Skip to main content

The Extended Non-affine Tube Model for Crosslinked Polymer Networks: Physical Basics, Implementation, and Application to Thermomechanical Finite Element Analyses

  • Chapter
  • First Online:
Designing of Elastomer Nanocomposites: From Theory to Applications

Part of the book series: Advances in Polymer Science ((POLYMER,volume 275))

Abstract

This chapter is devoted to a summary of the so-called extended non-affine tube model. First, general model approaches for representation of the behavior of elastomers within numerical simulations are discussed. Second, the extended non-affine tube model is considered in the context of hyperelastic material models. Starting from molecular-statistical considerations, a Helmholtz free energy function is derived and formulated in terms of continuum mechanical quantities of the macroscale. Furthermore, combination with a model approach to represent continuum damage and time-dependent effects is addressed. The free energy function of the model approach is further set into the context of thermomechanics to account for temperature-dependent behavior of elastomers within numerical simulations. Finally, finite element implementation of the extended non-affine tube model and its application to uniaxial and biaxial tension tests performed on elastomer specimens are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behnke R, Dal H, Geißler G, Näser B, Netzker C, Kaliske M (2013) Macroscopical modeling and numerical simulation for the characterization of crack and durability properties of particle-reinforced elastomers. In: Grellmann W, Heinrich G, Kaliske M, Klüppel M, Schneider K, Vilgis T (eds) Fracture mechanics and statistical mechanics of reinforced elastomeric blends. Lecture notes in applied and computational mechanics, vol 70. Springer, Berlin, pp 167–226

    Google Scholar 

  2. Kaliske M, Behnke R (2015) Material laws of rubbers. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1187–1197

    Chapter  Google Scholar 

  3. Grambow A (2002) Determination of material parameters for filled rubber depending on time, temperature and loading condition. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Germany

    Google Scholar 

  4. Heinrich G, Straube E, Helmis G (1988) Rubber elasticity of polymer networks: theories. Adv Polym Sci 85:33–87

    Article  CAS  Google Scholar 

  5. Edwards S, Vilgis T (1988) The tube model theory of rubber elasticity. Rep Prog Phys 51:243–297

    Article  Google Scholar 

  6. Valanis K, Landel R (1967) The strain-energy function of a hyperelastic material in terms of the extension ratios. J Appl Phys 38:2997–3002

    Article  CAS  Google Scholar 

  7. Heinrich G, Kaliske M (1997) Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput Theor Polym Sci 7:227–241

    Article  CAS  Google Scholar 

  8. Kaliske M, Heinrich G (1999) An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem Technol 72:602–632

    Article  CAS  Google Scholar 

  9. Bergström J (2015) Mechanics of solid polymers. Theory and computational modeling. Elsevier, San Diego

    Google Scholar 

  10. Klüppel M, Schramm J (2000) A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol Theory Simul 9:742–754

    Article  Google Scholar 

  11. Klüppel M (2003) Hyperelasticity and stress softening of filler reinforced polymer networks. Macromol Symp Funct Netw Gels 200:31–44

    Article  Google Scholar 

  12. Heinrich G, Straube E (1987) A theory of topological constraints in polymer networks. Polym Bull 17:247–253

    CAS  Google Scholar 

  13. Heinrich G, Straube E (1984) On the strength and deformation dependence of tube-like topological constraints in polymer networks, melts and concentrated solutions I. The polymer network case. Acta Polym 34:589–594

    Article  Google Scholar 

  14. Heinrich G, Straube E (1984) On the strength and deformation dependence of tube-like topological constraints in polymer networks, melts and concentrated solutions II. Polymer melts and concentrated solutions. Acta Polym 35:115–119

    Article  CAS  Google Scholar 

  15. Edwards S (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc 85:613–624

    Article  CAS  Google Scholar 

  16. Edwards S, Vilgis T (1986) The effect of entanglements in rubber elasticity. Polymer 27:483–492

    Article  CAS  Google Scholar 

  17. Freed K (1972) Functional integrals and polymer statistics. Adv Chem Phys 22:1–128

    CAS  Google Scholar 

  18. Treloar L (1975) The physics of rubber elasticity. Clarendon, Oxford

    Google Scholar 

  19. Arruda E, Boyce M (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  CAS  Google Scholar 

  20. Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubberlike materials. Rubber Chem Technol 79:835–858

    Article  CAS  Google Scholar 

  21. Ogden R (1972) Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc A 326:565–584

    Article  CAS  Google Scholar 

  22. Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials. Part I: The non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52:2617–2660

    Article  CAS  Google Scholar 

  23. Drozdov A, Dorfmann A (2002) Finite viscoelasticity of filled rubbers: the effects of preloading and thermal recovery. Continuum Mech Thermodyn 14:337–361

    Article  CAS  Google Scholar 

  24. Green M, Tobolsky A (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92

    Article  CAS  Google Scholar 

  25. Tanaka F, Edwards S (1992) Viscoelastic properties of physically crosslinked networks. Part 1. Non-linear stationary viscoelasticity. J Non-Newton Fluid Mech 43:247–271

    Article  CAS  Google Scholar 

  26. Tanaka F, Edwards S (1992) Viscoelastic properties of physically crosslinked networks. Part 2. Dynamic mechanical moduli. J Non-Newton Fluid Mech 43:273–288

    Article  CAS  Google Scholar 

  27. De Gennes P (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  28. Doi M, Edwards S (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  29. Bergström J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46:931–954

    Article  Google Scholar 

  30. Dal H, Kaliske M (2009) Bergström-Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method. Comput Mech 44:809–823

    Article  Google Scholar 

  31. Areias P, Matouš K (2008) Finite element formulation for modeling nonlinear viscoelastic elastomers. Comput Methods Appl Mech Eng 197:4702–4717

    Article  Google Scholar 

  32. Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53:2231–2258

    Article  CAS  Google Scholar 

  33. Wineman A (2009) Nonlinear viscoelastic solids – a review. Math Mech Solids 14:300–366

    Article  Google Scholar 

  34. Freund M, Lorenz H, Juhre D, Ihlemann J, Klüppel M (2011) Finite element implementation of a microstructure-based model for filled elastomers. Int J Plast 27:902–919

    Article  CAS  Google Scholar 

  35. Kaliske M (2000) A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput Methods Appl Mech Eng 185:225–243

    Article  Google Scholar 

  36. Simo J (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173

    Article  Google Scholar 

  37. Govindjee S, Simo J (1992) Mullins’ effect and the strain amplitude dependence of the storage modulus. Int J Solids Struct 29:1737–1751

    Article  Google Scholar 

  38. Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239

    Article  Google Scholar 

  39. Lee E (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36:1–6

    Article  Google Scholar 

  40. Sidoroff F (1974) Un modèle viscoélastique nonlinéaire avec configuration intermédiaire. Journal de Mécanique 13:697–713

    Google Scholar 

  41. Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12:93–99

    Article  Google Scholar 

  42. Simo J (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99:61–112

    Article  Google Scholar 

  43. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    Article  Google Scholar 

  44. Kachanov L (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, Dordrecht

    Book  Google Scholar 

  45. Chaboche JL (1981) Continuous damage mechanics – a tool to describe phenomena before crack initiation. Nucl Eng Des 64:233–247

    Article  Google Scholar 

  46. Chaboche JL (1988) Continuum damage mechanics: Part I – General concepts. Part II – Damage growth, crack initiation and crack growth. J Appl Mech 55:59–72

    Article  Google Scholar 

  47. Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245

    Article  Google Scholar 

  48. Chagnon G, Verron E, Gornet L, Marckmann G, Charrier P (2004) On the relevance of continuum damage mechanics as applied to the Mullins effect in elastomers. J Mech Phys Solids 52:1627–1650

    Article  CAS  Google Scholar 

  49. Simo J, Ju J (1987) Strain- and stress-based continuum damage models – II. Computational aspects. Int J Solids Struct 23:841–869

    Article  Google Scholar 

  50. Simo J, Ju J (1987) Strain- and stress-based continuum damage models – I. Formulation. Int J Solids Struct 23:821–840

    Article  Google Scholar 

  51. Kaliske M, Nasdala L, Rothert H (2001) On damage modelling for elastic and viscoelastic materials at large strain. Comput Struct 79:2133–2141

    Article  Google Scholar 

  52. Nasdala L, Kaliske M, Rothert H, Becker A (1999) A realistic elastic damage model for rubber. In: Dorfmann A, Muhr A (eds) Constitutive models for rubber. Balkema, Rotterdam, pp 151–158

    Google Scholar 

  53. Göktepe S, Miehe C (2005) A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage. J Mech Phys Solids 53:2259–2283

    Article  Google Scholar 

  54. Flory P (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    Article  CAS  Google Scholar 

  55. Simo J, Taylor R, Pister K (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208

    Article  Google Scholar 

  56. Miehe C (1994) Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int J Numer Methods Eng 37:1981–2004

    Article  Google Scholar 

  57. Simo J, Taylor R (1982) Penalty function formulations for incompressible nonlinear elastostatics. Comput Methods Appl Mech Eng 35:107–118

    Article  Google Scholar 

  58. Dal H (2011) Approaches to the modeling of inelasticity and failure of rubberlike materials. Theory and numerics. Ph.D. Thesis, TU Dresden, Germany

    Google Scholar 

  59. Miehe C (1995) Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur J Mech A/Solids 14:697–720

    Google Scholar 

  60. Coleman B, Gurtin M (1967) Thermodynamics with internal state variables. J Chem Phys 47:597–613

    Article  CAS  Google Scholar 

  61. Bonet J, Wood R (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    Google Scholar 

  62. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202

    Article  Google Scholar 

  63. Wriggers P (2001) Nichtlineare Finite-Element-Methoden. Springer, Berlin

    Book  Google Scholar 

  64. Reese S, Govindjee S (1998) Theoretical and numerical aspects in the thermoviscoelastic material behaviour of rubber-like polymers. Mech Time Dependent Mater 1:357–396

    Article  Google Scholar 

  65. Heinrich G (1987) Thermoelasticity of tube-like constrained polymer networks. Acta Polym 38:637–638

    Article  CAS  Google Scholar 

  66. Miehe C (1988) Zur numerischen Behandlung thermomechanischer Prozesse. Ph.D. Thesis, Universität Hannover, Germany

    Google Scholar 

  67. Miehe C (1995) Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput Methods Appl Mech Eng 120:243–269

    Article  Google Scholar 

  68. Lion A (1997) On the large deformation behaviour of reinforced rubber at different temperatures. J Mech Phys Solids 45:1805–1834

    Article  Google Scholar 

  69. Lion A (1997) A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech 123:1–25

    Article  Google Scholar 

  70. Bérardi G, Jaeger M, Martin R, Carpentier C (1996) Modelling of a thermoviscoelastic coupling for large deformations through finite element analysis. Int J Heat Mass Transfer 39:3911–3924

    Article  Google Scholar 

  71. Allen G, Bianchi U, Price C (1963) Thermodynamics of elasticity of natural rubber. Trans Faraday Soc 59:2493–2502

    Article  CAS  Google Scholar 

  72. Allen G, Kirkham M, Padget J, Price C (1971) Thermodynamics of rubber elasticity at constant volume. Trans Faraday Soc 67:1278–1292

    Article  CAS  Google Scholar 

  73. Chadwick P (1974) Thermo-mechanics of rubberlike materials. Philos Trans R Soc Lond Ser A Math Phys Sci 276:371–403

    Article  CAS  Google Scholar 

  74. Chadwick P, Creasy C (1984) Modified entropic elasticity of rubberlike materials. J Mech Phys Solids 32:337–357

    Article  Google Scholar 

  75. Haupt P (1993) On the mathematical modelling of material behavior in continuum mechanics. Acta Mech 100:129–154

    Article  Google Scholar 

  76. Morland L, Lee E (1960) Stress analysis for linear viscoelastic materials with temperature variation. Trans Soc Rheol 4:233–263

    Article  Google Scholar 

  77. Holzapfel G, Simo J (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034

    Article  Google Scholar 

  78. Reese S (2003) A micromechanically motivated material model for the thermoviscoelastic material behaviour of rubber-like polymers. Int J Plast 19:909–940

    Article  CAS  Google Scholar 

  79. Dippel B, Johlitz M, Lion A (2015) Thermo-mechanical couplings in elastomers – experiments and modelling. Zeitschrift für Angewandte Mathematik und Mechanik 95:1117–1128

    Article  Google Scholar 

  80. Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41–104

    Article  Google Scholar 

  81. Eterovic A, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30:1099–1114

    Article  Google Scholar 

  82. Behnke R (2015) Thermo-mechanical modeling and durability analysis of elastomer components under dynamic loading. Ph.D. Thesis, TU Dresden, Germany

    Google Scholar 

  83. Felippa C, Park K (1980) Staggered transient analysis procedures for coupled mechanical systems: Formulation. Comput Methods Appl Mech Eng 24:61–111

    Article  Google Scholar 

  84. Armero F, Simo J (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35:737–766

    Article  Google Scholar 

  85. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  86. Dal H, Kaliske M (2005) Q1P0-brick element for thermomechanical analysis. Leipzig Annu Civil Eng Rep 10:105–115

    Google Scholar 

  87. Zienkiewicz O, Taylor R (2000) The finite element method, vol 2; Solid mechanics, 5 edn. Butterworth-Heinmann, Oxford

    Google Scholar 

  88. Simo J, Armero F, Taylor R (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110:359–386

    Article  Google Scholar 

  89. Behnke R, Kaliske M, Klüppel M (2016) Thermo-mechanical analysis of cyclically loaded particle-reinforced elastomer components: Experiment and finite element simulation. Rubber Chem Technol 89:154–176

    Article  CAS  Google Scholar 

  90. Behnke R, Dal H, Kaliske M (2011) An extended tube model for thermoviscoelasticity of rubberlike materials: theory and numerical implementation. In: Jerrams S, Murphy N (eds) Constitutive models for rubber VII. CRC, London, pp 87–92

    Chapter  Google Scholar 

  91. Pottier T, Moutrille MP, Le Cam JB, Balandraud X, Grédiac M (2009) Study on the use of motion compensation techniques to determine heat sources. Application to large deformations on cracked rubber specimens. Exp Mech 49:561–574

    Article  CAS  Google Scholar 

  92. Balandraud X, Toussaint E, Le Cam J, Grédiac M, Behnke R, Kaliske M (2011) Application of full-field measurements and numerical simulations to analyze the thermo-mechanical response of a three-branch rubber specimen. In: Jerrams S, Murphy N (eds) Constitutive models for rubber VII. CRC, London, pp 45–50

    Chapter  Google Scholar 

  93. Guélon T, Toussaint E, Le Cam JB, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28:715–723

    Article  Google Scholar 

  94. Sutton M, Wolters W, Peters W, Ranson W, McNeil S (1983) Determination of displacements using an improved digital correlation method. Image Vis Computating 1:133–139

    Article  Google Scholar 

  95. Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyper-elastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym Test 27:995–1004

    Article  CAS  Google Scholar 

  96. Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. Eur J Mech A/Solids 2:169–187

    Article  Google Scholar 

  97. Behnke R, Kaliske M (2014) Thermo-mechanical finite element analysis of steady state rolling off-the-road tires with respect to thermal damage. In: Proceedings international rubber conference, Beijing, 16–18 Sept 2014, pp 1455–1460

    Google Scholar 

  98. Behnke R, Kaliske M (2015) Thermo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment. Int J Non Linear Mech 68:101–131

    Article  Google Scholar 

Download references

Acknowledgements

Some of the research results reported herein are partially supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1163/16. The financial support is gratefully acknowledged. The authors thank J.-B. Le Cam (IFMA, France) and his research group for their experimental-numerical cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Behnke, R., Kaliske, M. (2016). The Extended Non-affine Tube Model for Crosslinked Polymer Networks: Physical Basics, Implementation, and Application to Thermomechanical Finite Element Analyses. In: Stöckelhuber, K., Das, A., Klüppel, M. (eds) Designing of Elastomer Nanocomposites: From Theory to Applications. Advances in Polymer Science, vol 275. Springer, Cham. https://doi.org/10.1007/12_2016_9

Download citation

Publish with us

Policies and ethics