym J 44:1179–1190

    CAS  Google Scholar 

  144. Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M (2013) Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 5:128–141

    Google Scholar 

  145. Kurokawa N, Kimura S, Hotta A (2018) Mechanical properties of poly(butylene succinate) composites with aligned cellulose-acetate nanofibers. J Appl Polym Sci 135:45429

    Google Scholar 

  146. Wang XW, Zhang CA, Wang PL, Zhao J, Zhang W, Ji JH, Hua K, Zhou J, Yang XB, Li XP (2012) Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization. Langmuir 28:7091–7095

    CAS  PubMed  Google Scholar 

  147. Lin N, Yu JH, Chang PR, Li JL, Huang J (2011) Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym Compos 32:472–482

    CAS  Google Scholar 

  148. Sodergard A, Stolt M (2002) Properties of lactic acid polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    CAS  Google Scholar 

  149. Byers JA, Biernesser AB, Delle Chiaie KR, Kaur A, Kehl JA (2018) Catalytic systems for the production of poly(lactic acid). Adv Polym Sci 279:67–118

    CAS  Google Scholar 

  150. Tan J, Abdel-Rahman MA, Sonomoto K (2018) Biorefinery-based lactic acid fermentation: microbial production of pure monomer product. Adv Polym Sci 279:27–66

    CAS  Google Scholar 

  151. Masutani K, Kimura Y (2018) Present situation and future perspectives of poly(lactic acid). Adv Polym Sci 279:1–25

    CAS  Google Scholar 

  152. Domenek S, Fernandes-Nassar S, Ducruet V (2018) Rheology, mechanical properties, and barrier properties of poly(lactic acid). Adv Polym Sci 279:303–341

    Google Scholar 

  153. Righetti MC (2018) Amorphous fractions of poly(lactic acid). Adv Polym Sci 279:195–234

    Google Scholar 

  154. Saeidlou S, Huneault MA, Li HB, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    CAS  Google Scholar 

  155. Muller AJ, Avila M, Saenz G, Salazar J (2015) Crystallization of PLA-based materials. In: Jimenez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. RSC polymer chemistry series. Royal Society of Chemistry, Cambridge, pp 66–98

    Google Scholar 

  156. Androsch R, Schick C, Di Lorenzo ML (2018) Kinetics of nucleation and growth of crystals of poly(L-lactic acid). Adv Polym Sci 279:235–272

    CAS  Google Scholar 

  157. Lotz B (2018) Crystal polymorphism and morphology of polylactides. Adv Polym Sci 279:273–302

    Google Scholar 

  158. Di Lorenzo ML (2005) Crystallization behavior of poly(L-lactic acid). Eur Polym J 41:569–575

    Google Scholar 

  159. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357

    CAS  Google Scholar 

  160. Wasanasuk K, Tashiro K (2011) Crystal structure and disorder in poly(L-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form. Polymer 52:6097–6109

    CAS  Google Scholar 

  161. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919

    CAS  Google Scholar 

  162. Stoclet G, Seguela R, Lefebvre JM, Elkoun S, Vanmansart C (2010) Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 43:1488–1498

    CAS  Google Scholar 

  163. Pyda M, Czerniecka-Kubicka A (2018) Thermal properties and thermodynamics of poly(L-lactic acid). Adv Polym Sci 279:153–194

    Google Scholar 

  164. Bojda J, Piorkowska E (2016) Shear-induced nonisothermal crystallization of two grades of PLA. Polym Test 50:172–181

    CAS  Google Scholar 

  165. Sarasua JR, Rodríguez NL, Arraiza AL, Meaurio E (2005) Stereoselective crystallization and specific interactions in polylactides. Macromolecules 38:8362–8371

    CAS  Google Scholar 

  166. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Infrared spectroscopic study of CH3⋯O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 38:1822–1828

    CAS  Google Scholar 

  167. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    CAS  PubMed  Google Scholar 

  168. Lezak E, Kulinski Z, Masirek R, Piorkowska E, Pracella M, Gadzinowska K (2008) Mechanical and thermal properties of green polylactide composites with natural fillers. Macromol Biosci 8:1190–1200

    CAS  PubMed  Google Scholar 

  169. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–392

    CAS  PubMed  Google Scholar 

  170. Michalski A, Brzezinski M, Lapienis G, Biela T (2019) Star-shaped and branched polylactides: synthesis, characterization, and properties. Prog Polym Sci 89:159–212

    CAS  Google Scholar 

  171. Bojda J, Piorkowska E, Lapienis G, Michalski A (2018) Crystallization of star-shaped and linear poly(L-lactide)s. Eur Polym J 105:126–134

    CAS  Google Scholar 

  172. Gorrasi G, Pantani R (2018) Hydrolysis and biodegradation of poly(lactic acid). Adv Polym Sci 279:119–151

    CAS  Google Scholar 

  173. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci B Polym Phys 49:1051–1083

    CAS  Google Scholar 

  174. Zubrowska A, Piorkowska E, Bojda J (2018) Novel tough crystalline blends of polylactide with ethylene glycol derivative of POSS. J Polym Environ 26:145–151

    CAS  Google Scholar 

  175. Kowalczyk M, Piorkowska E, Dutkiewicz S, Sowinski P (2014) Toughening of polylactide by blending with a novel random aliphatic-aromatic copolyester. Eur Polym J 59:59–68

    CAS  Google Scholar 

  176. Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463

    CAS  Google Scholar 

  177. Piekarska K, Sowinski P, Piorkowska E, Ul Haque MM, Pracella M (2016) Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos Part A Appl Sci Manuf 82:34–41

    CAS  Google Scholar 

  178. Goncalves C, Goncalves IC, Magalhaes FD, Pinto AM (2017) Poly(lactic acid) composites containing carbon-based nanomaterials: a review. Polymers 9:269

    PubMed Central  Google Scholar 

  179. Piekarska K, Piorkowska E, Bojda J (2017) The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym Test 62:203–209

    CAS  Google Scholar 

  180. Pluta M, Bojda J, Piorkowska E, Murariu M, Bonnaud L, Dubois P (2017) The effect of halloysite nanotubes and N,N′-ethylenebis(stearamide) on morphology and properties of polylactide nanocomposites with crystalline matrix. Polym Test 64:83–91

    CAS  Google Scholar 

  181. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46

    CAS  PubMed  Google Scholar 

  182. Chen GW, Li SL, Jiao FJ, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalyst in microchannel reactors. Catal Today 125:111–119

    Google Scholar 

  183. Morschbacker A (2009) Bio-ethanol based ethylene. J Macromol Sci Part C Polym Rev 49:79–84

    CAS  Google Scholar 

  184. Tullo A (2017) New route planned to biobased ethylene glycol. C&EN Glob Enterp 95:10–10. https://doi.org/10.1021/cen-09546-notw6

    Article  Google Scholar 

  185. Collias DI, Harris AM, Nagpal V, Cottrell IW, Schultheis MW (2014) Biobased terephthalic acid technologies: a literature review. Ind Biotechnol 10:91–105

    CAS  Google Scholar 

  186. DuPont Tate & Lyle BioProducts Report. http://www.cosmoschemicals.com/uploads/products/pdf/technical/susterra-propanediol-89.pdf. Accessed 3 Dec 2018

  187. Xie Q, Hu X, Hu T, Xiao P, Xu Y, Leffew KW (2015) Polytrimethylene terephthalate: an example of an industrial polymer platform development in China. Macromol React Eng 9:401–408

    CAS  Google Scholar 

  188. Bio-BasedWorld News Report. https://www.biobasedworldnews.com/novamont-opensworlds-first-plant-for-the-production-of-bio-based-butanediol-on-industrial-scale. Accessed 3 Dec 2018

  189. Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37:1391–1413

    CAS  PubMed  Google Scholar 

  190. Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509

    CAS  Google Scholar 

  191. Vazquez G, Rodriguez-Bona C, Freire S, Gonzalez-Alvarez J, Antorrena G (1999) Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresour Technol 70:209–214

    CAS  Google Scholar 

  192. Cetin NS, Ozmen N (2002) Use of organosolv lignin in phenol–formaldehyde resins for particleboard production. I. Organosolv lignin modified resins. Int J Adhes Adhes 22:477–480

    CAS  Google Scholar 

  193. Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crop Prod 27:189–195

    CAS  Google Scholar 

  194. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    CAS  PubMed  Google Scholar 

  195. Guner FS, Yagci Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Google Scholar 

  196. Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Development of novel phosphorus-containing epoxy resins from renewable resources. J Polym Sci Part A Polym Chem 44:6717–6727

    CAS  Google Scholar 

  197. Olsson A, Lindstrom M, Iversen T (2007) Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9,10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules 8:757–760

    CAS  PubMed  Google Scholar 

  198. Hirose S, Hatakeyama T, Hatakeyama H (2003) Synthesis and thermal properties of epoxy resins from ester-carboxylic acid derivative of alcoholysis lignin. Macromol Symp 197:157–169

    CAS  Google Scholar 

  199. Boquillon N (2006) Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites. J Appl Polym Sci 101:4037–4043

    CAS  Google Scholar 

  200. Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) Biobased epoxy/layered silicate nanocomposites: thermophysical properties and fracture behavior evaluation. J Polym Environ 13:87–96

    CAS  Google Scholar 

  201. Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposites from renewable resources: plant oil–clay hybrid materials. Chem Mater 15:2492–2494

    Google Scholar 

  202. Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Bionanocomposites from renewable resources: epoxidized linseed oil-polyhedral oligomeric silsesquioxanes hybrid materials. Biomacromolecules 7:3521–3526

    CAS  PubMed  Google Scholar 

  203. Caraculacu AA, Coseri S (2001) Isocyanates in polyaddition processes, structure and reaction mechanisms. Prog Polym Sci 26:799–851

    CAS  Google Scholar 

  204. Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    CAS  Google Scholar 

  205. Evtiouguina M, Barros-Timmons A, Cruz-Pinto JJ, Pascoal Neto C, Belgacem MN, Gandini A (2002) Oxypropylation of cork and the use of the ensuing polyols in polyurethane formulations. Biomacromolecules 3:57–62

    CAS  PubMed  Google Scholar 

  206. Suresh KI, Kishanprasad VS (2005) Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes. Ind Eng Chem Res 44:4504–4512

    CAS  Google Scholar 

  207. Penczek P, Czub P, Pielichowski J (2005) Unsaturated polyester resins: chemistry and technology. Adv Polym Sci 184:1–95

    CAS  Google Scholar 

  208. van Haveren J, Oostveen EA, Micciche F, Noordover BAJ, Koning CE, van Benthem RATM, Frissen AE, Weijnen JGJ (2007) Resins and additives for powder coatings and alkyd paints, based on renewable resources. J Coat Technol Res 4:177–186

    Google Scholar 

  209. Siracusa V, Lotti N, Munari A, Rosa MD (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: gas barrier properties after stressed treatments. Polym Degrad Stab 119:35–45

    CAS  Google Scholar 

  210. Luo S, Li F, Yu J, Cao A (2010) Synthesis of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation. J Appl Polym Sci 115:2203–2211

    CAS  Google Scholar 

  211. Wu L, Mincheva R, Xu Y, Raquez J-M, Dubois P (2012) High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties. Biomacromolecules 13:2973–2981

    CAS  PubMed  Google Scholar 

  212. Rosenboom JG, Hohl DK, Fleckenstein P, Storti G, Morbidelli M (2018) Bottle-grade polyethylene furanoate from ring-opening polymerization of cyclic oligomers. Nat Commun 9:2701

    PubMed  PubMed Central  Google Scholar 

  213. Kanetaka Y, Yamazaki S, Kimura K (2016) Preparation of poly(ether ketone)s derived from 2,5-furandicarboxylic acid via nucleophilic aromatic substitution polymerization. J Polym Sci Part A Polym Chem 54:3094–3101

    CAS  Google Scholar 

  214. Kaneko T, Matsusaki M, Hang TT, Akashi M (2004) Thermotropic liquid-crystalline polymer derived from natural cinnamoyl biomonomers. Macromol Rapid Commun 25:673–677

    CAS  Google Scholar 

  215. Kaneko T, Thi TH, Shi DJ, Akashi M (2006) Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat Mater 5:966–970

    CAS  PubMed  Google Scholar 

  216. Tateyama S, Masuo S, Suvannasara P, Oka Y, Miyazato A, Yasaki K, Teerawatananond T, Muangsin N, Zhou SM, Kawasaki Y, Zhou LB, Zhou ZM, Takaya N, Kaneko T (2016) Ultrastrong, transparent polytruxillamides derived from microbial photodimers. Macromolecules 49:3336–3342

    CAS  Google Scholar 

  217. Puanglek S, Kimura S, Enomoto-Rogers Y, Kabe T, Yoshida M, Wada M, Iwata T (2016) In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci Rep 6:30479

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Puanglek S, Kimura S, Iwata T (2017) Thermal and mechanical properties of tailor-made unbranched α-1,3-glucan esters with various carboxylic acid chain length. Carbohydr Polym 169:245–254

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Piorkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piorkowska, E. (2019). Overview of Biobased Polymers. In: Di Lorenzo, M., Androsch, R. (eds) Thermal Properties of Bio-based Polymers. Advances in Polymer Science, vol 283. Springer, Cham. https://doi.org/10.1007/12_2019_52

Download citation

Publish with us

Policies and ethics