Skip to main content

Poly(lactic acid) Controlled Drug Delivery

  • Chapter
  • First Online:
Industrial Applications of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 282))

Abstract

Various drug delivery systems are being rapidly developed for controlled drug release, improved efficacy, and reduced side effects with the goal of improving quality of life for patients and curing disease. Poly(lactic acid) (PLA) possesses numerous advantages compared with other polymers, including biocompatibility, biodegradability, low cost, environmental friendliness, and easily modified mechanical properties. These properties make PLA a promising polymer for biomedical applications. This review introduces the specific characteristics of PLA that enable its application for controlled drug delivery and describes different forms of PLA used for drug delivery, including nanoparticles, microspheres, hydrogels, electrospun fibers, and scaffolds. Previous work is summarized and future development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, Weiner DM, Schimel D, England K, Martin JD, Gao X, Xu L, Barry CE, Jain RK (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci 112(6):1827–1832

    Article  PubMed  CAS  Google Scholar 

  2. Chen J, Ding J, Xiao C, Zhuang X, Chen X (2015) Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomater Sci 3(7):988–1001

    Article  PubMed  CAS  Google Scholar 

  3. Gu X, Ding J, Zhang Z, Li Q, Zhuang X, Chen X (2015) Polymeric nanocarriers for drug delivery in osteosarcoma treatment. Curr Pharm Des 21(36):5187–5197

    Article  PubMed  CAS  Google Scholar 

  4. Pacardo DB, Ligler FS, Gu Z (2015) Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale 7(8):3381–3391

    Article  PubMed  CAS  Google Scholar 

  5. Ding J, Xiao C, Yan L, Tang Z, Zhuang X, Chen X, Jing X (2011) pH and dual redox responsive nanogel based on poly(L-glutamic acid) as potential intracellular drug carrier. J Control Release 152:E11–E13

    Article  PubMed  CAS  Google Scholar 

  6. Ding J, Chen J, Li D, Xiao C, Zhang J, He C, Zhuang X, Chen X (2013) Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. J Mater Chem B 1(1):69–81

    Article  CAS  Google Scholar 

  7. Xiao H, Qi R, Liu S, Hu X, Duan T, Zheng Y, Huang Y, Jing X (2011) Biodegradable polymer-cisplatin(IV) conjugate as a pro-drug of cisplatin(II). Biomaterials 32(30):7732–7739

    Article  PubMed  CAS  Google Scholar 

  8. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2(1):2–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65(1):104–120

    Article  PubMed  CAS  Google Scholar 

  10. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    Article  CAS  Google Scholar 

  11. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23

    Article  PubMed  CAS  Google Scholar 

  12. Doppalapudi S, Jain A, Domb AJ, Khan W (2016) Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv 13(6):891–909

    PubMed  CAS  Google Scholar 

  13. Liu M, Li H, Luo G, Liu Q, Wang Y (2008) Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res 31(4):547–554

    Article  PubMed  CAS  Google Scholar 

  14. Feng C, Piao M, Li D (2016) Stereocomplex-reinforced PEGylated polylactide micelle for optimized drug delivery. Polymers 8(4):165

    Article  CAS  Google Scholar 

  15. Ding GJ, Zhu YJ, Qi C, Lu BQ, Wu J, Chen F (2015) Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. J Colloid Interface Sci 443:72–79

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Darabi M, Gu J, Shi J, Xue J, Huang L, Liu Y, Zhang L, Liu N, Zhong W, Zhang L, Xing M, Zhang L (2016) A drug delivery hydrogel system based on activin B for Parkinson’s disease. Biomaterials 102:72–86

    Article  PubMed  CAS  Google Scholar 

  17. Cheng M, Wang H, Zhang Z, Li N, Fang X, Xu S (2014) Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS Appl Mater Interfaces 6(3):1569–1575

    Article  PubMed  CAS  Google Scholar 

  18. Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q (2015) Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 103(4):1424–1435

    Article  PubMed  CAS  Google Scholar 

  19. Pang XA, Zhuang XL, Tang ZH, Chen XS (2010) Polylactic acid (PLA): research, development and industrialization. Biotechnol J 5(11):1125–1136

    Article  PubMed  CAS  Google Scholar 

  20. Chang FY, Teng PT, Tsai TH (2013) Property measurement and processing parameter optimization for polylactide micro structure fabrication by thermal imprint. Jpn J Appl Phys 52(6S):06GJ09

    Article  CAS  Google Scholar 

  21. Arrnentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38(10–11):1720–1747

    Article  CAS  Google Scholar 

  22. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices – A review. Biotechnol Adv 30(1):321–328

    Article  PubMed  CAS  Google Scholar 

  23. Manome A, Okada S, Uchimura T, Komagata K (1998) The ratio of L-form to D-form of lactic acid as a criteria for the identification of lactic acid bacteria. J Gen Appl Microbiol 44(6):371–374

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Xu W, Ding J, Lu S, Wang X, Wang C, Chen X (2015) Cholesterol-enhanced polylactide-based stereocomplex micelle for effective delivery of doxorubicin. Materials 8(1):216–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang J, Shen K, Xu W, Ding J, Wang X, Liu T, Wang C, Chen X (2015) Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. Nanoscale Res Lett 10(1):206

    Article  PubMed Central  CAS  Google Scholar 

  26. Ajiro H, Kuroda A, Kan K, Akashi M (2015) Stereocomplex film using triblock copolymers of polylactide and poly(ethylene glycol) retain paxlitaxel on substrates by an aqueous inkjet system. Langmuir 31(38):10583–10589

    Article  PubMed  CAS  Google Scholar 

  27. Chen C, Lv G, Pan C, Song M, Wu C, Guo D, Wang X, Chen B, Gu Z (2007) Poly(lactic acid) (PLA) based nanocomposites – A novel way of drug-releasing. Biomed Mater 2(4):L1–L4

    Article  PubMed  CAS  Google Scholar 

  28. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Maciel R (2010) Biomaterials for application in bone tissue engineering. J Biotechnol 150:S455–S455

    Article  Google Scholar 

  29. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  PubMed  CAS  Google Scholar 

  30. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers – polylactide: a critique. Eur Polym J 43(10):4053–4074

    Article  CAS  Google Scholar 

  31. Townshend A (1985) Anal Chim Acta 177:304

    Article  Google Scholar 

  32. Di Martino A, Sedlarik V (2014) Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy. Int J Pharm 474(1–2):134–145

    Article  PubMed  CAS  Google Scholar 

  33. Hou Z, Li L, Zhan C, Zhu P, Chang D, Jiang Q, Ye S, Yang X, Li Y, Xie L, Zhang Q (2012) Preparation and in vitro evaluation of an ultrasound-triggered drug delivery system: 10-Hydroxycamptothecin loaded PLA microbubbles. Ultrasonics 52(7):836–841

    Article  PubMed  CAS  Google Scholar 

  34. Li J, Sabliov C (2013) PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev 2(3):241–257

    Article  CAS  Google Scholar 

  35. Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X (2015) Drug delivery: pH-responsive reversible PEGylation improves performance of antineoplastic agent (Adv. Healthcare Mater. 6/2015). Adv Healthc Mater 4(6):786–786

    Article  Google Scholar 

  36. Wu Y-L, Chen X, Wang W, Loh XJ (2016) Engineering bioresponsive hydrogels toward healthcare applications. Macromol Chem Phys 217(2):175–188

    Article  CAS  Google Scholar 

  37. Zhang J, Wang X, Liu T, Liu S, Jing X (2016) Antitumor activity of electrospun polylactide nanofibers loaded with 5-fluorouracil and oxaliplatin against colorectal cancer. Drug Deliv 23(3):794–800

    PubMed  Google Scholar 

  38. Li Z, Zhang FL, Pan LL, Zhu XL, Zhang ZZ (2015) Preparation and characterization of injectable mitoxantrone poly(lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy. J Photochem Photobiol B Biol 149:51–57

    Article  CAS  Google Scholar 

  39. Fernandez K, Aburto J, von Plessing C, Rockel M, Aspe E (2016) Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts. Food Chem 207:75–85

    Article  PubMed  CAS  Google Scholar 

  40. Feng X, Gao X, Kang T, Jiang D, Yao J, Jing Y, Song Q, Jiang X, Liang J, Chen J (2015) Mammary-derived growth inhibitor targeting peptide-modified PEG-PLA nanoparticles for enhanced targeted glioblastoma therapy. Bioconjug Chem 26(8):1850–1861

    Article  PubMed  CAS  Google Scholar 

  41. Dou S, Yang XZ, Xiong MH, Sun CY, Yao YD, Zhu YH, Wang J (2014) ScFv-decorated PEG-PLA-based nanoparticles for enhanced siRNA delivery to Her2(+) breast cancer. Adv Healthc Mater 3(11):1792–1803

    Article  PubMed  CAS  Google Scholar 

  42. Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, Wang Y, Shen Z, Hu Q, Gu X, Huang M, Zheng G, Gao X, Hu B, Chen J, Chen H (2014) Facilitated brain delivery of poly(ethylene glycol)-poly(lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials 35(10):3384–3395

    Article  PubMed  CAS  Google Scholar 

  43. Liu B, Han SM, Tang XY, Han L, Li CZ (2014) Cervical cancer gene therapy by gene loaded PEG-PLA nanomedicine. Asian Pac J Cancer Prev 15(12):4915–4918

    Article  PubMed  Google Scholar 

  44. Yao W, Xu P, Pang Z, Zhao J, Chai Z, Li X, Li H, Jiang M, Cheng H, Zhang B, Cheng N (2014) Local delivery of minocycline-loaded PEG-PLA nanoparticles for the enhanced treatment of periodontitis in dogs. Int J Nanomedicine 9:3963–3970

    PubMed  PubMed Central  Google Scholar 

  45. Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(2):219–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yeh P-YJ, Kainthan RK, Zou Y, Chiao M, Kizhakkedathu JN (2008) Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s. Langmuir 24(9):4907–4916

    Article  CAS  Google Scholar 

  47. Deng Y, Saucier-Sawyer JK, Hoimes CJ, Zhang JW, Seo YE, Andrejecsk JW, Saltzman WM (2014) The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials 35(24):6595–6602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yamakawa I, Tsushima Y, Machida R, Watanabe S (1992) Invitro and invivo release of poly(DL-lactic acid) microspheres containing neurotensin analog prepared by novel oil-in-water solvent evaporation method. J Pharm Sci 81(8):808–811

    Article  PubMed  CAS  Google Scholar 

  49. Jing Z, Xu XY, Chen XS, Liang QZ, Bian XC, Yang LX, Jing XB (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231

    Article  PubMed  CAS  Google Scholar 

  50. Maestrelli F, Bragagni M, Mura P (2016) Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: a review. J Drug Delivery Sci Technol 32:192–205

    Article  CAS  Google Scholar 

  51. Zhu Z (2013) Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability. Biomaterials 34(38):10238–10248

    Article  PubMed  CAS  Google Scholar 

  52. Patel T, Zhou JB, Piepmeier JM, Saltzman WM (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64(7):701–705

    Article  PubMed  CAS  Google Scholar 

  53. Ishihara T, Takahashi M, Higaki M, Mizushima Y (2009) Efficient encapsulation of a water-soluble corticosteroid in biodegradable nanoparticles. Int J Pharm 365(1–2):200–205

    Article  PubMed  CAS  Google Scholar 

  54. Choonara YE, Kumar P, Modi G, Pillay V (2016) Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv 13(7):1029–1043

    Article  PubMed  CAS  Google Scholar 

  55. Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29(33):4429–4438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sun WQ, Xie CS, Wang HF, Hu Y (2004) Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 25(15):3065–3071

    Article  PubMed  CAS  Google Scholar 

  57. Kulkarni SA, Feng SS (2011) Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine 6(2):377–394

    Article  PubMed  CAS  Google Scholar 

  58. Lu W, Wan J, She ZJ, Jiang XG (2007) Brain delivery property and accelerated blood clearance of cationic albumin conjugated PEGylated nanoparticle. J Control Release 118(1):38–53

    Article  PubMed  CAS  Google Scholar 

  59. Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials 31(30):7748–7757

    Article  PubMed  CAS  Google Scholar 

  60. Hashizume R, Gupta N (2010) Telomerase inhibitors for the treatment of brain tumors and the potential of intranasal delivery. Curr Opin Mol Ther 12(2):168–175

    PubMed  CAS  Google Scholar 

  61. Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, Gude RP, Patil S, Raut P (2016) Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater Sci Eng C 63:411–421

    Article  CAS  Google Scholar 

  62. Xia HM, Gao XL, Gu GZ, Liu ZY, Zeng N, Hu QY, Song QX, Yao L, Pang ZQ, Jiang XG, Chen J, Chen HZ (2011) Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 32(36):9888–9898

    Article  PubMed  CAS  Google Scholar 

  63. Li Y, Du Y, Liu X, Zhang Q, Jing L, Liang X, Chi C, Dai Z, Tian J (2015) Monitoring tumor targeting and treatment effects of IRDye 800CW and GX1-conjugated polylactic acid nanoparticles encapsulating endostar on glioma by optical molecular imaging. Mol Imaging 14:356–365

    PubMed  CAS  Google Scholar 

  64. Miller T, Breyer S, van Colen G, Mier W, Haberkorn U, Geissler S, Voss S, Weigandt M, Goepferich A (2013) Premature drug release of polymeric micelles and its effects on tumor targeting. Int J Pharm 445(1–2):117–124

    Article  PubMed  CAS  Google Scholar 

  65. Mishra GP, Nguyen D, Alani AW (2013) Inhibitory effect of paclitaxel and rapamycin individual and dual drug-loaded polymeric micelles in the angiogenic cascade. Mol Pharm 10(5):2071–2078

    Article  PubMed  CAS  Google Scholar 

  66. Xu W, Ding J, Li L, Xiao C, Zhuang X, Chen X (2015) Acid-labile boronate-bridged dextran-bortezomib conjugate with up-regulated hypoxic tumor suppression. Chem Commun 51(31):6812–6815

    Article  CAS  Google Scholar 

  67. Liu Y, Wang X, Sun CY, Wang J (2015) Delivery of mitogen-activated protein kinase inhibitor for hepatocellular carcinoma stem cell therapy. ACS Appl Mater Interfaces 7(1):1012–1020

    Article  PubMed  CAS  Google Scholar 

  68. Zhang X, Yang Y, Liang X, Zeng X, Liu Z, Tao W, Xiao X, Chen H, Huang L, Mei L (2014) Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Theranostics 4(11):1085–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yang A, Liu Z, Yan B, Zhou M, Xiong X (2016) Preparation of camptothecin-loaded targeting nanoparticles and their antitumor effects on hepatocellular carcinoma cell line H22. Drug Deliv 23(5):1699–1706

    PubMed  CAS  Google Scholar 

  70. Liu Y, Zhu YH, Mao CQ, Dou S, Shen S, Tan ZB, Wang J (2014) Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J Control Release 192:114–121

    Article  PubMed  CAS  Google Scholar 

  71. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J (2011) Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release 156(2):203–211

    Article  PubMed  CAS  Google Scholar 

  72. Contreras J, Xie J, Chen YJ, Pei H, Zhang G, Fraser CL, Hamm-Alvarez SF (2010) Intracellular uptake and trafficking of difluoroboron dibenzoylmethane-polylactide nanoparticles in HeLa cells. ACS Nano 4(5):2735–2747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Laroui H, Viennois E, Xiao B, Canup BSB, Geem D, Denning TL, Merlin D (2014) Fab’-bearing siRNA TNF alpha-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. J Control Release 186:41–53

    Article  PubMed  CAS  Google Scholar 

  74. Kaffashi B, Davoodi S, Oliaei E (2016) Poly(epsilon-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: a long-term antibacterial bionanocomposite with sustained release. Int J Pharm 508(1–2):10–21

    Article  PubMed  CAS  Google Scholar 

  75. Sun C, Wang X, Chen D, Lin X, Yu D, Wu H (2016) Dexamethasone loaded nanoparticles exert protective effects against cisplatin-induced hearing loss by systemic administration. Neurosci Lett 619:142–148

    Article  PubMed  CAS  Google Scholar 

  76. Pinon-Segundo E, Ganem-Quintanar A, Alonso-Perez V, Quintanar-Guerrero D (2005) Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int J Pharm 294(1–2):217–232

    Article  PubMed  CAS  Google Scholar 

  77. Chen L, Liu L, Li C, Tan Y, Zhang G (2011) A new growth factor controlled drug release system to promote healing of bone fractures: nanospheres of recombinant human bone morphogenetic-2 and polylactic acid. J Nanosci Nanotechnol 11(4):3107–3114

    Article  PubMed  CAS  Google Scholar 

  78. Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, Verrier B, Sterry W, Blume-Peytavi U, Vogt A (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26(8):2027–2036

    Article  PubMed  CAS  Google Scholar 

  79. Sakai T, Kohno H, Ishihara T, Higaki M, Saito S, Matsushima M, Mizushima Y, Kitahara K (2006) Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 82(4):657–663

    Article  PubMed  CAS  Google Scholar 

  80. Molina J, Urbina J, Gref R, Brener Z, Rodrigues Junior JM (2001) Cure of experimental Chagas’ disease by the bis-triazole DO870 incorporated into ‘stealth’ polyethyleneglycol-polylactide nanospheres. J Antimicrob Chemother 47(1):101–104

    Article  PubMed  CAS  Google Scholar 

  81. Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209

    Article  PubMed  CAS  Google Scholar 

  82. Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1–2):1–18

    Article  PubMed  CAS  Google Scholar 

  83. Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48(3):342–353

    Article  PubMed  CAS  Google Scholar 

  84. Floyd JA, Galperin A, Ratner BD (2015) Drug encapsulated polymeric microspheres for intracranial tumor therapy: a review of the literature. Adv Drug Deliv Rev 91:23–37

    Article  PubMed  CAS  Google Scholar 

  85. Edlund U, Albertsson AC (2002) Degradable polymer microspheres for controlled drug delivery. In: Degradable aliphatic polyesters, Advances in polymer science, vol 157. Springer, Heidelberg, pp 67–112

    Google Scholar 

  86. Guan Q, Chen W, Hu X (2015) Development of lovastatin-loaded poly(lactic acid) microspheres for sustained oral delivery: in vitro and ex vivo evaluation. Drug Des Devel Ther 9:791–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lu J, Hou R, Yang Z, Tang Z (2015) Development and characterization of drug-loaded biodegradable PLA microcarriers prepared by the electrospraying technique. Int J Mol Med 36(1):249–254

    Article  PubMed  CAS  Google Scholar 

  88. Chen X, Yang Z, Sun R, Mo Z, Jin G, Wei F, Hu J, Guan W, Zhong N (2014) Preparation of lung-targeting, emodin-loaded polylactic acid microspheres and their properties. Int J Mol Sci 15(4):6241–6251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Falconi M, Focaroli S, Teti G, Salvatore V, Durante S, Nicolini B, Orienti I (2014) Novel PLA microspheres with hydrophilic and bioadhesive surfaces for the controlled delivery of fenretinide. J Microencapsul 31(1):41–48

    Article  PubMed  CAS  Google Scholar 

  90. Pinto E, Zhang B, Song S, Bodor N, Buchwald P, Hochhaus G (2010) Feasibility of localized immunosuppression: 2. PLA microspheres for the sustained local delivery of a soft immunosuppressant. Pharmazie 65(6):429–435

    PubMed  CAS  Google Scholar 

  91. Umeki N, Sato T, Harada M, Takeda J, Saito S, Iwao Y, Itai S (2010) Preparation and evaluation of biodegradable microspheres containing a new potent osteogenic compound and new synthetic polymers for sustained release. Int J Pharm 392(1–2):42–50

    Article  PubMed  CAS  Google Scholar 

  92. Rafat M, Cleroux CA, Fong WG, Baker AN, Leonard BC, O’Connor MD, Tsilfidis C (2010) PEG-PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells. Biomaterials 31(12):3414–3421

    Article  PubMed  CAS  Google Scholar 

  93. Sheshala R, Peh KK, Darwis Y (2009) Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Drug Dev Ind Pharm 35(11):1364–1374

    Article  PubMed  CAS  Google Scholar 

  94. Ding LY, Xia PF, Yang CQ, Lin YL, Wang J (2007) Preparation and evaluation of sustained-release microsphere of Sanguis Draconis in vitro. Zhongguo Zhong Yao Za Zhi 32(5):388–390

    PubMed  CAS  Google Scholar 

  95. Ren J, Yu X, Ren T, Hong H (2007) Preparation and characterization of fenofibrate-loaded PLA-PEG microspheres. J Mater Sci Mater Med 18(8):1481–1487

    Article  PubMed  CAS  Google Scholar 

  96. Matsumoto A, Matsukawa Y, Suzuki T, Yoshino H (2005) Drug release characteristics of multi-reservoir type microspheres with poly(DL-lactide-co-glycolide) and poly(DL-lactide). J Control Release 106(1–2):172–180

    Article  PubMed  CAS  Google Scholar 

  97. Chen A, Dang T, Wang S, Tang N, Liu Y, Wu W (2014) The in vitro and in vivo anti-tumor effects of MTX-Fe3O4-PLLA-PEG-PLLA microspheres prepared by suspension-enhanced dispersion by supercritical CO2. Sci China Life Sci 57(7):698–709

    Article  PubMed  CAS  Google Scholar 

  98. Zhao H, Wu F, Cai Y, Chen Y, Wei L, Liu Z, Yuan W (2013) Local antitumor effects of intratumoral delivery of rlL-2 loaded sustained-release dextran/PLGA-PLA core/shell microspheres. Int J Pharm 450(1–2):235–240

    Article  PubMed  CAS  Google Scholar 

  99. Zhou JY, Wang XM, Zhang QQ, Ye SF (2009) Efficacy of intraperitoneally injected epirubicin-loaded poly (d, l)-lactic acid microspheres alone or combined with free epirubicin in treating hepatocellular carcinoma in mice. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31(5):603–606

    PubMed  CAS  Google Scholar 

  100. Ciftci K, Hincal AA, Kas HS, Ercan TM, Sungur A, Guven O, Ruacan S (1997) Solid tumor chemotherapy and in vivo distribution of fluorouracil following administration in poly(L-lactic acid) microspheres. Pharm Dev Technol 2(2):151–160

    Article  PubMed  CAS  Google Scholar 

  101. Kuang LR, Yang DJ, Inoue T, Liu WC, Wallace S, Wright KC (1996) Percutaneous intratumoral injection of cisplatin microspheres in tumor-bearing rats to diminish acute nephrotoxicity. Anti-Cancer Drugs 7(2):220–227

    Article  PubMed  CAS  Google Scholar 

  102. Xia D, Yao H, Liu Q, Xu L (2012) Preparation of microspheres encapsulating a recombinant TIMP-1 adenovirus and their inhibition of proliferation of hepatocellular carcinoma cells. Asian Pac J Cancer Prev 13(12):6363–6368

    Article  PubMed  Google Scholar 

  103. Lu J, Jackson JK, Gleave ME, Burt HM (2008) The preparation and characterization of anti-VEGFR2 conjugated, paclitaxel-loaded PLLA or PLGA microspheres for the systemic targeting of human prostate tumors. Cancer Chemother Pharmacol 61(6):997–1005

    Article  PubMed  CAS  Google Scholar 

  104. Lu Y, Lin P, Lu B, Wang J, Zhang J, Huang X (2000) Studies on release characteristics and cytotoxicity of 5-fluorouracil loaded polylactide microspheres on lung cancer cell lines. Zhongguo Fei Ai Za Zhi 3(6):432–434

    PubMed  CAS  Google Scholar 

  105. Burt HM, Jackson JK, Bains SK, Liggins RT, Oktaba AM, Arsenault AL, Hunter WL (1995) Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (D,L-lactic acid). Cancer Lett 88(1):73–79

    Article  PubMed  CAS  Google Scholar 

  106. Chandy T, Das GS, Rao GHR (2000) 5-Fluorouracil-loaded chitosan coated polylactic acid microspheres as biodegradable drug carriers for cerebral tumours. J Microencapsul 17(5):625–638

    Article  PubMed  CAS  Google Scholar 

  107. Macha IJ, Cazalbou S, Ben-Nissan B, Harvey KL, Milthorpe B (2015) Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery. Mar Drugs 13(1):666–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jain JP, Kumar N (2010) Development of amphotericin B loaded polymersomes based on (PEG)(3)-PLA co-polymers: factors affecting size and in vitro evaluation. Eur J Pharm Sci 40(5):456–465

    Article  PubMed  CAS  Google Scholar 

  109. Huang YY, Chung TW (2001) Microencapsulation of gentamicin in biodegradable PLA and/or PLA/PEG copolymer. J Microencapsul 18(4):457–465

    Article  PubMed  CAS  Google Scholar 

  110. Sharma R, Muttil P, Yadav AB, Rath SK, Bajpai VK, Mani U, Misra A (2007) Uptake of inhalable microparticles affects defence responses of macrophages infected with mycobacterium tuberculosis H37Ra. J Antimicrob Chemother 59(3):499–506

    Article  PubMed  CAS  Google Scholar 

  111. Selek H, Sahin S, Ercan MT, Sargon M, Hincal AA, Kas HS (2003) Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres. J Microencapsul 20(2):261–271

    PubMed  CAS  Google Scholar 

  112. Guiziou B, Armstrong DJ, Elliott PNC, Ford JL, Rostron C (1996) Investigation of in-vitro release characteristics of NSAID-loaded polylactic acid microspheres. J Microencapsul 13(6):701–708

    Article  PubMed  CAS  Google Scholar 

  113. Zha J, Chi XW, Yu XL, Liu XM, Liu DQ, Zhu J, Ji H, Liu RT (2016) Interleukin-1 beta-targeted vaccine improves glucose control and β-cell function in a diabetic KK-A(y) mouse model. PLoS One 11(5):16

    Google Scholar 

  114. Anugraha G, Madhumathi J, Prita PJJ, Kaliraj P (2015) Biodegradable poly-L-lactide based microparticles as controlled release delivery system for filarial vaccine candidate antigens. Eur J Pharmacol 747:174–180

    Article  PubMed  CAS  Google Scholar 

  115. Pavot V, Berthet M, Resseguier J, Legaz S, Handke N, Gilbert SC, Paul S, Verrier B (2014) Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine 9(17):2703–2718

    Article  PubMed  CAS  Google Scholar 

  116. Qiu SH, Wei Q, Liang ZL, Ma GH, Wang LY, An WQ, Ma XW, Fang X, He P, Li HM, Hu ZY (2014) Biodegradable polylactide microspheres enhance specific immune response induced by hepatitis B surface antigen. Hum Vaccin Immunother 10(8):2350–2356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO (2007) Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against hepatitis B through incorporation of alum and chitosan. J Microencapsul 24(6):539–552

    Article  PubMed  CAS  Google Scholar 

  118. Zhou SB, Liao XY, Li XH, Deng XM, Li H (2003) Poly-D,L-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. J Control Release 86(2–3):195–205

    Article  PubMed  CAS  Google Scholar 

  119. Wang K, Li WF, Xing JF, Dong K, Gao Y (2012) Preliminary assessment of the safety evaluation of novel pH-sensitive hydrogel. Eur J Pharm Biopharm 82(2):332–339

    Article  PubMed  CAS  Google Scholar 

  120. Markland P, Zhang Y, Amidon GL, Yang VC (1999) A pH- and ionic strength-responsive polypeptide hydrogel: synthesis, characterization, and preliminary protein release studies. J Biomed Mater Res 47(4):595–602

    Article  PubMed  CAS  Google Scholar 

  121. Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, Li X, Luo F, Zhao X, Wei Y, Qian Z (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365(1–2):89–99

    Article  PubMed  CAS  Google Scholar 

  122. Fu SZ, Li Z, Fan JM, Meng XH, Shi K, Qu Y, Yang LL, Wu JB, Fan J, Luot F, Qian ZY (2014) Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion. J Biomed Nanotechnol 10(3):427–435

    Article  PubMed  CAS  Google Scholar 

  123. Fan R, Deng X, Zhou L, Gao X, Fan M, Wang Y, Guo G (2014) Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials. Int J Nanomedicine 9:615–626

    PubMed  PubMed Central  Google Scholar 

  124. Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W (2016) Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 107:192–205

    Article  PubMed  CAS  Google Scholar 

  125. Lai PL, Hong DW, Ku KL, Lai ZT, Chu IM (2014) Novel thermosensitive hydrogels based on methoxy polyethylene glycol-co-poly(lactic acid-co-aromatic anhydride) for cefazolin delivery. Nanomedicine 10(3):553–560

    Article  PubMed  CAS  Google Scholar 

  126. Molina I, Li S, Martinez MB, Vert M (2001) Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22(4):363–369

    Article  PubMed  CAS  Google Scholar 

  127. He X, Ma J, Jabbari E (2010) Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. Int J Pharm 390(2):107–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Shen W, Luan J, Cao L, Sun J, Yu L, Ding J (2015) Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 16(1):105–115

    Article  PubMed  CAS  Google Scholar 

  129. Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, Zhang X, You C, Guo G (2015) Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int J Nanomedicine 10:7291–7305

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Manaka T, Suzuki A, Takayama K, Imai Y, Nakamura H, Takaoka K (2011) Local delivery of siRNA using a biodegradable polymer application to enhance BMP-induced bone formation. Biomaterials 32(36):9642–9648

    Article  PubMed  CAS  Google Scholar 

  131. Nelson DM, Hashizume R, Yoshizumi T, Blakney AK, Ma Z, Wagner WR (2014) Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy. Biomacromolecules 15(1):1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Song Z, Shi B, Ding J, Zhuang X, Zhang X, Fu C, Chen X (2015) A comparative study of preventing postoperative tendon adhesion using electrospun polyester membranes with different degradation kinetics. Sci China Chem 58(7):1159–1168

    Article  CAS  Google Scholar 

  133. Zhang ZZ, Jiang D, Wang SJ, Qi YS, Ding JX, Yu JK, Chen XS (2015) Scaffolds drive meniscus tissue engineering. RSC Adv 5(95):77851–77859

    Article  CAS  Google Scholar 

  134. Wang X, Shan H, Wang J, Hou Y, Ding J, Chen Q, Guan J, Wang C, Chen X (2015) Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. Int J Nanomedicine 10:3055–3064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zhang J, Liu H, Ding JX, Zhuang XL, Chen XS, Li ZM (2015) Annealing regulates the performance of an electrospun poly(ε-caprolactone) membrane to accommodate tissue engineering. RSC Adv 5(41):32604–32608

    Article  CAS  Google Scholar 

  136. Zhang J, Liu H, Xu H, Ding JX, Zhuang XL, Chen XS, Chang F, Xu JZ, Li ZM (2014) Molecular weight-modulated electrospun poly(ε-caprolactone) membranes for postoperative adhesion prevention. RSC Adv 4(79):41696–41704

    Article  CAS  Google Scholar 

  137. Shi B, Ding J, Wei J, Fu C, Zhuang X, Chen X (2015) Drug-incorporated electrospun fibers efficiently prevent postoperative adhesion. Curr Pharm Des 21(15):1960–1966

    Article  PubMed  CAS  Google Scholar 

  138. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6):1233–1239

    Article  PubMed  CAS  Google Scholar 

  139. Chen M, Li YF, Besenbacher F (2014) Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater 3(11):1721–1732

    Article  PubMed  CAS  Google Scholar 

  140. Zhang J, Wang X, Liu T, Liu S, Jing X (2016) Antitumor activity of electrospun polylactide nanofibers loaded with 5-fluorouracil and oxaliplatin against colorectal cancer. Drug Deliv 23(3):784–790

    CAS  Google Scholar 

  141. Zhang Z, Liu S, Xiong H, Jing X, Xie Z, Chen X, Huang Y (2015) Electrospun PLA/MWCNTs composite nanofibers for combined chemo- and photothermal therapy. Acta Biomater 26:115–123

    Article  PubMed  CAS  Google Scholar 

  142. Zong X, Li S, Chen E, Garlick B, Kim KS, Fang D, Chiu J, Zimmerman T, Brathwaite C, Hsiao BS, Chu B (2004) Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes. Ann Surg 240(5):910–915

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen CH, Chen SH, Shalumon KT, Chen JP (2015) Dual functional core-sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta Biomater 26:225–235

    Article  PubMed  CAS  Google Scholar 

  144. Liu S, Zhao J, Ruan H, Wang W, Wu T, Cui W, Fan C (2013) Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane. Mater Sci Eng C 33(3):1176–1182

    Article  CAS  Google Scholar 

  145. Hu C, Liu S, Zhang Y, Li B, Yang H, Fan C, Cui W (2013) Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomater 9(7):7381–7388

    Article  PubMed  CAS  Google Scholar 

  146. Jiang S, Zhao X, Chen S, Pan G, Song J, He N, Li F, Cui W, Fan C (2014) Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions. Biomaterials 35(37):9920–9929

    Article  PubMed  CAS  Google Scholar 

  147. Liu S, Hu C, Li F, Li XJ, Cui W, Fan C (2013) Prevention of peritendinous adhesions with electrospun ibuprofen-loaded poly(L-lactic acid)-polyethylene glycol fibrous membranes. Tissue Eng Part A 19(3–4):529–537

    Article  PubMed  CAS  Google Scholar 

  148. Liu S, Qin M, Hu C, Wu F, Cui W, Jin T, Fan C (2013) Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials 34(19):4690–4701

    Article  PubMed  CAS  Google Scholar 

  149. Wang H, Li M, Hu J, Wang C, Xu S, Han CC (2013) Multiple targeted drugs carrying biodegradable membrane barrier: anti-adhesion, hemostasis, and anti-infection. Biomacromolecules 14(4):954–961

    Article  PubMed  CAS  Google Scholar 

  150. Sreerekha PR, Menon D, Nair SV, Chennazhi KP (2013) Fabrication of electrospun poly(lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro. Tissue Eng Part A 19(7–8):849–859

    Article  PubMed  CAS  Google Scholar 

  151. Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2013) Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 33(8):4640–4650

    Article  PubMed  CAS  Google Scholar 

  152. Vadala G, Mozetic P, Rainer A, Centola M, Loppini M, Trombetta M, Denaro V (2012) Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. Eur Spine J 21(Suppl 1):S20–S26

    Article  PubMed  Google Scholar 

  153. Ahire JJ, Neppalli R, Heunis TD, van Reenen AJ, Dicks LM (2014) 2,3-Dihydroxybenzoic acid electrospun into poly(D,L-lactide) (PDLLA)/poly(ethylene oxide) (PEO) nanofibers inhibited the growth of gram-positive and gram-negative bacteria. Curr Microbiol 69(5):587–593

    Article  PubMed  CAS  Google Scholar 

  154. Llorens E, Calderon S, del Valle LJ, Puiggali J (2015) Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C Mater Biol Appl 50:74–84

    Article  PubMed  CAS  Google Scholar 

  155. Spasova M, Manolova N, Paneva D, Mincheva R, Dubois P, Rashkov I, Maximova V, Danchev D (2010) Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromolecules 11(1):151–159

    Article  PubMed  CAS  Google Scholar 

  156. Ni P, Fu S, Fan M, Guo G, Shi S, Peng J, Luo F, Qian Z (2011) Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Int J Nanomedicine 6:3065–3075

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Seyedjafari E, Soleimani M, Ghaemi N, Shabani I (2010) Nanohydroxyapatite-coated electrospun poly(L-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 11(11):3118–3125

    Article  PubMed  CAS  Google Scholar 

  158. Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell AL, Kyriakides TR, Saltzman WM (2013) An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials 34(15):3891–3901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Canton I, McKean R, Charnley M, Blackwood KA, Fiorica C, Ryan AJ, MacNeil S (2010) Development of an ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnol Bioeng 105(2):396–408

    Article  PubMed  CAS  Google Scholar 

  160. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Liu DH, Ding JX, Xu WG, Song XF, Zhuang XL, Chen XS (2014) Stereocomplex micelles based on 4-armed poly ( ethylene glycol )-polylactide enantiomeric copolymers for drug delivery. Acta Polym Sin 9:1265–1273

    Google Scholar 

  162. Saffer EM, Tew GN, Bhatia SR (2011) Poly(lactic acid)-poly(ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications. Curr Med Chem 18(36):5676–5686

    Article  PubMed  CAS  Google Scholar 

  163. Zhou R, Xu W, Chen F, Qi C, Lu BQ, Zhang H, Wu J, Qian QR, Zhu YJ (2014) Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application. Colloids Surf B Biointerfaces 123:236–245

    Article  PubMed  CAS  Google Scholar 

  164. Pelto J, Bjorninen M, Palli A, Talvitie E, Hyttinen J, Mannerstrom B, Suuronen Seppanen R, Kellomaki M, Miettinen S, Haimi S (2013) Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 19(7–8):882–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Niu X, Fan Y, Liu X, Li X, Li P, Wang J, Sha Z, Feng Q (2011) Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(L-lactide)-based microsphere-scaffold delivery system. Artif Organs 35(7):E119–E128

    Article  PubMed  Google Scholar 

  166. Hu J, Sun X, Ma H, Xie C, Chen YE, Ma PX (2010) Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 31(31):7971–7977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Hata T, Nakamura T, Fujita S, Takeda S, Motohara S, Uehata H (2003) Biodegradable stents as a platform to drug loading. Int J Cardiovasc Interv 5(1):13–16

    Article  Google Scholar 

  168. Haddad T, Noel S, Liberelle B, El Ayoubi R, Ajji A, De Crescenzo G (2016) Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering. Biomatter 6(1):e1231276

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhao J, Han W, Tu M, Huan S, Zeng R, Wu H, Cha Z, Zhou C (2012) Preparation and properties of biomimetic porous nanofibrous poly(L-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Mater Sci Eng C 32(6):1496–1502

    Article  CAS  Google Scholar 

  170. Lou T, Wang X, Song G, Gu Z, Yang Z (2014) Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Int J Biol Macromol 69:464–470

    Article  PubMed  CAS  Google Scholar 

  171. Binan L, Tendey C, De Crescenzo G, El Ayoubi R, Ajji A, Jolicoeur M (2014) Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials 35(2):664–674

    Article  PubMed  CAS  Google Scholar 

  172. Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, Panayiotou C, Papageorgiou VP (2011) Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int J Pharm 409(1–2):216–228

    Article  PubMed  CAS  Google Scholar 

  173. Nguyen TTT, Ghosh C, Hwang SG, Tran LD, Park JS (2013) Characteristics of curcumin-loaded poly(lactic acid) nanofibers for wound healing. J Mater Sci 48(20):7125–7133

    Article  CAS  Google Scholar 

  174. Leroueil-Le Verger M, Fluckiger L, Kim YI, Hoffman M, Maincent P (1998) Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm 46(2):137–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, J., Ding, J., Liu, T., Liu, J.F., Yan, L., Chen, X. (2017). Poly(lactic acid) Controlled Drug Delivery. In: Di Lorenzo, M., Androsch, R. (eds) Industrial Applications of Poly(lactic acid). Advances in Polymer Science, vol 282. Springer, Cham. https://doi.org/10.1007/12_2017_11

Download citation

Publish with us

Policies and ethics