Skip to main content

Nucleation and Crystallization in Bio-Based Immiscible Polyester Blends

  • Chapter
  • First Online:
Thermal Properties of Bio-based Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 283))

Abstract

Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability, or mechanical properties. Nucleation, crystallization, and morphology are key factors that can dominate all these properties in crystallizable bio-based polyesters. Therefore, their understanding, prediction, and tailoring are essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization, and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blend systems, the literature is scarce, opening up opportunities in this environmentally important research topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATBC:

Acetyl(tributyl citrate)

CNC:

Cellulose nanocrystals

DCP:

Dicumyl peroxide

DSC:

Differential scanning calorimetry

EC-bp:

Ethyl cellosolve-blocked polyisocyanate

FTIR:

Fourier-transform infrared spectroscopy

G:

Growth rate

GNP:

Graphite nanoplatelets

GO:

Graphene oxide

GOs:

Graphene oxide nanosheets

iPP:

Isotactic polypropylene

Lapol:

Polyester plasticizer

LDI:

L-Lysine-diisocyanate

LDPE:

Low-density polyethylene

LIM:

D-Limonene

LTI:

L-Lysine-triisocyanate

MDs:

Micro-domains

NPCC:

Nano-sized calcium carbonate

NPs:

Nanoparticles

P(LA-ran-CL)HMw:

Poly(lactide-ran-caprolactone) high molecular weight

P(LA-ran-CL)LMw:

Poly(lactide-ran-caprolactone) low molecular weight

PA:

Polyamide

PA6:

Polyamide-6

PBS:

Poly(butylene succinate)

PBS-g-CNC:

PBS-g-cellulose nanocrystal

PBS-g-MA:

Maleic anhydride-grafted PBS

PBSL:

Poly(butylene succinate-co-L-lactate)

PCL:

Poly(caprolactone) or poly(ϵ-caprolactone)

PDLA:

Poly(D-lactic acid)

PE:

Polyethylene

PEG-PPG:

Block copolymer of poly(ethylene glycol) and poly(propylene glycol)

PHB:

Poly(hydroxybutyrate)

PHBV:

Poly(hydroxybutyrate-co-hydroxyvalerate)

PLA:

Poly(lactic acid)

PLA-b-PC:

Poly(L-lactide-block-carbonate)

PLLA:

Poly(L-lactic acid)

PLLA-g-MA:

Maleic anhydride-grafted PLLA

PLLA-PCL-PLLA:

Triblock PLLA-PCL-PLLA copolymer

PLOM:

Polarized light microscopy

PMMA:

Poly(methyl methacrylate)

POSS:

Polyhedral oligomeric silsesquioxane

POSS-oib:

Octaisobutyl polyhedral oligomeric silsesquioxane

PS:

Polystyrene

PVDF:

Poly(vinylidene fluoride)

rPBSL:

Random poly(butylene succinate-co-lactic acid)

SB:

Sodium benzoate

s-CNC:

Surfactant-modified cellulose nanocrystals

Ta :

Annealing temperature

Tc :

Crystallization temperature

Tcc :

Cold-crystallization temperature

TEM:

Transmission electron microscopy

Tg :

Glass transition temperature

TiO2 :

Titanium dioxide

Tm :

Melting temperature

WAXD:

Wide-angle X-ray diffraction

wt% :

Weight percentage

Xc :

Crystallinity degree

XRD:

X-ray diffraction

τ (50%):

Crystallization half time

References

  1. Utracki LA, Wilkie C (eds) (2014) Polymer blends handbook. Springer, New York

    Google Scholar 

  2. Utracki LA (ed) (2002) Polymer blends handbook, vol 2. Kluwer Academic, Dordrecht

    Google Scholar 

  3. Paul DR, Barlow JW (1979) A brief review of polymer blend technology. In: Cooper SL, Estes GM (eds) Multiphase polymers. Advances in chemistry. ACS, Washington, pp 315–335

    Google Scholar 

  4. Paul DR, Barlow JW (1980) Polymer blends (or alloys). J Macromol Sci Rev Macromol Chem Phys 18:109–168

    Google Scholar 

  5. Cor K, Martin VD, Christophe P, Robert J (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757

    Google Scholar 

  6. Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9

    CAS  Google Scholar 

  7. Dhibar AK, Kim JK, Khatua BB (2011) Cocontinuous phase morphology of asymmetric compositions of polypropylene/high-density polyethylene blend by the addition of clay. J Appl Polym Sci 119:3080–3092

    CAS  Google Scholar 

  8. Tol RT, Mathot VBF, Reynaers H, Groeninckx G (2006) Relationship between phase morphology, crystallization, and semicrystalline structure in immiscible polymer blends. In: Harrats C, Thomas S, Droeninchx G (eds) Micro- and nanostructured multiphase polymer blend systems phase morphology and interfaces. Taylor & Francis, Boca Raton, pp 391–420

    Google Scholar 

  9. Cordova ME, Lorenzo AT, Müller AJ, Gani L, Tence-Girault S, Leibler L (2011) The influence of blend morphology (co-continuous or sub-micrometer droplets dispersions) on the nucleation and crystallization kinetics of double crystalline polyethylene/polyamide blends prepared by reactive extrusion. Macromol Chem Phys 212:1335–1350

    CAS  Google Scholar 

  10. Pracella M (2013) Crystallization of polymer blends. In: Piorkowska E, Rutledge GC (eds) Handbook of polymer crystallization. Wiley, Hoboken, pp 287–325

    Google Scholar 

  11. Jabarin SA, Ardakani KM, Lofgren EA (2016) Crystallization and melting behavior in polymer blends. In: Isayev AI (ed) Encyclopedia of polymer blends. Structure, vol 3. Wiley, Weinheim, pp 135–189

    Google Scholar 

  12. Michell RM, Müller AJ (2016) Confined crystallization of polymeric materials. Prog Polym Sci 54–55:183–213

    Google Scholar 

  13. Tien ND, Prud’homme RE (2017) Crystallization behavior of semicrystalline immiscible polymer blends. In: Thomas S, Arif PM, Gowd B, Kalarikkal N (eds) Crystallization in multiphase polymer systems. Elsevier, Amsterdam, pp 181–212

    Google Scholar 

  14. Bartczak Z, Galeski A (1990) Homogeneous nucleation in polypropylene and its blends by small-angle light scattering. Polymer 31:2027–2038

    CAS  Google Scholar 

  15. Deng Y, Thomas NL (2015) Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur Polym J 71:534–546

    CAS  Google Scholar 

  16. Rizzuto M, Marinetti L, Caretti D, Mugica A, Zubitur M, Müller AJ (2017) Can poly (ε-caprolactone) crystals nucleate glassy polylactide? CrstEngComm 19:3178

    CAS  Google Scholar 

  17. Ma P, Cai X, Wang W, Duan F, Shi D, Lemstra PJ (2014) Crystallization behavior of partially crosslinked poly(b-hydroxyalkonates)/poly(butylene succinate) blends. J Appl Polym Sci 131:41020

    Google Scholar 

  18. Frensch H, Harnischfeger P, Jungnickel BJ (1989) Fractionated crystallization in incompatible polymer blends. In: Utracky LA, Weiss RA (eds) Multiphase polymers: blends and ionomers. American Chemical Society, Washington, pp 101–125

    Google Scholar 

  19. Müller AJ, Michell RM (2016) Differential scanning calorimetry of polymers. In: Guo Q (ed) Polymer morphology: principles, characterization, and processing. Wiley, Hoboken, pp 72–99

    Google Scholar 

  20. Morales RA, Arnal ML, Müller AJ (1995) The evaluation of the state of dispersion in immiscible blends where the minor phase exhibits fractionated crystallization. Polym Bull 35:379–386

    CAS  Google Scholar 

  21. Arnal ML, Matos ME, Morales RA, Santana OO, Müller AJ (1998) Evaluation of the fractionated crystallization of dispersed polyolefins in a polystyrene matrix. Macromol Chem Phys 199:2275–2288

    CAS  Google Scholar 

  22. Arnal ML, Müller AJ (1999) Fractionated crystallisation of polyethylene and ethylene/a-olefin copolymers dispersed in immiscible polystyrene matrices. Macromol Chem Phys 200:2559–2576

    CAS  Google Scholar 

  23. Schick C, Androsch R, Schmelzer JWP (2017) Homogeneous crystal nucleation in polymers. J Phys Condens Matter 29:453002

    CAS  PubMed  Google Scholar 

  24. Santana OO, Müller AJ (1994) Homogeneous nucleation of the dispersed crystallizable component of immiscible polymer blends. Polym Bull 32:471–477

    CAS  Google Scholar 

  25. Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ (2013) Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 54:4059–4077

    CAS  Google Scholar 

  26. Tol RT, Mathot VBF, Groeninckx G (2005) Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 2: reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends. Polymer 46:383–396

    CAS  Google Scholar 

  27. Tol RT, Mathot VBF, Groeninckx G (2005) Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 3: crystallization kinetics and crystallinity of micro- and nanometer sized PA6 droplets crystallizing at high supercoolings. Polymer 46:2955–2965

    CAS  Google Scholar 

  28. Yordanov C, Minkova L (2005) Fractionated crystallization of compatibilized LDPE/PA6 blends. Eur Polym J 41:527–534

    CAS  Google Scholar 

  29. Anstey A, Codou A, Misra M, Mohanty AK (2018) Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): fractionated crystallization phenomena and mechanical performance. ACS Omega 3:2845–2854

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huo H, Guo C, Zhou J, Zhao X (2014) The combination of fluctuation-assisted crystallization and interface-assisted crystallization in a crystalline/crystalline blend of poly(ethylene oxide) and poly(ε-caprolactone). Colloid Polym Sci 292:971–983

    CAS  Google Scholar 

  31. Qiaolian L, Wu D, Xie H, Peng S, Chen Y, Xu C (2016) Crystallization of poly(3-caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Adv 6:37721

    Google Scholar 

  32. Sakai F, Nishikawa K, Inoue Y, Yazawa K (2009) Nucleation enhancement effect in poly(L-lactide) (PLLA)/poly(ɛ-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules 42:8335–8342

    CAS  Google Scholar 

  33. Pan P, Shan G, Bao Y (2014) Enhanced nucleation and crystallization of poly(L-lactic acid) by immiscible blending with poly(vinylidene fluoride). Ind Eng Chem Res 53:3148–3156

    CAS  Google Scholar 

  34. Kong Y, Ma Y, Lei L, Wang X, Wang H (2017) Crystallization of poly(ϵ-caprolactone) in poly(vinylidene fluoride)/poly(ɛ -caprolactone) blend. Polymers 9:42

    PubMed Central  Google Scholar 

  35. Shi W, Chen F, Zhang Y, Han CC (2012) Viscoelastic phase separation and interface assisted crystallization in a highly immiscible iPP/PMMA blend. ACS Macro Lett 1:1086–1089

    CAS  Google Scholar 

  36. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626

    CAS  Google Scholar 

  37. Yu C, Han L, Bao J, Shan G, Bao Y, Pan P (2016) Polymorphic crystallization and crystalline reorganization of poly(L-lactic acid)/poly(D-lactic acid) racemic mixture influenced by blending with poly(vinylidene fluoride). J Phys Chem B 120(32):8046–8054

    CAS  PubMed  Google Scholar 

  38. Rizzuto M, Mugica A, Zubitur M, Caretti D, Müller AJ (2016) Plasticization and anti-plasticization effects caused by poly(L-lactide-ran-caprolactone) addition to double crystalline poly(L-lactide)/poly(ε- caprolactone) blends. CrstEngComm 18:2014

    CAS  Google Scholar 

  39. Wei Q, Chionna D, Pracella M (2005) Reactive compatibilization of PA6/LDPE blends with glycidyl methacrylate functionalized polyolefins. Macromol Chem Phys 206:777–786

    CAS  Google Scholar 

  40. Garcia-Garcia D, Rayon E, Carbonell-Verdu A, Lopez-Martinez J, Balart R (2017) Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(e-caprolactone) by reactive extrusion with dicumyl peroxide. Eur Polym J 86:41–57

    CAS  Google Scholar 

  41. Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33

    CAS  Google Scholar 

  42. Liu NC, Xie HQ, Baker WE (1993) Comparison of the effectiveness of different basic functional groups for the reactive compatibilization of polymer blends. Polymer 34:4680–4687

    CAS  Google Scholar 

  43. Tri PN, Domenek S, Guinault A, Sollogoub C (2013) Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. J Appl Polym Sci 129:3355–3365

    CAS  Google Scholar 

  44. Jain S, Reddy MM, Mohanty AK, Misra M, Ghosh AK (2010) A new biodegradable flexible composite sheet from poly(lactic acid)/poly(e-caprolactone) blends and micro-talc. Macromol Mater Eng 295:750–762

    CAS  Google Scholar 

  45. Fenni SE, Monticelli O, Conzatti L, Doufnoune R, Stagnaro P, Haddaoui N, Cavallo D (2018) Correlating the morphology of poly(L-lactide)/poly(butylene succinate)/graphene oxide blends nanocomposites with their crystallization behavior. Express Polym Lett 12:58–70

    CAS  Google Scholar 

  46. Müller AJ, Avila M, Saenz G, Salazar J (2014) Crystallization of PLA-based materials. In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, Cambridge, pp 66–98

    Google Scholar 

  47. Di Lorenzo ML, Androsch R (2015) Crystallization of poly(lactic acid). In: Fakirov S (ed) Biodegradable polyesters. Wiley, Weinheim, pp 109–130

    Google Scholar 

  48. Androsch R, Schick C, Di Lorenzo ML (2017) Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Advances in polymer science, vol 279. Springer, Basel, pp 235–272

    Google Scholar 

  49. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

    CAS  Google Scholar 

  50. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate). Polymer 47:3557–3564

    CAS  Google Scholar 

  51. Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2002) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298

    Google Scholar 

  52. Persenaire O, Quintana R, Lemmouchi Y, Sampson J, Martin S, Bonnaud L, Dubois P (2014) Reactive compatibilization of poly(L-lactide)/poly(butylene succinate) blends through polyester maleation: from materials to properties. Polym Int 63:1724–1731

    CAS  Google Scholar 

  53. Buasri A, Buranasing G, Piemjaiswang R, Yousatit S, Loryuenyong V (2014) Effect of titanium dioxide nanoparticles on mechanical and thermal properties of poly(lactic acid) and poly(butylene succinate) blends. Adv Sci Tech 96:33–38

    Google Scholar 

  54. Zhang Z, Zhang Y (2016) Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382

    CAS  PubMed  Google Scholar 

  55. Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820

    CAS  Google Scholar 

  56. Luzi F, Fortunati E, Jiménez A, Pugliaa D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289

    CAS  Google Scholar 

  57. Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly(lactic acid) and poly(butylene succinate) blends composites. J Fiber Bioeng Inform 6:85–94

    Google Scholar 

  58. Dell’Erba R, Maglio G, Malinconico M, Migliozzi A (2001) Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends. Polymer 42:7831–7840

    Google Scholar 

  59. Shen T, Lu M, Liang L (2013) Modification of the properties of polylactide/polycaprolactone blends by incorporation of blocked polyisocyanate. J Macromol Sci Part A Pure Appl Chem 50:547–554

    CAS  Google Scholar 

  60. Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E (2014) Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. Eur Polym J 58:69–78

    CAS  Google Scholar 

  61. Mofokeng JP, Luyt AS (2015) Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim Acta 613:41–53

    CAS  Google Scholar 

  62. Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization, morphology, and mechanical behavior of polylactide/poly(-caprolactone) blends. Polym Eng Sci 46:1299–1308

    CAS  Google Scholar 

  63. Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L (2016) Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab 132:97–108

    CAS  Google Scholar 

  64. Han W, Liao X, He B, Yang Q, Li G (2018) Disclosing the crystallization behavior and morphology of poly(ɛ-caprolactone)/within poly(ɛ-caprolactone)/poly(L-lactide) blends. Polym Int 67:566–576

    CAS  Google Scholar 

  65. Derakhshandeh M, Noroozi N, Schafer LL, Vlassopoulos D, Hatzikiriakos SG (2016) Dynamics of partially miscible polylactide-poly(ε-caprolactone) blends in the presence of cold crystallization. Rheol Acta 55:657–671

    CAS  Google Scholar 

  66. Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Gimenez E (2006) Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromol Symp 233:191–197

    CAS  Google Scholar 

  67. Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: new strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139:81–91

    CAS  Google Scholar 

  68. Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends with reactive processing agents. Polym Eng Sci 48:1359–1368

    CAS  Google Scholar 

  69. Urquijo J, Guerrica-Echevarrıa G, Eguiazabal JI (2015) Melt processed PLA/PCL blends: effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci 42641:1–9

    Google Scholar 

  70. Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971

    CAS  Google Scholar 

  71. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(L-lactide) with poly(ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266

    CAS  Google Scholar 

  72. Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q (2012) Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces 4:897–905

    CAS  PubMed  Google Scholar 

  73. Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε -caprolactone) blends. Biomacromolecules 3:1179–1186

    CAS  PubMed  Google Scholar 

  74. Wachirahuttapong S, Thongpin C, Sombatsompop N (2016) Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 89:198–206

    CAS  Google Scholar 

  75. Chavalitpanya K, Phattanarudee S (2013) Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548

    CAS  Google Scholar 

  76. Tuba F, Olah L, Nagy P (2011) Characterization of reactively compatibilized poly(D,L-lactide)/poly(ɛ-caprolactone) biodegradable blends by essential work of fracture method. Eng Fract Mech 78:3123–3133

    Google Scholar 

  77. Matta AK, Rao RU, Sumana KNS, Rambabuc V (2014) Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Mater Sci 6:1266

    CAS  Google Scholar 

  78. Androsch R, Di Lorenzo ML (2013) Kinetics of crystal nucleation of poly(L-lactic acid). Polymer 54:6882–6885

    CAS  Google Scholar 

  79. Di Lorenzo ML, Androsch R (2013) Crystal nucleation in glassy poly(L-lactic acid). Macromolecules 46, 6048–6056

    CAS  Google Scholar 

  80. Liu Q, Zhou XM (2015) Preparation of poly(butylene succinate)/poly(ϵ-caprolactone) blends compatibilized with poly(butylene succinate-co-ϵ-caprolactone) copolymer. J Macromol Sci Part A Pure Appl Chem 52:625–629

    CAS  Google Scholar 

  81. Qiu Z, Komura M, Ikehara T, Nishi T (2003) Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and poly(1-caprolactone). Polymer 44:7749–7756

    CAS  Google Scholar 

  82. Gumede TP, Luyt AS, Müller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. eXPRESS Polym Lett 12:505–529

    CAS  Google Scholar 

  83. Zhang J, Sato H, Furukawa T, Tsuji H, Noda I, Ozaki Y (2006) Crystallization behaviors of poly(3-hydroxybutyrate) and poly(L-lactic acid) in their immiscible and miscible blends. J Phys Chem B 110:24463–24471

    CAS  PubMed  Google Scholar 

  84. Sato H, Nakamura M, Padermshoke A, Yamaguchi H, Terauchi H, Ekgasit S, Noda I, Ozaki Y (2004) Thermal behavior and molecular interaction of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by wide-angle X-ray diffraction. Macromolecules 37:3763–3769

    CAS  Google Scholar 

  85. Sato H, Murakami R, Padermshoke A, Hirose F, Senda K, Noda I, Ozaki Y (2004) Infrared spectroscopy studies of CHO hydrogen bondings and thermal behavior of biodegradable poly(hydroxyalkanoate). Macromolecules 37:7203–7213

    CAS  Google Scholar 

  86. Zhang L, Xiong C, Deng X (1996) Miscibility, crystallization and morphology of poly(P-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer 37:235–241

    CAS  Google Scholar 

  87. Arrieta MP, Samper MD, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials (Basel) 10(9). pii: E1008. doi: https://doi.org/10.3390/ma10091008

    PubMed Central  Google Scholar 

  88. Arrieta MP, Lopez J, Rayon E, Jimenez A (2014) Disintegrability under composting conditions of plasticized PLA-PHB blends. Polym Degrad Stab 108:307–318

    CAS  Google Scholar 

  89. Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jimenez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. eXPRESS Polym Lett 9:583–596

    CAS  Google Scholar 

  90. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79

    Google Scholar 

  91. Arrieta MP, Fortunati E, Dominici F, Lopez J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275

    CAS  PubMed  Google Scholar 

  92. Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24

    CAS  PubMed  Google Scholar 

  93. Arrieta MP, Castro-Lopez MDM, Rayon E, Barral-Losada LF, Lopez-Vilarino JM, Lopez J, Gonzalez-Rodriguez MV (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62:10170–10180

    CAS  PubMed  Google Scholar 

  94. Arrieta MP, Lopez J, Hernandez A, Rayon E (2014) Ternary PLA-PHB-limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270

    CAS  Google Scholar 

  95. Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97:1822–1828

    CAS  Google Scholar 

  96. Blumm E, Owen AJ (1995) Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(L-lactide) blends. Polymer 36:4077–4081

    Google Scholar 

  97. Xu J, Bao J, Guo BH, Ma H, Yun TL, Gao L, Chen GQ, Iwata T (2007) Imaging of nonlinear optical response in biopolyesters via second harmonic generation microscopy and its dependence on the crystalline structures. Polymer 48:348–355

    CAS  Google Scholar 

  98. Ohkoshia I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer 41:5985–5992

    Google Scholar 

  99. Schultz JM (ed) (2001) Polymer crystallization: the development of crystalline order in thermoplastic polymers. American Chemical Society, New York

    Google Scholar 

  100. Ma P, Hristova-Bogaerds DG, Zhang Y, Lemstra PJ (2014) Enhancement in crystallization kinetics of the bacterially synthesized poly(β-hydroxybutyrate) by poly(butylene succinate). Polym Bull 71:907–923

    CAS  Google Scholar 

  101. Qiu Z, Ikehara T, Nishi T (2003) Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 44:2503–2508

    CAS  Google Scholar 

  102. Lovera D, Marquez L, Balsamo V, Taddei A, Castelli C, Müller AJ (2007) Crystallization, morphology, and enzymatic degradation of polyhydroxybutyrate/polycaprolactone (PHB/PCL) blends. Macromol Chem Phys 208:924–937

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dario Cavallo or Alejandro J. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fenni, S.E., Cavallo, D., Müller, A.J. (2019). Nucleation and Crystallization in Bio-Based Immiscible Polyester Blends. In: Di Lorenzo, M., Androsch, R. (eds) Thermal Properties of Bio-based Polymers. Advances in Polymer Science, vol 283. Springer, Cham. https://doi.org/10.1007/12_2019_48

Download citation

Publish with us

Policies and ethics