Advertisement

pp 1-20 | Cite as

Trends in Emulsion Polymerization Processes from an Industrial Perspective

  • Klaus-Dieter Hungenberg
  • Ekkehard Jahns
Chapter
Part of the Advances in Polymer Science book series

Abstract

We highlight some trends in research on emulsion polymerization, focusing on industrial relevance. The review is restricted to a selected (and somewhat arbitrary) number of topics, namely, the use of renewable raw materials, nanostructured latexes, miniemulsion polymerization, continuous emulsion processes, and recent developments in semibatch processes and removal of volatile organic compounds. Scientific and technical details for many of the topics mentioned here are covered by other articles in this volume.

Keywords

Continuous polymerization Emulsion polymerization Hybrid latices Miniemulsion polymerization Multiphase particles Process control Renewable resources VOC removal 

References

  1. 1.
    Mckenna TF, Charleux B, Bourgeat-Lami E, D’agosto F, Lansalot M (2014) Novel technologies and chemistries for waterborne coatings. J Coat Technol Res 11:131–141CrossRefGoogle Scholar
  2. 2.
    Overbeek A (2009) Polymer heterogeneity in waterborne coatings. J Coat Technol Res 7(1):1–21CrossRefGoogle Scholar
  3. 3.
    Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, Lee SY (2015) Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr Opin Biotechnol 36:73–84CrossRefPubMedGoogle Scholar
  4. 4.
    Dubé MA, Salehpour S (2014) Applying the principles of green chemistry to polymer production technology. Macromol React Eng 8:7–28CrossRefGoogle Scholar
  5. 5.
    Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39CrossRefGoogle Scholar
  6. 6.
    Roberge S, Dubé MA (2016) Infrared process monitoring of conjugated linoleic acid/styrene/butyl acrylate bulk and emulsion terpolymerization. J Appl Polym Sci 133:n/a–n/aCrossRefGoogle Scholar
  7. 7.
    Global Markets Insights (2017) Bio acrylic acid market size. Report GMI341. Global Market Insights, Delaware. https://www.gminsights.com/industry-analysis/bio-acrylic-acid-market. Accessed 24 Apr 2017Google Scholar
  8. 8.
    Bao Z, Li W, Fu Z, Chen L (2016) A review of the application of renewable resources in preparing acrylic polymer latex. Polym Renewable Resour 7:13Google Scholar
  9. 9.
    Derksen JTP, Petrus Cuperus F, Kolster P (1996) Renewable resources in coatings technology: a review. Prog Org Coat 27:45–53CrossRefGoogle Scholar
  10. 10.
    Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16:337–343CrossRefGoogle Scholar
  11. 11.
    Vähä-Nissi M, Laine C, Talja R, Mikkonen H, Hyvärinen S, Harlin, A (2011) Aqueous dispersions from biodegradable/renewable polymers. http://www.tappi231.tappi.org/content/events/10PLACE/Aqueous.pdf. Accessed 24 Apr 2017
  12. 12.
    Akzo Nobel (2017) Our strategy. Akzo Nobel, Arnhem. https://www.akzonobel.com/about-us/strategy. Accessed 24 Apr 2017
  13. 13.
    Schnorbus P (2016) From biomass to dispersions: For the first time BASF produces binders for interior paints based on the mass balance process. News release, 17 March 2016. BASF, Ludwigshaven. https://www.basf.com/documents/corp/en/news-and-media/news-releases/2016/03/P155e_Dispersions_Mass_Balance_Process.pdf. Accessed 24 Apr 2017
  14. 14.
    Van Herk AM, Landfester K (2010) Hybrid latex particles: preparation with (mini) emulsion polymerization. Springer, BerlinCrossRefGoogle Scholar
  15. 15.
    Asua JM (2014) Challenges for industrialization of miniemulsion polymerization. Prog Polym Sci 39:1797–1826CrossRefGoogle Scholar
  16. 16.
    Akhmatskaya E, Asua JM (2012) Dynamic modeling of the morphology of latex particles with in situ formation of graft copolymer. J Polym Sci A Polym Chem 50:1383–1393ADSCrossRefGoogle Scholar
  17. 17.
    Hamzehlou S, Leiza JR, Asua JM (2016) A new approach for mathematical modeling of the dynamic development of particle morphology. Chem Eng J 304:655–666CrossRefGoogle Scholar
  18. 18.
    Karlsson OJ, Stubbs JM, Carrier RH, Sundberg DC (2003) Dynamic modeling of non-equilibrium latex particle morphology development during seeded emulsion polymerization. Polym React Eng 11:589–625CrossRefGoogle Scholar
  19. 19.
    Sundberg DC, Durant YG (2003) Latex particle morphology, fundamental aspects: a review. Polym React Eng 11:379–432CrossRefGoogle Scholar
  20. 20.
    Procopio L, Vielhauer L, Greyson E, Hejl A (2012) Designing latex film morphology to optimize wood coating performance. JCT CoatingsTech 9:32–41Google Scholar
  21. 21.
    Schork FJ, Luo Y, Smulders W, Russum JP, Butté A, Fontenot K (2005) Miniemulsion polymerization. In: Okubo M (ed) Polymer particles. Springer, Berlin, HeidelbergGoogle Scholar
  22. 22.
    Lopez A, Degrandi-Contraires E, Canetta E, Creton C, Keddie JL, Asua JM (2011) Waterborne polyurethane–acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives. Langmuir 27:3878–3888CrossRefPubMedGoogle Scholar
  23. 23.
    Van Herk AM (2010) Historical overview of (mini)emulsion polymerizations and preparation of hybrid latex particles. In: Van Herk AM, Landfester K (eds) Hybrid latex particles: preparation with (mini)emulsion polymerization. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  24. 24.
    Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) Emulsion polymerization. Initiation of polymerization in monomer droplets. J Polym Sci Polym Lett Ed 11:503–513CrossRefGoogle Scholar
  25. 25.
    Schaller C, Rogez D, Braig A (2012) Organic vs inorganic light stabilizers for waterborne clear coats: a fair comparison. J Coat Technol Res 9:433–441CrossRefGoogle Scholar
  26. 26.
    Kostansek E (2003) Emulsions. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, HobokenGoogle Scholar
  27. 27.
    Ai Z, Deng R, Zhou Q, Liao S, Zhang H (2010) High solid content latex: preparation methods and application. Adv Colloid Interf Sci 159:45–59CrossRefGoogle Scholar
  28. 28.
    Boutti S, Graillat C, Mckenna TF (2005) High solids content emulsion polymerisation without intermediate seeds. Part III. Reproducibility and influence of process conditions. Polymer 46:1223–1234CrossRefGoogle Scholar
  29. 29.
    Guyot A, Chu F, Schneider M, Graillat C, Mckenna T (2002) High solid content latexes. Prog Polym Sci 27(8):1573–1615CrossRefGoogle Scholar
  30. 30.
    Kröner H, Klostermann R, Birk J, Hauff T (2002) Method for continuously monitoring and controlling the monomer conversion during emulsion polymerization. US6498219Google Scholar
  31. 31.
    Manders LG, Meister M, Bausa J, Hungenberg K-D (2011) Online model-based process safety concepts in polymerization. Macromol Symp 302:289–296CrossRefGoogle Scholar
  32. 32.
    Gao J, Kong XM, Hungenberg KD, Schmidt-Thummes J (2007) Method for producing aqueous polymer dispersions. US10566248Google Scholar
  33. 33.
    Kane J, Durham JF (2016) Continuous adiabatic inverse emulsion polymerization process. US9434793Google Scholar
  34. 34.
    Frauendorfer E, Wolf A, Hergeth WD (2010) Polymerization online monitoring. Chem Eng Technol 33:1767–1778CrossRefGoogle Scholar
  35. 35.
    Fonseca GE, Dubé MA, Penlidis A (2009) A critical overview of sensors for monitoring polymerizations. Macromol React Eng 3:327–373CrossRefGoogle Scholar
  36. 36.
    Pelz K, Brandt H, Finkler TF, Engell S (2012) Scheme for time-optimal operation of semi-batch emulsion polymerization reactors. IFAC Proc Vol 45:239–244CrossRefGoogle Scholar
  37. 37.
    Vicente M, Leiza JR, Asua JM (2003) Maximizing production and polymer quality (MWD and composition) in emulsion polymerization reactors with limited capacity of heat removal. Chem Eng Sci 58:215–222CrossRefGoogle Scholar
  38. 38.
    Bonvin D, Srinivasan B, Hunkeler D (2006) Control and optimization of batch processes. IEEE Control Syst 26:34–45CrossRefGoogle Scholar
  39. 39.
    Finkler TF, Kawohl M, Piechottka U, Engell S (2012) Realization of online optimizing control in an industrial polymerization reactor. IFAC Proc Vol 45:11–18CrossRefGoogle Scholar
  40. 40.
    Graichen K, Hagenmeyer V, Zeitz M (2006) Feedforward control with online parameter estimation applied to the Chylla–Haase reactor benchmark. J Process Control 16:733–745CrossRefGoogle Scholar
  41. 41.
    Gomes VG (2010) Advanced monitoring and control of multi-monomer system in emulsion polymerization. Macromol React Eng 4:672–681CrossRefGoogle Scholar
  42. 42.
    Pohn J, Cunningham M, Mckenna TFL (2013) Scale-up of emulsion polymerization reactors part II – simulations and interpretations. Macromol React Eng 7:393–408CrossRefGoogle Scholar
  43. 43.
    Obrecht W, Lambert J-P, Happ M, Oppenheimer-Stix C, Dunn J, Krüger R (2011) Rubber, 4. Emulsion rubbers. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  44. 44.
    De Castro LBR, Adams D (2015) Vinyl ester/ethylene copolymer dispersions prepared by continuous tubular emulsion polymerization for coating carpet products. US14399742Google Scholar
  45. 45.
    Hain J, Kotschi U, Weitzel HP (2013) Process for continuous emulsion polymerization. US13505921Google Scholar
  46. 46.
    De Castro LBR, Adams D (2013) Vinyl ester/ethylene copolymer dispersions prepared by continuous tubular emulsion polymerization for coating carpet products. Patent WO2013IB01471 20130515Google Scholar
  47. 47.
    Rawlings JB, Ray WH ((1987) Emulsion polymerization reactor stability: simplified model analysis. AICHE J 33:1663–1677CrossRefGoogle Scholar
  48. 48.
    Lee HC, Poehlein GW (1986) Continuous tube-CSTR reactor system for emulsion polymerization kinetic studies. Chem Eng Sci 41:1023–1030CrossRefGoogle Scholar
  49. 49.
    Durand A, Engell S (2016)) Batch to Conti transfer of polymer production processes. Macromol React Eng 10:308–310ADSCrossRefGoogle Scholar
  50. 50.
    Pauer W, Moritz H-U (2006) Continuous reactor concepts with superimposed secondary flow – polymerization process intensification. Macromol Symp 243:299–308CrossRefGoogle Scholar
  51. 51.
    Rossow K, Bröge P, Lüth FG, Joy P, Mhamdi A, Mitsos A, Moritz H-U, Pauer W (2016) Transfer of emulsion polymerization of styrene and n-butyl acrylate from semi-batch to a continuous tubular reactor. Macromol React Eng 10:324–338CrossRefGoogle Scholar
  52. 52.
    Asua JM (2016) Challenges and opportunities in continuous production of emulsion polymers: a review. Macromol React Eng 10:311–323CrossRefGoogle Scholar
  53. 53.
    Scholtens CA, Meuldijk J, Drinkenburg AAH (2001) Production of copolymers with a predefined intermolecular chemical composition distribution by emulsion polymerisation in a continuously operated reactor. Chem Eng Sci 56:955–962CrossRefGoogle Scholar
  54. 54.
    Araujo PHH, Sayer C, Poco JGR, Giudici R (2002) Techniques for reducing residual monomer content in polymers: a review. Polym Eng Sci 42:1442–1468CrossRefGoogle Scholar
  55. 55.
    Ilundain P, Da Cunha L, Salazar R, Alvarez D, Barandiaran MJ, Asua JM (2002) Postpolymerization of vinyl acetate-containing latexes. J Appl Polym Sci 83:923–928CrossRefGoogle Scholar
  56. 56.
    Kechagia Z, Kammona O, Pladis P, Alexopoulos AH, Kiparissides C (2011) A kinetic investigation of removal of residual monomers from polymer latexes via post-polymerization and nitrogen stripping methods. Macromol React Eng 5:479–489CrossRefGoogle Scholar
  57. 57.
    Humme G, Plato H, Ott KH, Kowitz F, Hagenberg, P (1983) Process for the removal of residual monomers from ABS polymers. US4399273AGoogle Scholar
  58. 58.
    Heider W, Huebinger WD, Keller PD, Eiden UD (1998) Counterflow column, process plant and process for reducing volatiles in dispersions. DE19716373A1Google Scholar
  59. 59.
    Wilhelm G, Hurm K, Hirsch RB, Jaschke A, Marzolph H (1976) Process for separating and recovering residual monomers from aqueous suspensions of acrylonitrile polymers. US3980529Google Scholar
  60. 60.
    Englund SM (1981) Monomer removal from latex. Chem Eng Prog 77:55–59Google Scholar
  61. 61.
    Aerts M (2012) Residual monomer reduction in polymer latex products by extraction with supercritical carbon dioxide. TU Eindhoven, EindhovenGoogle Scholar
  62. 62.
    Kemmere MF, Meyer T (2006) Supercritical carbon dioxide: in polymer reaction engineering. Wiley, HobokenGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Hungenberg ConsultantBirkenauGermany
  2. 2.BASF SELudwigshafenGermany

Personalised recommendations