pp 1-45 | Cite as

Reaction Engineering of Polyolefins: The Role of Catalyst Supports in Ethylene Polymerization on Metallocene Catalysts

  • M. Ahsan Bashir
  • Timothy F. L. McKenna
Part of the Advances in Polymer Science book series


This chapter presents a brief look at different methods for the polymerization of ethylene using supported metallocene catalysts, then focuses on the effects that the properties of silica gel supports can have on catalyst behavior and the polymerization process. A review of the literature reveals that surprisingly little work has been done on the role of the support in polymerization, perhaps because of the numerous confounding issues that arise. Even less appears to have been done in terms of understanding how the support structure impacts catalyst formulation. More attention needs to be paid to controlling factors such as particle size and pore structure in studies meant to elucidate the role of the support in the polymerization process.


Catalyst formulation Ethylene polymerization Metallocene Pore size Porosity Silica supports 


  1. 1.
    Soares JBP, McKenna TFL (2012) Introduction to polyolefins. Polyolefin reaction engineering. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Peacock AJ (2000) Handbook of polyethylene structures, properties and applications. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Karian HG (ed) (2003) Handbook of polypropylene and polypropylene composites2nd edn. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Odian G (2004) Stereochemistry of polymerization. Principles of polymerization. Wiley, HobokenCrossRefGoogle Scholar
  5. 5.
    Soares JBP, McKenna TFL (2012) Polyolefin reactors and processes. Polyolefin reaction engineering. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  6. 6.
    Galli P, Vecellio G (2001) Technology: driving force behind innovation and growth of polyolefins. Prog Polym Sci 26:1287CrossRefGoogle Scholar
  7. 7.
    Prades F, Boisson C, Spitz R, Razavi A (2005) Activating supports for metallocene catalysis. Patent US7759271B2Google Scholar
  8. 8.
    Prades F, Spitz R, Boisson C, Sirol S, Razavi A (2007) Transition metal complexes supported on activating fluorinated support. Patent WO2007014889 A1Google Scholar
  9. 9.
    Prades F, Broyer JP, Belaid I, Boyron O, Miserque O, Spitz R, Boisson C (2013) Borate and MAO free activating supports for metallocene complexes. ACS Catal 3:2288CrossRefGoogle Scholar
  10. 10.
    McInnis JP, Delferro M, Marks TJ (2014) Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects. Acc Chem Res 47:2545PubMedCrossRefGoogle Scholar
  11. 11.
    Nikolaeva MI, Mikenas TB, Matsko MA, Echevskaya LG, Zakharov VA (2010) Heterogeneity of active sites of Ziegler-Natta catalysts: the effect of catalyst composition on the MWD of polyethylene. J Appl Polym Sci 115:2432CrossRefGoogle Scholar
  12. 12.
    Mcdaniel MP (2011) Influence of catalyst porosity on ethylene polymerization. ACS Catal 1:1394CrossRefGoogle Scholar
  13. 13.
    Soares JBP, McKenna TFL (2012) Particle growth and single particle modeling. Polyolefin reaction engineering. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. 14.
    Zheng X, Smit M, Chadwick JC, Loos J (2005) Fragmentation behavior of silica-supported metallocene/MAO catalyst in the early stages of olefin polymerization. Macromolecules 38:4673ADSCrossRefGoogle Scholar
  15. 15.
    Zheng X, Pimplapure MS, Weickert G, Loos J (2006) Influence of copolymerization on fragmentation behavior using Ziegler-Natta catalysts. Macromol Rapid Commun 27:15CrossRefGoogle Scholar
  16. 16.
    Pater JTM, Weickert G, Loos J, van Swaaij WPM (2001) High precision prepolymerization of propylene at extremely low reaction rates-kinetics and morphology. Chem Eng Sci 56:4107CrossRefGoogle Scholar
  17. 17.
    Noristi L, Marchetti E, Baruzzi G, Sgarzi P (1994) Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported ziegler-Νatta catalysts. J Polym Sci A Polym Chem 32:3047ADSCrossRefGoogle Scholar
  18. 18.
    McKenna TFL, Di Martino A, Weickert G, Soares JBP (2010) Particle growth during the polymerisation of olefins on supported catalysts, 1-nascent polymer structures. Macromol React Eng 4:40CrossRefGoogle Scholar
  19. 19.
    McKenna TFL, Tioni E, Ranieri MM, Alizadeh A, Boisson C, Monteil V (2013) Catalytic olefin polymerisation at short times: studies using specially adapted reactors. Can J Chem Eng 91:669CrossRefGoogle Scholar
  20. 20.
    Ferrero MA, Koffi E, Sommer R, Conner WC (1992) Characterization of the changes in the initial morphology for MgCl2-supported Ziegler-Natta polymerization catalysts. J Polym Sci A Polym Chem 30:2131ADSCrossRefGoogle Scholar
  21. 21.
    Ferrero MA, Sommer R, Spanne P, Jones KW, Conner WC (1993) X-ray microtomography studies of nascent polyolefin particles polymerized over magnesium chloride-supported catalysts. J Polym Sci A Polym Chem 31:2507ADSCrossRefGoogle Scholar
  22. 22.
    Knoke S, Ferrari D, Tesche B, Fink G (2003) Microkinetic videomicroscopic analysis of olefin polymerization with a supported metallocene catalyst. Angew Chem Int Ed 42:5090CrossRefGoogle Scholar
  23. 23.
    Jang YJ, Naundorf C, Klapper M, Mullen K (2005) Study of the fragmentation process of different supports for metallocenes by laser scanning confocal fluorescence microscopy (LSCFM). Macromol Chem Phys 206:2027CrossRefGoogle Scholar
  24. 24.
    Grof Z, Kosek J, Marek M (2005) Principles of the morphogenesis of polyolefin particles. Ind Eng Chem Res 44:2389CrossRefGoogle Scholar
  25. 25.
    Grof Z, Kosek J, Marek M (2005) Modeling of morphogenesis of growing polyolefin particles. AICHE J 51:2048CrossRefGoogle Scholar
  26. 26.
    Gambarotta S (2003) Vanadium-based Ziegler-Natta: challenges, promises, problems. Coord Chem Rev 237:229CrossRefGoogle Scholar
  27. 27.
    Soares JBP, McKenna TFL (2012) Polymerization catalysis and mechanism. Polyolefin reaction engineering. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  28. 28.
    Billmeyer FW (1984) Ionic and coordination chain (addition) polymerization. Textbook of polymer science3rd edn. Wiley Interscience, New YorkGoogle Scholar
  29. 29.
    Chadwick JC, Garoff T, Severn JR (2008) Traditional heterogeneous catalysts. Tailor-made polymers. Wiley-VCH, WeinheimGoogle Scholar
  30. 30.
    McDaniel MP (2010) A review of the Phillips supported chromium catalyst and its commercial use for ethylene polymerization. In: Gates BC, Knozinger H, Jentoft FC (eds) Advances in catalysis, vol 53. Academic, San DiegoGoogle Scholar
  31. 31.
    McDaniel MP (2008) Review of the Phillips chromium catalyst for ethylene polymerization. Handbook of heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  32. 32.
    Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans 1998:1413CrossRefGoogle Scholar
  33. 33.
    Kaminsky W, Kopf J, Sinn H, Vollmer HJ (1976) Extrem verzerrte Bindungswinkel bei Organozirconium-Verbindungen, die gegen Ethylen aktiv sind. Angew Chem 88:688CrossRefGoogle Scholar
  34. 34.
    Kaminsky W (2012) Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules 45:3289ADSCrossRefGoogle Scholar
  35. 35.
    Sinn H, Kaminsky W (1980) Ziegler-Natta catalysis. In: Stone FGA, West R (eds) Advances in organometallic chemistry, vol 18. Academic, New YorkGoogle Scholar
  36. 36.
    Breslow DS, Newburg NR (1957) Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as catalysts for the polymerization of ethylene. J Am Chem Soc 79:5072CrossRefGoogle Scholar
  37. 37.
    Natta G, Pino P, Mazzanti G, Giannini U (1957) A crystallizable organometallic complex containing titanium and aluminum. J Am Chem Soc 79:2975CrossRefGoogle Scholar
  38. 38.
    Chen EY-X, Marks TJ (2000) Cocatalysts for metal-Catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem Rev 100:1391PubMedCrossRefGoogle Scholar
  39. 39.
    Kaminsky W (2016) Production of polyolefins by metallocene catalysts and their recycling by pyrolysis. Macromol Symp 360:10CrossRefGoogle Scholar
  40. 40.
    Buffet JC, Wanna N, Arnold TAQ, Gibson EK, Wells PP, Wang Q, Tantirungrotechai J, O’Hare D (2015) Highly tunable catalyst supports for single-site ethylene polymerization. Chem Mater 27:1495CrossRefGoogle Scholar
  41. 41.
    Severn JR, Chadwick JC, Duchateau R, Friederichs N (2005) “Bound but not gagged” immobilizing single-site α-olefin polymerization catalysts. Chem Rev 105:4073PubMedCrossRefGoogle Scholar
  42. 42.
    Soares JBP, McKenna TFL (2012) Polymerization kinetics. Polyolefin reaction engineering. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  43. 43.
    Stürzel M, Mihan S, Mülhaupt R (2016) From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem Rev 116:1398PubMedCrossRefGoogle Scholar
  44. 44.
    Campos JM, Lourenco JP, Cramail H, Ribeiro MR (2012) Nanostructured silica materials in olefin polymerisation: from catalytic behaviour to polymer characteristics. Prog Polym Sci 37:1764CrossRefGoogle Scholar
  45. 45.
    Heurtefeu B, Bouilhac C, Cloute É, Taton D, Deffieux A, Cramail H (2011) Polymer support of “single-site” catalysts for heterogeneous olefin polymerization. Prog Polym Sci 36:89CrossRefGoogle Scholar
  46. 46.
    Hlatky GG (2000) Heterogeneous single-site catalysts for olefin polymerization. Chem Rev 100:1347PubMedCrossRefGoogle Scholar
  47. 47.
    Klapper M, Joe D, Nietzel S, Krumpfer JW, Müllen K (2014) Olefin polymerization with supported catalysts as an exercise in nanotechnology. Chem Mater 26:802CrossRefGoogle Scholar
  48. 48.
    Ribeiro MR, Deffieux A, Portela MF (1997) Supported metallocene complexes for ethylene and propylene polymerizations: preparation and activity. Ind Eng Chem Res 36:1224CrossRefGoogle Scholar
  49. 49.
    Martin JL, Thorn MG, Mcdaniel MP, Jensen MD, Yang Q, Deslauriers PJ, Kertok ME (2007) Polymerization catalysts and process for producing bimodal polymers in a single reactor. Patent US7312283B2Google Scholar
  50. 50.
    Collins RA, Russell AF, Mountford P (2015) Group 4 metal complexes for homogeneous olefin polymerisation: a short tutorial review. Appl Petrochem Res 5:153CrossRefGoogle Scholar
  51. 51.
    McKnight AL, Waymouth RM (1998) Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem Rev 98:2587PubMedCrossRefGoogle Scholar
  52. 52.
    Theopold KH, Heintz RA, Noh SK, Thomas BJ (1992) Homogeneous chromium catalysts for olefin polymerization. Homogeneous transition metal catalyzed reactions, vol 230. American Chemical Society, WashingtonCrossRefGoogle Scholar
  53. 53.
    Theopold KH (1998) Homogeneous chromium catalysts for olefin polymerization. Eur J Inorg Chem 1998:15CrossRefGoogle Scholar
  54. 54.
    Severn JR (2008) Methylaluminoxane (MAO), silica and a complex: the “holy trinity” of supported single-site catalyst. Tailor-made polymers. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  55. 55.
    Severn JR, Chadwick JC (2013) Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability. Dalton Trans 42:8979PubMedCrossRefGoogle Scholar
  56. 56.
    Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A Physicochem Eng Asp 173:1CrossRefGoogle Scholar
  57. 57.
    Atiqullah M, Akhtar MN, Moman AA, Abu-Raqabah AH, Palackal SJ, Al-Muallem HA, Hamed OM (2007) Influence of silica calcination temperature on the performance of supported catalyst SiO2-nBuSnCl3/MAO/(nBuCp)2ZrCl2 polymerizing ethylene without separately feeding the MAO cocatalyst. Appl Catal A Gen 320:134CrossRefGoogle Scholar
  58. 58.
    dos Santos JHZ, Krug C, da Rosa MB, Stedile FC, Dupont J, de Camargo Forte M (1999) The effect of silica dehydroxylation temperature on the activity of SiO2-supported zirconocene catalysts. J Mol Catal A Chem 139:199CrossRefGoogle Scholar
  59. 59.
    Smit M, Zheng X, Loos J, Chadwick JC, Koning CE (2005) Effects of methylaluminoxane immobilization on silica on the performance of zirconocene catalysts in propylene polymerization. J Polym Sci A Polym Chem 43:2734ADSCrossRefGoogle Scholar
  60. 60.
    Van Grieken R, Carrero A, Suarez I, Paredes B (2007) Ethylene polymerization over supported MAO/(nBuCp)2ZrCl2 catalysts: influence of support properties. Eur Polym J 43:1267CrossRefGoogle Scholar
  61. 61.
    Hammawa H, Wanke SE (2007) Influence of support friability and concentration of α-olefins on gas-phase ethylene polymerization over polymer-supported metallocene/methylaluminoxane catalysts. J Appl Polym Sci 104:514CrossRefGoogle Scholar
  62. 62.
    Bashir MA (2016) Impact of physical properties of silica supported metallocenes on their ethylene polymerisation kinetics and polyethylene properties. Université Claude Bernard Lyon-1, VilleurbanneGoogle Scholar
  63. 63.
    Bashir MA, Vancompernolle T, Gauvin RM, Delevoye L, Merle N, Monteil V, Taoufik M, McKenna TFL, Boisson C (2016) Silica/MAO/(n-BuCp)2ZrCl2 catalyst: effect of support dehydroxylation temperature on the grafting of MAO and ethylene polymerization. Cat Sci Technol 6:2962CrossRefGoogle Scholar
  64. 64.
    Alt G (1999) The heterogenization of homogeneous metallocene catalysts for olefin polymerization. J Chem Soc, Dalton Trans 1999:1703CrossRefGoogle Scholar
  65. 65.
    Choi Y, Soares JB (2012) Supported single-site catalysts for slurry and gas-phase olefin polymerisation. Can J Chem Eng 90:646CrossRefGoogle Scholar
  66. 66.
    dos Santos JHZ, Larentis A, da Rosa MB, Krug C, Baumvol IJR, Dupont J, Stedile FC, de Camargo Forte M (1999) Optimization of a silica supported bis(butylcyclopentadienyl)-zirconium dichloride catalyst for ethylene polymerization. Macromol Chem Phys 200:751CrossRefGoogle Scholar
  67. 67.
    dos Santos JHZ, Dorneles S, Stedile FC, Dupont J, de Camargo Forte MM, Baumvol IJR (1997) Silica supported zirconocenes and Al-based cocatalysts: surface metal loading and catalytic activity. Macromol Chem Phys 198:3529CrossRefGoogle Scholar
  68. 68.
    Chang M (1991) Olefin polymerization catalyst from trialkylaluminum mixture, silica gel and a metallocene. Patent US5006500AGoogle Scholar
  69. 69.
    Chang M (1992) Method for preparing a silica gel supported metallocene-alumoxane catalyst. Patent US5086025AGoogle Scholar
  70. 70.
    Chang M (1993) Supported catalyst for 1-olefin(s) (co)polymerization. Patent US5238892AGoogle Scholar
  71. 71.
    Simplicio LMT, Costa FG, Boaventura JS, Sales EA, Brandao ST (2004) Study of some parameters on the zirconocene immobilization over silica. J Mol Catal A Chem 216:45CrossRefGoogle Scholar
  72. 72.
    Lee DH, Shin SY, Lee DH (1995) Ethylene polymerization with metallocene and trimethylaluminumtreated silica. Macromol Symp 97:195CrossRefGoogle Scholar
  73. 73.
    Takahashi T (1991) Process for producing ethylene copolymers. Patent US5026797AGoogle Scholar
  74. 74.
    Welborn HC (1989) Supported polymerization catalyst. Patent US4808561AGoogle Scholar
  75. 75.
    Akhtar MN, Atiqullah M, Moman AA, Abu-Raqabah AH, Ahmed N (2008) Supported (nBuCp)2ZrCl2 catalysts: effects of selected Lewis acid organotin silica surface modifiers on ethylene polymerization. Macromol React Eng 2:339CrossRefGoogle Scholar
  76. 76.
    Atiqullah M, Anantawaraskul S, Emwas AH, Al-Harthi MA, Hussain I, Ul-Hamid A, Hossaen A (2014) Silica-supported (nBuCp)2ZrCl2: effect of catalyst active center distribution on ethylene-1-hexene copolymerization. Polym Int 63:955CrossRefGoogle Scholar
  77. 77.
    Chao C, Pratchayawutthirat W, Praserthdam P, Shiono T, Rempel GL (2002) Copolymerization of ethylene and propylene using silicon tetrachloride-modified silica/MAO with et[Ind]2ZrCl2 metallocene catalyst. Macromol Rapid Commun 23:672CrossRefGoogle Scholar
  78. 78.
    Jongsomjit B, Kaewkrajang P, Wanke SE, Praserthdam PA (2004) Comparative study of ethylene/α-olefin copolymerization with silane-modified silica-supported MAO using zirconocene catalysts. Catal Lett 94:205CrossRefGoogle Scholar
  79. 79.
    Soga K, Shiono T, Kim HJ (1993) Activation of SiO2-supported zirconocene catalysts by common trialkylaluminiums. Makromol Chem 194:3499CrossRefGoogle Scholar
  80. 80.
    Kamfjord T, Wester TS, Rytter E (1998) Supported metallocene catalysts prepared by impregnation of MAO modified silica by a metallocene/monomer solution. Macromol Rapid Commun 19:505CrossRefGoogle Scholar
  81. 81.
    Moroz BL, Semikolenova NV, Nosov AV, Zakharov VA, Nagy S, O'Reilly NJ (1998) Silica-supported zirconocene catalysts: preparation, characterization and activity in ethylene polymerization. J Mol Catal A Chem 130:121CrossRefGoogle Scholar
  82. 82.
    Rytter E, Ott M (2001) Supported metallocene catalysts prepared by impregnation of silica with metallocene/aluminoxane/1-hexene solutions. Macromol Rapid Commun 22:1427CrossRefGoogle Scholar
  83. 83.
    Sinn H, Kaminsky W, Vollmer HJ, Woldt R (1980) “Lebende Polymere” bei Ziegler-Katalysatoren extremer Produktivitat. Angew Chem 92:396CrossRefGoogle Scholar
  84. 84.
    Kaminsky W, Miri M, Sinn H, Woldt R (1983) Bis(cyclopentadienyl)zirkon-verbindungen und aluminoxan als Ziegler-Katalysatoren für die polymerisation und copolymerisation von olefinen. Makromol Chem, Rapid Commun 4:417CrossRefGoogle Scholar
  85. 85.
    Sinn H (1995) Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments. Macromol Symp 97:27CrossRefGoogle Scholar
  86. 86.
    Koide Y, Bott SG, Barron AR (1996) Alumoxanes as cocatalysts in the palladium-catalyzed copolymerization of carbon monoxide and ethylene: genesis of a structure-activity relationship. Organometallics 15:2213CrossRefGoogle Scholar
  87. 87.
    Zijlstra HS, Stuart MCA, Harder S (2015) Structural investigation of methylalumoxane using transmission electron microscopy. Macromolecules 48:5116ADSCrossRefGoogle Scholar
  88. 88.
    Linnolahti M, Severn J, Pakkanen T (2008) Formation of nanotubular methylaluminoxanes and the nature of the active species in single-site α-olefin polymerization catalysis. Angew Chem Int Ed 47:9279CrossRefGoogle Scholar
  89. 89.
    Ystenes M, Eilertsen JL, Liu J, Ott M, Rytter E, Stovneng JA (2000) Experimental and theoretical investigations of the structure of methylaluminoxane (MAO) cocatalysts for olefin polymerization. J Polym Sci A Polym Chem 38:3106ADSCrossRefGoogle Scholar
  90. 90.
    Babushkin DE, Brintzinger HH (2002) Activation of dimethyl zirconocene by methylaluminoxane (MAO) size estimate for Me-MAO-anions by pulsed field-gradient NMR. J Am Chem Soc 124:12869PubMedCrossRefGoogle Scholar
  91. 91.
    Ghiotto F, Pateraki C, Tanskanen J, Severn JR, Luehmann N, Kusmin A, Stellbrink J, Linnolahti M, Bochmann M (2013) Probing the structure of methylalumoxane (MAO) by a combined chemical, spectroscopic, neutron scattering, and computational approach. Organometallics 32:3354CrossRefGoogle Scholar
  92. 92.
    Matsui S, Mitani M, Saito J, Tohi Y, Makio H, Matsukawa N, Takagi Y, Tsuru K, Nitabaru M, Nakano T, Tanaka H, Kashiwa N, Fujita T (2001) A family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization. J Am Chem Soc 123:6847CrossRefGoogle Scholar
  93. 93.
    Zijlstra HS, Harder S (2015) Methylalumoxane-history, production, properties, and applications. Eur J Inorg Chem 2015:19CrossRefGoogle Scholar
  94. 94.
    Fink G, Steinmetz B, Zechlin J, Przybyla C, Tesche B (2000) Propene polymerization with silica-supported metallocene/MAO catalysts. Chem Rev 100:1377PubMedCrossRefGoogle Scholar
  95. 95.
    Goretzki R, Fink G, Tesche B, Steinmetz B, Rieger R, Uzick W (1999) Unusual ethylene polymerization results with metallocene catalysts supported on silica. J Polym Sci A Polym Chem 37:677ADSCrossRefGoogle Scholar
  96. 96.
    Steinmetz B, Tesche B, Przybyla C, Zechlin J, Fink G (1997) Polypropylene growth on silica-supported metallocene catalysts: a microscopic study to explain kinetic behavior especially in early polymerization stages. Acta Polym 48:392CrossRefGoogle Scholar
  97. 97.
    Tisse VF, Prades F, Briquel R, Boisson C, McKenna TFL (2010) Role of silica properties in the polymerisation of ethylene using supported metallocene catalysts. Macromol Chem Phys 211:91CrossRefGoogle Scholar
  98. 98.
    Tisse VF, Briquel RM, McKenna TFL (2009) Influence of silica support size on the polymerisation of ethylene using a supported metallocene catalyst. Macromol Symp 285:45CrossRefGoogle Scholar
  99. 99.
    Tioni E, Broyer JP, Monteil V, McKenna T (2012) Influence of reaction conditions on catalyst behavior during the early stages of gas phase ethylene homo- and copolymerization. Ind Eng Chem Res 51:14673CrossRefGoogle Scholar
  100. 100.
    Floyd S, Heiskanen T, Taylor TW, Mann GE, Ray WH (1987) Polymerization of olefins through heterogeneous catalysis. VI. Effect of particle heat and mass transfer on polymerization behavior and polymer properties. J Appl Polym Sci 33:1021CrossRefGoogle Scholar
  101. 101.
    Webb SW, Weist EL, Chiovetta MG, Laurence RL, Conner WC (1991) Morphological influences in the gas phase polymerization of ethylene by silica supported chromium oxide catalysts. Can J Chem Eng 69:665CrossRefGoogle Scholar
  102. 102.
    Sano T, Doi K, Hagimoto H, Wang Z, Uozumi T, Soga K (1999) Adsorptive separation of methylalumoxane by mesoporous molecular sieve MCM-41. Chem Commun 1999:733CrossRefGoogle Scholar
  103. 103.
    Sano T, Hagimoto H, Sumiya S, Naito Y, Oumi Y, Uozumi T, Soga K (2001) Application of porous inorganic materials to adsorptive separation of methylalumoxane used as co-catalyst in olefin polymerization. Microporous Mesoporous Mater 44–45:557CrossRefGoogle Scholar
  104. 104.
    Sano T, Hagimoto H, Jin J, Oumi Y, Uozumi T, Soga K (2000) Influences of methylaluminoxane separated by porous inorganic materials on the isospecific polymerization of propylene. Macromol Rapid Commun 21:1191CrossRefGoogle Scholar
  105. 105.
    Silveira F, Petry CF, Pozebon D, Pergher SB, Detoni C, Stedile FC, dos Santos JHZ (2007) Supported metallocene on mesoporous materials. Appl Catal A Gen 333:96CrossRefGoogle Scholar
  106. 106.
    Silveira F, Pires GP, Petry CF, Pozebon D, Stedile FC, Santos JHZ, Rigacci A (2007) Effect of the silica texture on grafting metallocene catalysts. J Mol Catal A Chem 265:167CrossRefGoogle Scholar
  107. 107.
    Wongwaiwattanakul P, Jongsomjit B (2008) Copolymerization of ethylene/1-octene via different pore sized silica-based-supported zirconocene/dMMAO catalysts. Catal Commun 10:118CrossRefGoogle Scholar
  108. 108.
    Bunchongturakarn S, Jongsomjit B, Praserthdam P (2008) Impact of bimodal pore MCM-41-supported zirconocene/dMMAO catalyst on copolymerization of ethylene/1-octene. Catal Commun 9:789CrossRefGoogle Scholar
  109. 109.
    Kumkaew P, Wanke SE, Praserthdam P, Danumah C, Kaliaguine S (2003) Gas-phase ethylene polymerization using zirconocene supported on mesoporous molecular sieves. J Appl Polym Sci 87:1161CrossRefGoogle Scholar
  110. 110.
    Kumkaew P, Wu L, Praserthdam P, Wanke SE (2003) Rates and product properties of polyethylene produced by copolymerization of 1-hexene and ethylene in the gas phase with (n-BuCp)2ZrCl2 on supports with different pore sizes. Polymer 44:4791CrossRefGoogle Scholar
  111. 111.
    Paredes B, Grieken R v, Carrero A, Suarez I, Soares JBP (2011) Ethylene/1-Hexene copolymers produced with MAO/(nBuCp)2ZrCl2 supported on SBA-15 materials with different pore sizes. Macromol Chem Phys 212:1590CrossRefGoogle Scholar
  112. 112.
    Tioni E, Monteil V, McKenna T (2013) Morphological interpretation of the evolution of the thermal properties of polyethylene during the fragmentation of silica supported metallocene catalysts. Macromolecules 46:335ADSCrossRefGoogle Scholar
  113. 113.
    Shin K, Woo E, Jeong YG, Kim C, Huh J, Kim KW (2007) Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 40:6617ADSCrossRefGoogle Scholar
  114. 114.
    Woo E, Huh J, Jeong YG, Shin K (2007) From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys Rev Lett 98:136103ADSPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chemistry, Catalysis, Polymers and Processes – UMR5265, CNRS, UCB-Lyon 1, ESCPE LyonUniversité de LyonVilleurbanne CedexFrance
  2. 2.Dutch Polymer Institute (DPI)EindhovenThe Netherlands

Personalised recommendations