Skip to main content

Applications of Poly(lactic Acid) in Commodities and Specialties

  • Chapter
  • First Online:
Industrial Applications of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 282))

Abstract

The use of oil-derived polymers has been of great benefit to mankind, but it is evident that it causes considerable damage to the ecosystem. Public concern about the environmental impact of wastes is growing day by day and waste management methods are limited as are petroleum resources, so it is very important to find substitutes, particularly in those applications where a relatively short lifetime can be forecast, such as packaging and agriculture. This has led to research work to find new biodegradable polymers as an alternative to conventional non-degradable ones. Among bio-based totally biodegradable polymers, poly(lactic acid) (PLA) has been studied for use in different fields because of its compostability and renewability. In this chapter, information on the present situation and trends regarding the applications of PLA is offered. The use of life cycle assessment principles helps to quantify the environmental benefits of PLA polymers. Most recent developments with PLA in the field of packaging show how this plastic material is moving from commodity to specialty applications, facing competition from polyolefins, particularly as barrier polymers for shelf-life enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Galactic Laboratories (2017). https://www.lactic.com/en-us/applications/industry/bioplastics.aspx

  2. Biresaw G (2004) Compatibility in polymer blends comprising biodegradable polyesters. In: Proceedings of International Conference on Polymers for Advanced Technologies, December 15–17, 2004, Thiruvananthapuram, India

    Google Scholar 

  3. Dugan JS (2001) Novel properties of PLA fibers. Int Nonwovens J 10(3):31

    Google Scholar 

  4. Balkcom M et al (2002) Notes from the packaging laboratory: polylactic acid an exciting new packaging material. http://ufdcimages.uflib.ufl.edu/IR/00/00/15/27/00001/AE21000.pdf

  5. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  6. Weber C (2000) http://www.biodeg.net/fichiers/Book%20on%20biopolymers%20(Eng).pdf

  7. Södergard A (2000) Lactic acid based polymers for packaging materials for the food industry. Conference Proceedings. The Food Biopack Conference. Copenhagen, Denmark, pp 19–22

    Google Scholar 

  8. Nobile MR, Lucia G, Santella M, Malinconico M, Cerruti P, Pantani R (2016) Biodegradable compounds: rheological, mechanical and thermal properties. AIP Conf Proc 1695:020058. https://doi.org/10.1063/1.4937336

    Article  CAS  Google Scholar 

  9. Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications1st edn. CRC Press, Boca Raton, pp 3–31

    Chapter  Google Scholar 

  10. Naitove MH (1995) Push is on to commercialize biodegradable lactide polymers. Plast Technol 41(3):15–17

    Google Scholar 

  11. Kimura H, Ogura Y, Moritera T, Honda Y, Tabata Y, Ikada Y (1994) In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. Curr Eye Res 13:353–360

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Wyss UP, Pichora D, Goosen MFA (1994) An Investigation of Poly(lactic acid) Degradation. Journal of Bioactive and Compatible Polymers 9:80–100

    Google Scholar 

  13. Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) 3D printed PLA-based scaffolds. A versatile tool in regenerative medicine. Organogenesis 9:239–244

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907

    Article  CAS  Google Scholar 

  15. Landis AE (2010) Cradle to gate environmental footprint and life cycle assessment of poly(lactic acid). In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid) synthesis, structures, properties, processing, and application. Wiley, Hoboken, p 431

    Chapter  Google Scholar 

  16. National Oceanic & Atmospheric Administration. Earth System Research Laboratory, Global Monitoring Division. http://esrl.noaa.gov/gmd/ccgg/trends

  17. Narayan R (2014) Why bio-based? What are the compelling reasons to increase the proportion of biobased products in your inventory? Presentation at Bioproducts World, October 7, 2014, Columbus, OH (available on request from narayan@msu.edu)

    Google Scholar 

  18. Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419

    Article  CAS  Google Scholar 

  19. Vink ETH, Glassner DA, Kolstad JJ et al (2007) The eco-profiles for current and near future NatureWorks polylactide (PLA) production. Ind Biotechnol 3:58–81

    Article  CAS  Google Scholar 

  20. Vink ETH, Davies S, Kolstad JJ (2010) The eco-profile for current Ingeo polylactide production. Ind Biotechnol 6:212–224

    Article  CAS  Google Scholar 

  21. Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11:167–180

    Article  CAS  Google Scholar 

  22. Avinc O, Khoddami A (2010) Overview of poly(lactic acid) (PLA) fibre. Fibre Chem 42(1):68

    Article  CAS  Google Scholar 

  23. Shafer A (2002) Polylactic acid polymers from corn: potential applications in the textiles industry. J Ind Text 29:3

    Google Scholar 

  24. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. eXPRESS Polym Lett 9:435–455

    Article  CAS  Google Scholar 

  25. Liu A, Xue G, Miao S, Shao H, Ma C, Qing G, Gou Z, Yan S, Liu Y, He Y (2016) 3D printing surgical implants at the clinic: a experimental study on anterior cruciate ligament reconstruction. Nat Sci Rep 6:21704

    Article  CAS  Google Scholar 

  26. Marler J (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33:165–182

    Article  CAS  PubMed  Google Scholar 

  27. Hyon SH (2000) Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med J 41:720–734

    Article  CAS  PubMed  Google Scholar 

  28. Pavot V, Berthet M, Rességuier J, Legaz S, Handké N, Gilbert SC, Paul S, Verrier B (2014) Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine 9:2703–2718

    Article  CAS  PubMed  Google Scholar 

  29. Tarara J (2000) Microclimate modification with plastic mulch. Hortscience 35:169–180

    Google Scholar 

  30. Catalina F, Peinado C, Allen NS, Corrales T (2002) Chemiluminescence of polyethylene: the comparative antioxidant effectiveness of phenolic stabilisers in LDPE. J Polym Sci Pt A Polym Chem 40:3312–3326

    Article  CAS  Google Scholar 

  31. Corrales T, Catalina F, Peinado C, Allen NS, Montan E (2002) Photoxidative and thermal degradation on polyethylenes: interrelationship by chemiluminescence, thermal gravimetric analysis and FTIR data. J Photochem Photobiol 147:213–224

    Article  CAS  Google Scholar 

  32. Shogren R, Hochmuth R (2004) Field evaluation of watermelon grown on paper polymerized vegetable oil mulches. Hortscience 39:1588–1591

    Google Scholar 

  33. Liu EK, He WQ, Yan CR (2014) ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environ Res Lett 9:091001. https://doi.org/10.1088/1748-9326/9/9/091001

    Article  Google Scholar 

  34. Briassoulis D, Babou E, Hiskakis M, Scarascia G, Picuno P, Guarde D, Dejean C (2013) Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe. Waste Manag Res 31(12):1262–1278

    Article  CAS  PubMed  Google Scholar 

  35. Briassoulis D, Hiskakis M, Babou E (2013) Technical specifications for mechanical recycling of agricultural plastic waste. Waste Manag 33:1516–1530

    Article  CAS  PubMed  Google Scholar 

  36. López J, González A, Bañón S, Franco JA, Contreras F (2005) Materiales de acolchado biodegradables como alternativa al polietileno lineal de baja densidad. Actas Portuguesas Hortic 7(3):346–351

    Google Scholar 

  37. López J, González A, Fernández JA, Bañón S (2007) Behaviour of biodegradable films used for mulching in melon cultivation. Acta Hortic 747:125–130

    Article  Google Scholar 

  38. Briassoulis D, Dejean C (2010) Critical review of norms and standards for biodegradable agricultural plastics, part Ι. Biodegradation in soil. J Polym Environ 18(3):384–400

    Article  CAS  Google Scholar 

  39. Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN (2016) Analysis of the time course of degradation for fully biobased nonwoven agricultural mulches in compost-enriched soil. Text Res J 86(13):1343–1355

    Article  CAS  Google Scholar 

  40. Guerrini S, Borreani G, Voojis H (2017) Biodegradable materials in agriculture: case histories and perspectives. In: Malinconico M (ed) Soil degradable bioplastics for a sustainable modern agriculture. Springer, New York, p 35. ISBN 978-3-662-54130-235

    Chapter  Google Scholar 

  41. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymer for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  42. Petersen K, Nielsen P (2000) Potential biologically based food packaging. Proceedings. The Food Biopack Conference. Copenhagen, Denmark, p 76

    Google Scholar 

  43. Haugaard V, Udsen A, Mortensen G, et al (2000) Potential food applications of biobased materials: an EU-concerted action project. Conference Proceedings: The Food Biopack Conference. Copenhagen, Denmark, pp 59–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Malinconico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malinconico, M., Vink, E.T.H., Cain, A. (2018). Applications of Poly(lactic Acid) in Commodities and Specialties. In: Di Lorenzo, M., Androsch, R. (eds) Industrial Applications of Poly(lactic acid). Advances in Polymer Science, vol 282. Springer, Cham. https://doi.org/10.1007/12_2017_29

Download citation

Publish with us

Policies and ethics