Skip to main content

Laboratory Investigation into Anti-contamination Coatings for Mitigating Insect Contamination with Application to Laminar Flow Technologies

  • Chapter
  • First Online:
Contamination Mitigating Polymeric Coatings for Extreme Environments

Part of the book series: Advances in Polymer Science ((POLYMER,volume 284))

Abstract

Insect contamination on aircraft leading edge surfaces can result in premature transition of the boundary layer, leading to an increase in skin friction drag and fuel consumption. An evaluation of candidate anti-contamination coatings was undertaken. Coatings were characterized before impact testing. Surface energy was quantified by dynamic contact angle analysis and surface roughness measured using a profilometer. Superhydrophobic coatings showed a reduction in contamination when compared to the higher surface energy specimens tested. The surface topography and chemistry, in particular the sliding angle of a coating, were found to have a significant influence on the effectiveness of a coating. Insect residue areas were theoretically predicted using high-speed liquid droplet theory and compared to experimentally obtained results. Tests with different insect species were conducted to investigate the effect of insect size and type on the effectiveness of the coatings and the evaluation procedure. Good correlations were obtained between the two test facilities used. The effect of substrate temperature on insect impact dynamics and adhesion was also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wohl CJ, Smith JG, Connell JW et al (2013) Engineered surfaces for mitigation of insect residue adhesion. In: Proceeding of the 51st AIAA aerospace sciences meeting, Grapeville, Dallas, Texas, 7–10 Jan 2013

    Google Scholar 

  2. Kok M, Mertens T, Raps D, Young TM (2013) Influence of surface characteristics on insect residue adhesion to aircraft leading edge surfaces. Prog Org Coat 76(11):1567–1575

    Article  CAS  Google Scholar 

  3. Kok M, Raps D, Young TM (2013) Effects of surface roughness and energy on insect residue adhesion to aircraft leading edge surfaces. In: Proceeding of the 36th annual meeting of the adhesion society, Daytona Beach, USA, 3–6 Mar 2013

    Google Scholar 

  4. Wohl CJ, Smith JG, Penner RK et al (2013) Polymide-based particulate-composite coatings for contamination mitigation of aircraft surfaces. In: Proceeding of the 36th annual meeting of the adhesion society, Daytona Beach, USA, 3–6 Mar 2013

    Google Scholar 

  5. Wohl CJ, Smith JG, Penner RK et al (2012) Evaluation of commercially available materials to mitigate insect residue adhesion on wing leading edge surfaces. Prog Org Coat 76:42–50

    Article  CAS  Google Scholar 

  6. Wortmann FX (1974) A method for avoiding insect roughness on aircraft: installation of highly elastic rubber coverings on leading edges. NASA – TT-F15454, Apr 1974

    Google Scholar 

  7. Siochi EJ, Eiss NS, Gilliam DR, Wightman JP (1987) A fundamental study of insect residues to aircraft wings. J Colloid Interface Sci 115(2):346–356

    Article  Google Scholar 

  8. Eiss NS Jr., Wightman JP, Gilliam DR, Siochi EJ (1984) A fundamental approach to the sticking of insect residues to aircraft wings. Annual Technical Report. NASA CR-173721, Apr 1984

    Google Scholar 

  9. Yi O, Eiss NS, Wightman JP (1988) Investigation of factors affecting the sticking of insects in aircraft wing surfaces. NASA CR-183041, Sep 1988

    Google Scholar 

  10. Lorenzi T, Wohl C, Penner R et al (2011) Insect residue contamination on wing leading edge surfaces: a materials investigation for mitigation. In: Proceeding of the 242nd American chemical society national meeting and exposition, Denver, USA, 28 Aug–1 Sept 2011

    Google Scholar 

  11. Smith J, Lorenzi T, Wohl C et al (2012) Influence of surface energy on insect residue adhesion. In: Proceeding of the 35th annual meeting of the adhesion society, New Orleans, USA, 26–29 Feb 2012

    Google Scholar 

  12. Young TM, Tobin EF, Kok M (2012) Laboratory testing of insect contamination for laminar flow applications using an insect-impact facility. In: Proceedings of the 28th international congress of the aeronautical sciences (ICAS), Brisbane, Australia, 23–28 Sept 2012

    Google Scholar 

  13. Grünke S (2012) Anti-contamination and easy-to-clean coatings for aerodynamic efficient surfaces. In: Proceeding of 19th international conference on surface treatments in the aeronautics and aerospace industries, Biarritz, France, 31 May – 1 June 2012

    Google Scholar 

  14. Kok M, Smith Jr JG, Wohl CJ et al (2015) Critical considerations in the mitigation of insect contamination on aircraft surfaces – a review. Prog Aerosp Sci 75:1–14

    Article  Google Scholar 

  15. AEROMUCO (AEROdynamic surfaces by advanced MUltifunctional COatings). www.aeromuco.eu, Accessed Oct 2014

  16. Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30:1–29

    Article  Google Scholar 

  17. Marsden DJ (1978) Wind tunnel tests of a slotted flapped wing section. Can Aeronaut Space J 24:83–91

    Google Scholar 

  18. Coleman WS (1961) Roughness due to insects. In: Lachmann GV (ed) Boundary layer and flow control, vol II. Pergammon Press, Oxford, pp 682–747

    Chapter  Google Scholar 

  19. Croom CC, Holmes BJ (1985) Flight evaluation of an insect contamination protection system for laminar flow wings. In: SAE, general aviation aircraft meeting and exposition, Wichita, US, 1985 Apr. 16–19, pp. 4.486–4.495 (Report No.: SAE Paper 850860)

    Google Scholar 

  20. Lowman MD (1982) Seasonal variation in insect abundance among three Australian rain forests, with particular reference to phytophagous types. Aust J Ecol 7:353–361

    Article  Google Scholar 

  21. Pedigo LP, Rice ME (2006) Entomology and pest management, 5th edn. Pearson Prentice Hall, Columbus

    Google Scholar 

  22. Freeman JA (1946) The distribution of spiders and mites up to 300ft. in the air. Anim Ecol 15(1):69–74

    Article  Google Scholar 

  23. Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London

    Google Scholar 

  24. Hardy AC, Milne PS (1939) Studies in the distribution of insects by aerial currents. J Anim Ecol 7:199–229

    Article  Google Scholar 

  25. Johnson CG, Penman HL (1951) Relationship of aphid density to altitude. Nature 168:337–338

    Article  Google Scholar 

  26. Carpenter FM, Burnham L (1985) The geological record of insects. Annu Rev Earth Planet Sci 13:297–314

    Article  Google Scholar 

  27. Pennycuick CJ (1972) Animal flight. Edward Arnold, London

    Google Scholar 

  28. Lachmann GV (1960) Aspects of insect contamination in relation to laminar flow aircraft. A.R.C Technical Report 484, London

    Google Scholar 

  29. Wortmann FX (1984) A possibility of avoiding surface roughness due to insects. NASA TM 77419

    Google Scholar 

  30. O’Donoghue D (2001) The investigation of the potential of fluorosurfactants and proteolytic and enzyme in water organic C-solvent systems for aircraft wing contamination alleviation. MSc thesis, University of Limerick, Ireland

    Google Scholar 

  31. O’Donoghue D, Young T, Pembroke JT, O’Dwyer T (2002) An investigation of surfactant and enzyme formulations for the alleviation of insect contamination on hybrid laminar flow control (HLFC) surfaces. Aerosp Sci Technol 6(1):19–29

    Article  Google Scholar 

  32. Kok M, Tobin EF, Zikmund P et al (2014) Laboratory testing of insect contamination with application to laminar flow technologies, part I: variables affecting insect impact dynamics. Aerosp Sci Technol 39:605–613

    Article  Google Scholar 

  33. Kok M, Young TM (2014) The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar surfaces. Appl Surf Sci 314:1053–1062

    Article  CAS  Google Scholar 

  34. Balamurugan A, Balossier G, Laurent-Maquin D et al (2008) An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater 24(10):1343–1351

    Article  CAS  PubMed  Google Scholar 

  35. Jaiswal S, McHale P, Duffy B (2012) Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol–gel surfaces. Colloids Surf B: Biointerfaces 94:170–176

    Article  CAS  PubMed  Google Scholar 

  36. Sakka S (2013) Handbook of advanced ceramics: materials, applications, processing, and properties, 2nd edn. Elsevier, Amsterdam, pp 883–910

    Google Scholar 

  37. Tan SN, Wang W, Ge L (2011) Comprehensive biomaterials: Vol. 3: methods of analysis. In: Ducheyne P (ed) Comprehensive biomaterials. Elsevier, Amsterdam

    Google Scholar 

  38. Peterson JB, Fisher DF (1978) Flight investigation of insect contamination and its alleviation. In: Proceeding in the CTOL transport technology conference, Langley Research Center, Hampton, Virginia, NASA CP 2036, Feb–Mar 1978, pp 357–363

    Google Scholar 

  39. Krishnan KG, Milionis A, Loth E et al (2017) Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues. Appl Surf Sci 393:723–731

    Article  CAS  Google Scholar 

  40. De Jong G, Bochdanovits Z (2003) Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J Gene 82(3):207–223

    Article  Google Scholar 

  41. De Moed GH, De Jong G, Scharloo W (1997) Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genet Res 70:35–43

    Article  PubMed  Google Scholar 

  42. Patterson J, Wagner R, Wharton L (1943) The drosophilidae of the southwest. The University of Texas Press, Austin, p 327

    Google Scholar 

  43. Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7(7):e42238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larrain P, Salas C (2008) House fly (Musca domestica L.) (Diptera: Muscidae) development in different types of manure. Chil J Agric Res 68(2):192–197

    Article  Google Scholar 

  45. Amino K (1985) Breeding of the housefly, Musca domestica (Diptera; Muscidae) in fresh dung of cattle fed on pasture grass. J App Entomol Zool 20:143–150

    Article  Google Scholar 

  46. Nosonovsky M, Bhushan B (2007) Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107:969–979

    Article  CAS  PubMed  Google Scholar 

  47. Bhushan B, Jung YC (2007) Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107:1033–1041

    Article  CAS  PubMed  Google Scholar 

  48. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal surfaces. J Phys Chem 100:19512–19517

    Article  CAS  Google Scholar 

  49. Yost FG, Michael JR, Eisenmann ET (1995) Extensive wetting due to roughness. Acta Metall Mater 45:299–305

    Article  Google Scholar 

  50. Semal S, Blake TD, Geskin V et al (1999) Influence of surface roughness on wetting dynamics. Langmuir 15:8765–8770

    Article  CAS  Google Scholar 

  51. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299:1377–1380

    Article  CAS  PubMed  Google Scholar 

  52. Burton Z, Bhushan B (2005) Hydrophobicity, adhesion and friction properties with nanopatterned roughness and scale dependence. Nano Lett 5:1607–1613

    Article  PubMed  CAS  Google Scholar 

  53. Muster TH, Prestidge CA (2002) Application of time-dependent sessile drop contact angles on compacts to characterise the surface energetics of sulfathiazole crystals. Int J Pharm 234:43–54

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Chen Z, Shen Z (2005) Dynamic behavior of polymer surface and the time dependence of contact angle. Sci China Ser B Chem 48(6):553–559

    Article  CAS  Google Scholar 

  55. Feng L, Zhang Y, Xi J et al (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  PubMed  Google Scholar 

  56. Choo S, Choi HJ, Lee H (2014) Replication of rose-petal surface structure using UV-nano imprint lithography. Mater Lett 121:170–173

    Article  CAS  Google Scholar 

  57. Xi J, Jiang L (2008) Biomimic superhydrophobic surfaces with high adhesive forces. Ind Eng Chem Res 47:6354–6357

    Article  CAS  Google Scholar 

  58. Karaman M, Cabuka N, Özyurt D, Köysüren Ö (2012) Self-supporting superhydrophobic thin polymer sheets that mimic the nature’s petal effect. Appl Surf Sci 259:542–546

    Article  CAS  Google Scholar 

  59. Olin PH, Lindstrom SB, Pettersson T, Wagberg L (2013) Water drop friction on superhydrophobic surfaces. Langmuir 29:9079–9089

    Article  CAS  PubMed  Google Scholar 

  60. Mahadik SA, Fernando PD, Hegade ND et al (2013) Durability and restoring of superhydrophobic properties in silica-based coatings. J Colloid Interface Sci 405:262–268

    Article  CAS  PubMed  Google Scholar 

  61. Siochi EJ, Smith JG, Wohl CJ et al (2013) Engineered surfaces for mitigation of insect residue adhesion. In: Proceeding of SAMPE, Long Beach, CA, 6–9 May, 2013

    Google Scholar 

  62. Nosonovsky M, Bhushan B (2009) Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr Opin Colloid Interface Sci 14:270–280

    Article  CAS  Google Scholar 

  63. Stumm-Tegethoff BFA, Dicke AW (1974) Surface structure of the compound eye of various drosophila species and eye mutants of Drosophila melanogaster. Theor Appl Genet 44:262–265

    Article  CAS  PubMed  Google Scholar 

  64. Michiels F, Falkenburg D, Müller AM et al (1987) Testis-specific β2 tubulins are identical in Drosophila melanogaster and D. hydei but differ from the ubiquitous β1 tubulin. Chromosoma 95(6):387–395

    Article  CAS  PubMed  Google Scholar 

  65. Miedema K, Harhangi H, Mentzel S et al (1994) Sequence conservation between both species has been demonstrated to show functionality relevant regions of a gene interspecific sequence comparison of the muscle-myosin heavy-chain genes from drosophila hydei and drosophila melanogaster. J Mol Evol 39:357–368

    Article  CAS  PubMed  Google Scholar 

  66. Deckstein D, Traufetter G (2013) Weight loss for superjumbos: the A380 and the aviation engineering dilemma. http://www.spiegel.de/international/business/airbus-struggles-to-handle-A380-engineering-dilemma-a-822391.html [Last Accessed 26 Aug 2013]

  67. Spiro CL, Fric TF, Leon RM (1997) General electric company. Aircraft anti-insect system. US Patent 5683062

    Google Scholar 

  68. Tegarden FW (1996) Hybrid laminar flow nacelles – a test for the future. General electric company, Cincinnati, Ohio, USA – Royal Aeronautical Society, London, pp 1–11

    Google Scholar 

  69. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  Google Scholar 

  70. Chen JH (2005) Characteristics of drop impact on elastic and complaint surfaces. J Mar Sci Technol 12(2):151–161

    Google Scholar 

  71. Aziz SD, Chandra S (2000) Impact, recoil and splashing of molten metal droplets. Int J Heat Mass Tran 43:2841–2857

    Article  Google Scholar 

  72. Wang B, Zhao Y, Yu T (2011) Fabrication of novel superhydrophobic surfaces and droplet bouncing behaviour – part 2: water droplet impact experiment on superhydrophobic surfaces constructed using ZnO nanoparticles. J Adhes Sci Technol 25:93–108

    Article  CAS  Google Scholar 

  73. Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61–93

    Article  Google Scholar 

  74. Šikalo Š, Tropea C, Ganić EN (2005) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669

    Article  PubMed  CAS  Google Scholar 

  75. Cui J, Chen X, Wang F et al (2009) Study of liquid droplets impact on dry inclined surface. Asia Pac J Chem Eng 4(5):643–648

    Article  CAS  Google Scholar 

  76. Liang G, Guo Y, Yang Y et al (2013) Spreading and splashing during a single drop impact on an inclined surface. Acta Mech 224:2993–3004

    Article  Google Scholar 

  77. Jin L, Yang C, Leong KC (2012) Dynamic behaviour of liquid droplet impacting on heated surfaces. Adv Multiphase Flow Heat Transf 4:28–39

    Article  CAS  Google Scholar 

  78. Toivakka M (2003) Numerical investigation of droplet impact spreading in spray coating of paper. TAPPI 8th advanced coating fundamentals symposium. TAPPI Press, Atlanta

    Google Scholar 

  79. German G, Bertola V (2009) Impact of shear-thinning and yield-stress drops on solid substrates. J Phys Condens Matter 21(37):375111

    Article  CAS  PubMed  Google Scholar 

  80. Clanet C, Beguin C, Richard D, Quere D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208

    Article  Google Scholar 

  81. Bobinski T, Sobieraj G, Gumowski K et al (2014) Droplet impact in icing conditions – the influence of ambient air humidity. Arch Mech 66(2):127–142

    Google Scholar 

  82. Zang D, Wang X, Geng X et al (2013) Impact dynamics of droplets with silica nanoparticles and polymers additives. Soft Matter 9:394–400

    Article  CAS  Google Scholar 

  83. Ukiwe C, Mansouri A, Kwok DY (2005) The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and CO2H terminal groups. J Colloid Interface Sci 285:760–768

    Article  CAS  PubMed  Google Scholar 

  84. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8(3):650–659

    Article  CAS  Google Scholar 

  85. Mundo C, Tropea C, Sommerfeld M (1997) Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall. Exp Thermal Fluid Sci 15:228–237

    Article  CAS  Google Scholar 

  86. Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiphase Flow 21:151–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union through FP7 Framework project AEROMUCO (AEROdynamic surfaces by advanced MUltifunctional COatings). The research leading to these results received funding from the MEYS under the National Sustainability Programme I (Project LO1202). The authors would like to acknowledge the following organizations for providing test materials for this study: CREST, Dublin Institute of Technology, Dublin, Ireland; Airbus Group Innovations, Ottobrunn, Germany; and Dassault Aviation SA, Paris, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor M. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kok, M., Tobin, E.F., Zikmund, P., Raps, D., Young, T.M. (2017). Laboratory Investigation into Anti-contamination Coatings for Mitigating Insect Contamination with Application to Laminar Flow Technologies. In: Wohl, C., Berry, D. (eds) Contamination Mitigating Polymeric Coatings for Extreme Environments. Advances in Polymer Science, vol 284. Springer, Cham. https://doi.org/10.1007/12_2017_31

Download citation

Publish with us

Policies and ethics