Skip to main content

Processing of Poly(lactic Acid)

  • Chapter
  • First Online:
Book cover Industrial Applications of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 282))

Abstract

Polymer applications range from biomedical devices and structures, packaging, or toys to automotive and industrial items. So far, biopolymers could replace commodity polymers in a variety of products, especially for biomedical applications or food packaging. One of the most used and widely studied biopolymers is poly(lactic acid) (PLA). To generate new application fields and provide a broader application of PLA, research on processing behavior is still required. This chapter covers the processing relevant behavior of PLA and processing conditions for extrusion melt spinning, injection molding, and additive manufacturing. The processing-related behavior is compared to that of commodity polymers. The aim is to provide an overview of the state of the art and some recent new developments in this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    tex is the measure of fineness in textiles (linear density), a fiber has the fineness 1 tex when 1,000 m of fiber length weight 1 g: 1 tex = 1 g/1,000 m.

References

  1. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  2. Ren J (2010) Processing of PLA in biodegradable poly(lactic acid): synthesis, modification, processing and applications. Springer, Berlin

    Google Scholar 

  3. Fachagentur Nachwachsender Rohstoffe (FNR) (2016) Processing of bioplastics – a guideline. Report

    Google Scholar 

  4. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  Google Scholar 

  5. Endres H-J, Siebert-Raths A (2011) Engineering biopolymers :markets, manufacturing, properties and applications. Hanser, Munich

    Book  Google Scholar 

  6. Fakirov S (2012) In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer-polymer composites. Hanser, Munich

    Google Scholar 

  7. Jiménez A, Peltzer MA, Ruseckaite RA (2015) Poly(lactic acid) science and technology - processing, additives and applications. RSC, Cambridge

    Google Scholar 

  8. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  9. Saba N, Jawaid M, Al-Othman O (2017) An overview on polylactic acid, its cellulosic composites and applications. Curr Org Synth 14(2):156–170

    Article  CAS  Google Scholar 

  10. Goebel L, Bonten C (2014) Influence of the phase morphology on the weldability of PLA/PBAT-blends by using butt-welding. In: Alstadt V, Keller JH, Fathi A (eds) Proceedings of PPS-29: The 29th International Conference of the Polymer Processing Society PPS 2014, AIP Conference Proceedings, vol 1593. pp 312–315. https://doi.org/10.1063/1.4873789

  11. Gottermann S, Weinmann S, Bonten C, Standau T, Altstadt V (2016) Modified standard polylactic acid (PLA) for extrusion foaming. In: Holzer CH, Payer M (eds) Proceedings of the Regional Conference Graz 2015, Polymer Processing Society PPS, AIP Conference Proceedings, vol 1779. p 060001. https://doi.org/10.1063/1.4965522

  12. Yamoum C, Maia J, Magaraphan R (2017) Rheological and thermal behavior of PLA modified by chemical crosslinking in the presence of ethoxylated bisphenol A dimethacrylates. Polym Adv Technol 28(1):102–112

    Article  CAS  Google Scholar 

  13. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255

    Article  CAS  Google Scholar 

  14. Srithep Y, Pholharn D, Turng LS, Veang-in O (2015) Injection molding and characterization of polylactide stereocomplex. Polym Degrad Stab 120:290–299

    Article  CAS  Google Scholar 

  15. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914

    Article  CAS  Google Scholar 

  16. Kolstad JJ (1996) Crystallization kinetics of poly(L-lactide-co-meso-lactide). J Appl Polym Sci 62(7):1079–1091

    Article  CAS  Google Scholar 

  17. Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly(L-lactide). J Appl Polym Sci 64(5):911–919

    Article  CAS  Google Scholar 

  18. Miyata T, Masuko T (1998) Crystallization behaviour of poly(L-lactide). Polymer 39(22):5515–5521

    Article  CAS  Google Scholar 

  19. Di Lorenzo ML (2005) Crystallization behavior of poly(L-lactic acid). Eur Polym J 41(3):569–575

    Article  CAS  Google Scholar 

  20. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly(L-lactic acid). Polymer 47(21):7554–7563

    Article  CAS  Google Scholar 

  21. Androsch R, Schick C (2016) Interplay between the relaxation of the glass of random L/D-lactide copolymers and homogeneous crystal nucleation: evidence for segregation of chain defects. J Phys Chem B 120:4522–4528

    Article  CAS  PubMed  Google Scholar 

  22. Di Lorenzo ML, Androsch R (2016) Stability and reorganization of alpha-crystals in random L/D-lactide copolymers. Macromol Chem Phys 217(13):1534–1538

    Article  CAS  Google Scholar 

  23. Sato Y, Inohara K, Takishima S, Masuoka H, Imaizumi M, Yamamoto H, Takasugi M (2000) Pressure-volume-temperature behavior of polylactide, poly(butylene succinate), and poly(butylene succinate-co-adipate). Polym Eng Sci 40(12):2602–2609

    Article  CAS  Google Scholar 

  24. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95(7):1148–1159

    Article  CAS  Google Scholar 

  25. Ehrenstein G, Riedel G, Trawiel P (2004) Thermal analysis of plastics - theory and practice. Carl Hanser, Munich

    Book  Google Scholar 

  26. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  27. Desantis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6(3):299–306

    Article  CAS  Google Scholar 

  28. Kalb B, Pennings AJ (1980) General crystallization behavior of poly(L-lactic acid). Polymer 21(6):607–612

    Article  CAS  Google Scholar 

  29. Ohtani Y, Okumura K, Kawaguchi A (2003) Crystallization behavior of amorphous poly(L-lactide). J Macromol Sci B42(3–4):875–888

    Article  CAS  Google Scholar 

  30. Di Lorenzo ML, Rubino P, Immirzi B, Luijkx R, Hélou M, Androsch R (2015) Influence of chain structure on crystal polymorphism 5 of poly(lactic acid). Part 2. Effect of molecular mass on the crystal growth rate and semicrystalline morphology. Colloid Polym Sci 293:2459–2467

    Article  CAS  Google Scholar 

  31. Burnett BB, McDevit WF (1957) Kinetics of spherulite growth in high polymers. J Appl Phys 28(10):1101–1105

    Article  CAS  Google Scholar 

  32. Androsch R, Iqbal HMN, Schick C (2015) Non-isothermal crystal nucleation of poly (L-lactic acid). Polymer 81:151–158

    Article  CAS  Google Scholar 

  33. Androsch R, Schick C, Di Lorenzo ML (2017) Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Adv Polym Sci. Springer, Berlin, pp 1–38

    Google Scholar 

  34. Kolesov I, Mileva D, Androsch R, Schick C (2011) Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 52(22):5156–5165

    Article  CAS  Google Scholar 

  35. Rhoades AM, Williams JL, Androsch R (2015) Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Thermochim Acta 603:103–109

    Article  CAS  Google Scholar 

  36. Grellmann W, Altstädt V (2007) Polymer testing. Hanser, Munich

    Book  Google Scholar 

  37. Osswald TA, Rudolph N (2015) Polymer rheology :fundamentals and applications. Hanser, Munich

    Google Scholar 

  38. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  CAS  Google Scholar 

  39. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies - a review. J Chem Technol Biotechnol 81(7):1119–1129

    Article  CAS  Google Scholar 

  40. Naturworks (2015) Sheet extrusion processing guide. Broshure of Naturworks LLC, Minnetonka

    Google Scholar 

  41. Osswald TA, Hernández-Ortiz JP (2006) Polymer processing :modeling and simulation. Hanser Gardner, Munich

    Book  Google Scholar 

  42. Corre YM, Duchet J, Reignier J, Maazouz A (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol Acta 50(7–8):613–629

    Article  CAS  Google Scholar 

  43. Ljungberg N, Andersson T, Wesslen B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88(14):3239–3247

    Article  CAS  Google Scholar 

  44. Zhou ZF, Huang GQ, Xu WB, Ren FM (2007) Chain extension and branching of poly(L-lactic acid) produced by reaction with a DGEBA-based epoxy resin. Express Polym Lett 1(11):734–739

    Article  CAS  Google Scholar 

  45. Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45(26):8809–8823

    Article  CAS  Google Scholar 

  46. Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86(5):1227–1234

    Article  CAS  Google Scholar 

  47. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46(23):10290–10300

    Article  CAS  Google Scholar 

  48. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  49. Hagen R (2013) The potential of PLA for the fiber market. Bioplast Mag 8:12ff

    Google Scholar 

  50. Schmack G, Tandler B, Optiz G, Vogel R, Kornber H, Haussler L, Voigt D, Weinmann S, Heinernann M, Fritz HG (2004) High-speed melt spinning of various grades of polylactides. J Appl Polym Sci 91(2):800–806

    Article  CAS  Google Scholar 

  51. Perepelkin K (2002) Chemistry and technology of chemical fibres – polylactid fibers: fabrication, properties, use, prospects. Fiber Chem 34(2):85–100

    Article  CAS  Google Scholar 

  52. Beyreuther R, Brünig H (2007) Dynamics of fibre formation and processing :modelling and application in fibre and textile industry. Springer, Berlin

    Google Scholar 

  53. Hahn J, Breier A, Brünig H, Heinrich G (2016) Mechanical adapted embroidered scaffolds based on polylactic acid melt spun multifilaments for ligament tissue engineering. Annual report of Leibniz-Institut für Polymerforschung Dresden e. V., Dresden. chapter: Biology-inspired interface and material design. pp. 42–44. http://www.ipfdd.de/en/publications/annual-reports/. Comment: The source is from the Leibniz-Institut für Polymerforschung Dresden e.V.

  54. Tran NHA, Brünig H, Hinüber C, Heinrich G (2014) Melt spinning of biodegradable nanofibrillary structures from poly(lactic acid) and poly (vinyl alcohol) blends. Macromol Mater Eng 299(2):219–227

    Article  CAS  Google Scholar 

  55. Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(L-lactic acid). Polym Eng Sci 47(7):1141–1147

    Article  CAS  Google Scholar 

  56. Ghosh S, Viana JC, Reis RL, Mano JF (2008) Oriented morphology and enhanced mechanical properties of poly(L-lactic acid) from shear controlled orientation in injection molding. Mater Sci Eng A 490(1–2):81–89

    Article  CAS  Google Scholar 

  57. Siebert-Raths A (2012) Modifizierung von polylactid (PLA) für technische Anwendungen, Verfahrenstechnische Optimierung der Verarbeitungs- und Gebrauchseigenschaften. Dissertation, Hannover

    Google Scholar 

  58. Kuehnert I (2009) Cold and hot interfaces during injection molding. In: PPS-25 Polymer Processing Society. Goa, Indien

    Google Scholar 

  59. Kuehnert I, Pompsch I (2011) Morphology and strength of injection molded parts with interfaces. In: Proceedings of SPE Antec 2011, Society of Plastics Engineers, Bosten

    Google Scholar 

  60. Kuehnert I, Schoenfeldt A, Auf der Landwehr M (2013) New insights into interfaces in injection molded parts. In: Proceedings of SPE Antec 2013, Society of Plastics Engineers, Cincinnati

    Google Scholar 

  61. Kuehnert I, Spoerer Y, Zimmermann M (2016) Weld lines in injection molded parts: strength, morphology and improvement. In: Proceedings of SPE Antec 2016, Society of Plastics Engineers, Indianapolis

    Google Scholar 

  62. Market study and Database on Bio-based Polymers in the World – Capacity, Production and Applications: Status Quo and Trends towards 2020. 2013–7; Nova-Institut GmbH, Chemiepark Knapsack, Industriestraße 300, 50354 Huerth Germany

    Google Scholar 

  63. Sundar V (2012) Manufacture and characterization of filament yarns with structured and collagen-coated surfaces for medical purposes. TU-Dresden and Leibniz-Institut für Polymerforschung Dresden e.V

    Google Scholar 

  64. Akram W (2015) Manufacturing and characterization of high-oriented, low-shrinkage and biodegradable filament yarns for medical applications. TU-Dresden and Leibniz-Institut für Polymerforschung Dresden e.V

    Google Scholar 

  65. Hahner J, Hinuber C, Breier A, Siebert T, Brunig H, Heinrich G (2015) Adjusting the mechanical behavior of embroidered scaffolds to lapin anterior cruciate ligaments by varying the thread materials. Text Res J 85(14):1431–1444

    Article  CAS  Google Scholar 

  66. Hahn J, Breier A, Brünig H, Heinrich G (2017) Long-term hydrolytic degradation study on polymer-based embroidered scaffolds for ligament tissue engineering. J Ind Text 804:1–16

    Google Scholar 

  67. Tran NHA, Brunig H, Auf der Landwehr M, Heinrich G (2016) Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part III: Fibrillation mechanism of PLA/PVA blends along the spinline. J Appl Polym Sci 133(48):16

    Article  CAS  Google Scholar 

  68. Tran N (2016) Melt spinning and characterization of biodegradable micro- and nanofibrillar structures from poly(lactic acid) and poly(vinyl alcohol) blends. PhD-Thesis. TU-Dresden and Leibniz-Institut für Polymerforschung Dresden e.V. TUD Press. ISBN: 978-3-95908-051-4

    Google Scholar 

  69. Kamal M, Isayev I, Liu SJ (2009) Injection molding-technology and fundamentals. Hanser, Munich

    Book  Google Scholar 

  70. Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett 5(10):849–858

    Article  CAS  Google Scholar 

  71. Yin YG, Zhang XQ, Song Y, de Vos S, Wang RY, Joziasse CAP, Liu GM, Wang DJ (2015) Effect of nucleating agents on the strain-induced crystallization of poly(L-lactide). Polymer 65:223–232

    Article  CAS  Google Scholar 

  72. Jing ZX, Shi XT, Zhang GC (2016) Rheology and crystallization behavior of asymmetric PLLA/PDLA blends based on linear PLLA and PDLA with different structures. Polym Adv Technol 27(8):1108–1120

    Article  CAS  Google Scholar 

  73. Malguarnera SC (1982) Weld lines in polymer processing. Polym-Plast Technol Eng 18(1):1–45

    Article  Google Scholar 

  74. Mennig G (1995) Knit-line behaviour of polypropylene and polypropylene-blends. Polypropylene: structure, blends and composites, vol 1. Chapman & Hall, London, pp 205–226

    Chapter  Google Scholar 

  75. Nguyen-Chung T, Plichta C, Mennig G (1998) Flow disturbance in polymer melt behind an obstacle. Rheol Acta 37(3):299–305

    Article  CAS  Google Scholar 

  76. Fischer M, Ausias G, Kuehnert I (2016) Investigation of interfacial fracture behavior on injection molded parts. In: Rhee B (ed) Proceedings of PPS-31: The 31st International Conference of the Polymer Processing Society PPS 2015, AIP Conference Proceedings. vol 1713. pp 040011. https://doi.org/10.1063/1.4942276

  77. Haufe A, Kuehnert I, Mennig G (1999) Zum Einfluss strömungsinduzierter Fehlerstellen auf das Versagensverhalten in spritzgegossenen Kunststoffbauteilen. GAK 4:354–358

    Google Scholar 

  78. Kuehnert I (2005) Grenzflächen beim Mehrkunststoff-Spritzgießen. Dissertation, Fakultät Maschinenbau. TU-Chemnitz, Hanser:Munich. http://archiv.tu-chemnitz.de/pub/2005/0166/data/Diss_Kuehnert.pdf or https://kunststoffe.de/fachinformationen/dissertationen/artikel/grenzflächen-beim-mehrkunststoffspritzgiessen-640067.html

  79. Gutjahr L, Becker H (1989) Herstellen technischer Formteile mit dem Gegentaktspritzgießverfahren. Kunststoffe 79(11):1108–1112

    CAS  Google Scholar 

  80. Malloy RA (2011) Plastic part design for injection molding: an introduction, 2 edn. Hanser, Munich

    Google Scholar 

  81. Kuehnert I, Vetter K (2008) Sequential injection moulding as a method for eliminating weld lines - praxis and simulation. RFP 3(5):256–261

    Google Scholar 

  82. Wohlers T (2013) Wohlers report 2013: additive manufacturing and 3D printing: state of the industry: annual worldwide progress report

    Google Scholar 

  83. Wohlers T (2015) Wohlers report 2015: additive manufacturing and 3D printing: state of the industry: annual worldwide progress report

    Google Scholar 

  84. ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies (Withdrawn 2015) (2012) ASTM International West Conshohocken PA

    Google Scholar 

  85. Gebhardt A (2011) Understanding additive manufacturing :rapid prototyping, rapid tooling, rapid manufacturing. Hanser, Munich

    Book  Google Scholar 

  86. McDonnell B, Guzman X, Doblack M, Simpson T, and Cimbala J Cimbala JM (2016) 3D printing in the wild, a preliminary, investigation of air quality in college maker spaces. In: 27th Annual International Solid Freeform Fabrication Symposium. Austin, TX, USA

    Google Scholar 

  87. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:14

    Article  CAS  Google Scholar 

  88. Royte E (2013) What lies ahead for 3-D printing? The new technology promises a factory in every home – and a whole lot more. Smithonian Magazine. http://www.smithsonianmag.com/science-nature/what-lies-ahead-for-3-d-printing-37498558/?all

  89. Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) 3D printed PLA-based scaffolds A versatile tool in regenerative medicine. Organogenesis 9(4):239–244

    Article  PubMed  PubMed Central  Google Scholar 

  90. Korpela J, Kokkari A, Korhonen H, Malin M, Narhi T, Seppala J (2013) Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater 101B(4):610–619

    Article  CAS  Google Scholar 

  91. Yen HJ, Tseng CS, Hsu SH, Tsai CL (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11(3):615–624

    Article  CAS  PubMed  Google Scholar 

  92. Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean D (2012) Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4:025003

    Article  CAS  PubMed  Google Scholar 

  93. Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, Huh JB (2012) Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med 23(12):2993–3002

    Article  CAS  PubMed  Google Scholar 

  94. Kim JY, Cho DW (2009) Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng 86(4-6):1447–1450

    Article  CAS  Google Scholar 

  95. Melchels FPW, Feijen J, Grijpma DW (2009) A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23–24):3801–3809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks the Institute of Textile Machinery and High Performance Material Technology (ITM) and the Technical University in Dresden (TUD) for cooperation and support, especially in the melt spinning process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Kühnert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kühnert, I., Spörer, Y., Brünig, H., Tran, N.H.A., Rudolph, N. (2017). Processing of Poly(lactic Acid). In: Di Lorenzo, M., Androsch, R. (eds) Industrial Applications of Poly(lactic acid). Advances in Polymer Science, vol 282. Springer, Cham. https://doi.org/10.1007/12_2017_30

Download citation

Publish with us

Policies and ethics