Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering

  • Dimitri A. IvanovEmail author
  • Martin Rosenthal
Part of the Advances in Polymer Science book series (POLYMER, volume 277)


We report on the banded polymer morphology of several semicrystalline commodity polymers such as high-density poly(ethylene), poly(trimethylene terephthalate), poly(vinylidene fluoride), and poly(3-hydroxybutyrate). The internal structural organization and 3D shape of the constitutive crystalline lamellae have been topics of interest in polymer physics for the last 50 years. However, conventional morphological characterization techniques (electron and/or optical microscopy) can be misleading in such analyses and have resulted in wrong interpretations of the twisted lamella growth mechanisms. We present nanofocus synchrotron X-ray scattering experiments and describe the analysis used to interpret the arrays of nanodiffractograms acquired along the spherulitic radii. It is shown that the crystal twist occurring during radial outward growth is regular and uniform. The 3D lamella shape is in most cases similar to the classic helicoid, whereas in other cases, such as the lamellae of poly(propylene adipate), it corresponds to a spiral structure. Access to comprehensive microstructural information about bulk samples makes it possible to better understand the twisted growth mechanisms and check the premises of the Keith and Padden model linking the direction of chain tilt and lamella twist hand. It is demonstrated that this model cannot explain the banding behavior in poly(trimethylene terephthalate) and therefore needs reconsideration. In-depth analysis of the microstructure allows more general conclusions to be drawn regarding correlation of chiralities pertinent to different spatial scales, ranging from that of the constitutive monomer to the supramolecular level of twisted lamellae.


Banded polymer spherulite Chain tilt High-density poly(ethylene) Lamella chirality Nanocalorimetry Nanofocus X-ray scattering Poly(3-hydroxybutyrate) Poly(trimethylene terephthalate) Synchrotron radiation 



The authors thank the Ministry of Education and Science of the Russian Federation (contract № 14.604.21.0079 (RFMEFI60414X0079) of 30 June 2014. The authors acknowledge Manfred Burghammer from the ID13 beamline of the ESRF for excellent technical support and valuable discussions, and thank Bernard Lotz for donation of the Sclair sample.


  1. 1.
    Bassett DC (2003) Polymer spherulites: a modern assessment. J Macromol Sci Part B Phys 42:227–256CrossRefGoogle Scholar
  2. 2.
    Talbot WHF (1837) On the Optical Phenomena of Certain Crystals. Philos Trans R Soc London 127:25Google Scholar
  3. 3.
    Knoll PM, Kelker H (2010) Otto Lehmann: Researcher of the liquid crystals. Books on Demand GmbH, NorderstedtGoogle Scholar
  4. 4.
    ShtukenbergAG PYO, GunnE KB (2012) Spherulites. Chem Rev 112:1805–1838CrossRefGoogle Scholar
  5. 5.
    Keller A (1958) Morphology of crystalline polymers. In: Turnbull D, Doremus RH, Roberts BW (eds) Growth and perfection of crystals. Chichester, Wiley Interscience, pp 499–528Google Scholar
  6. 6.
    Keller A (1959) The morphology of crystalline polymers. Makromol Chem 34:1–28CrossRefGoogle Scholar
  7. 7.
    Fujiwara Y (1960) Superstructure of melt-crystallized polyethylene (1) screwlike orientation of the unit cell in polyethylene spherulites with periodic extinction rings. J Appl Polym Sci 4:10–15CrossRefGoogle Scholar
  8. 8.
    Seiler DA (1998) Modern fluoropolymers, 2nd edn. Wiley, ChichesterGoogle Scholar
  9. 9.
    Lovinger AJ (1981) Developments in crystalline polymers. Applied Science, LondonGoogle Scholar
  10. 10.
    Gianotti G, Capizzi A, Zamboni V (1973) New aspects of polymorphism in poly(vinylidene fluoride). Relations between morphology and reaction kinetics. Chim Ind 55:501Google Scholar
  11. 11.
    Prest Jr WM, Luca DJ (1975) The morphology and thermal response of high-temperature- crystallized poly(vinylidene fluoride). J Appl Phys 46:4136–4143Google Scholar
  12. 12.
    Keith HD, Lovinger AJ (1979) Electron diffraction investigation of a high-temperature form of poly (vinylidene fluoride). Macromolecules 12:919–924CrossRefGoogle Scholar
  13. 13.
    Garcia-Ruiz JM, Melero E, Hyde S (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365Google Scholar
  14. 14.
    Bassett DC, Hodge AM (1978) On lamellar organization in certain polyethylene spherulites. Proc R Soc Lond A 359:121–132Google Scholar
  15. 15.
    Bassett DC, Hodge AM (1981) On the morphology of melt-crystallized polyethylene. III. Spherulitic organization. Proc R Soc Lond A 377:61–71Google Scholar
  16. 16.
    Bassett DC, Hodge AM (1978) On lamellar organization in banded spherulites of polyethylene. Polymer 19:469–472CrossRefGoogle Scholar
  17. 17.
    Toda A, Arita T, Hikosaka M (2001) Three-dimensional morphology of PVDF single crystals forming banded spherulites. Polymer 42:2223–2233CrossRefGoogle Scholar
  18. 18.
    Toda A, Keller A (1993) Growth of polyethylene single crystals from the melt: morphology. Colloid Polym Sci 271:328–342CrossRefGoogle Scholar
  19. 19.
    Keith HD, Padden FJ (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25:28–42CrossRefGoogle Scholar
  20. 20.
    Keith HD (2001) Banding in spherulites: two recurring topics. Polymer 42:9987–9993CrossRefGoogle Scholar
  21. 21.
    Cheng SZD, Lotz B (2005) A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46:577–610CrossRefGoogle Scholar
  22. 22.
    Gazzano M, Focarete ML, Riekel C, Scandola M (2004) Structural study of poly(L-lactic acid) spherulites. Biomacromolecules 5:553–558CrossRefGoogle Scholar
  23. 23.
    Gazzano M, Focarete ML, Riekel C, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1:604–608Google Scholar
  24. 24.
    Focarete ML, Gazzano M, Ripamonti A, Riekel C, Scandola M (2001) Structural investigation of poly(3-hydroxybutyrate) spherulites by microfocus X-ray diffraction. Macromol Chem Phys 202:1405–1409CrossRefGoogle Scholar
  25. 25.
    Kajioka H, Yoshimoto S, Gosh RC, Taguchi K, Tanaka S, Toda A (2010) Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly (butene-1). Polymer 51:1837–1844CrossRefGoogle Scholar
  26. 26.
    Rosenthal M, Bar G, Burghammer M, Ivanov DA (2011) On the nature of chirality imparted to achiral polymers by the crystallization process. Angew Chem Int Ed Engl 123:9043–9047Google Scholar
  27. 27.
    Rosenthal M, Anokhin DV, Luchnikov VA, Davies RJ, Riekel C, Burghammer M, Bar G, Ivanov DA (2010) Microstructure of banded polymer spherulites: studies with micro-focus X-ray diffraction. IOP Conf Ser:Mater Sci Eng 14:012014Google Scholar
  28. 28.
    Rosenthal M, Burghammer M, Portale G, Bar G, Samulski ET, Ivanov DA (2012) Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited. Macromolecules 45:7454–7460CrossRefGoogle Scholar
  29. 29.
    Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA (2014) Switching chirality of hybrid left−right crystalline helicoids built of achiral polymer chains: when right to left becomes left to right. Macromolecules 47:8295–8304Google Scholar
  30. 30.
    Rosenthal M, Hernandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, Burghammer M, Ivanov DA (2013) Non-radial growth of helical homopolymer crystals: breaking the paradigm of the polymer spherulite microstructure. Macromol Rapid Commun 34:1815–1819CrossRefGoogle Scholar
  31. 31.
    Nozue Y, Hirano S, Kurita R, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2004) Co-existing handednesses of lamella twisting in one spherulite observed with scanning microbeam wide-angle X-ray scattering. Polymer 45:8299–8302Google Scholar
  32. 32.
    .Luchnikov VA, Ivanov DA (2009) Micro-beam X-ray diffraction from twisted lamellar crystals: theory and computer simulation. J Appl Crystallogr 42:673–680Google Scholar
  33. 33.
    Luchnikov VA, Ivanov DA (2010) Theory of geometrical broadening of diffraction peaks from twisted lamellar crystals for interpretation of X-ray micro-beam and selected-area electron diffraction experiments. J Appl Crystallogr 43:578–586Google Scholar
  34. 34.
    Luchnikov VA, Anokhin DV, Bar G, Cheng SZD, Wang CL, Ivanov DA (2011) Theory of X-ray reflection broadening for textures with double-axis averaging: from semicrystalline polymers exhibiting twisted lamellar growth to discotic liquid crystals. J Appl Crystallogr 44:540–544CrossRefGoogle Scholar
  35. 35.
    Polanyi M (1921) The X-ray fiber diagram. Z Phys 7:149–180Google Scholar
  36. 36.
    Geil PH (1963) Polymer single crystals. Interscience (Wiley), New YorkGoogle Scholar
  37. 37.
    Magonov SN, Yerina NA, Ungar G, Reneker DH, Ivanov DA (2003) Chain unfolding in single crystals of ultra long alkane C390H782 and polyethylene: an atomic force microscopy study. Macromolecules 36:5637–5649Google Scholar
  38. 38.
    Hocquet S, Dosière M, Thierry A, Lotz B, Koch MHJ, Dubreuil N, Ivanov DA (2003) Morphology and melting of truncated single crystals of linear polyethylene. Macromolecules 36:8376–8384Google Scholar
  39. 39.
    Dubreuil N, Hocquet S, Dosière M, Ivanov DA (2004) Melting of isochronously decorated single crystal of linear polyethylene, as monitored with atomic force microscopy. Macromolecules 37:1–5Google Scholar
  40. 40.
    Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ (2003) An atomic force microscopy observation of PVDF banded spherulites. J Macromol Sci Part B 42:753–760Google Scholar
  41. 41.
    Gunn E, Sours R, Benedict JB, Kaminsky W, Kahr B (2006) Mesoscale chiroptics of rhythmic precipitates. J Am Chem Soc 128:14234–14235Google Scholar
  42. 42.
    Gedde UW (1995) Polymer physics. Chapman & Hall, LondonGoogle Scholar
  43. 43.
    Soccio M, Lotti N, Finelli L, Gazzano M, Munari A (2007) Aliphatic poly(propylene dicarboxylate)s: effect of chain length on thermal properties and crystallization kinetics. Polymer 48:3125–3136CrossRefGoogle Scholar
  44. 44.
    Keith HD, Padden FJ Jr (1959) The optical behavior of spherulites in crystalline polymers. Part I Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J Polym Sci 39:101–122CrossRefGoogle Scholar
  45. 45.
    Chuah HH (2001) Crystallization kinetics of poly(trimethylene terephthalate). Polym Eng Sci 41:308–313CrossRefGoogle Scholar
  46. 46.
    Ward IM, Wilding MA, Brody H (1976) The mechanical properties and structure of poly(m-methylene terephthalate) fibers. J Polym Sci Polym Phys Ed 14:263–274CrossRefGoogle Scholar
  47. 47.
    Poulin-Dandurand S, Pérez S, Revol JF, Brisse F (1979)The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction. Polymer 20:419–426Google Scholar
  48. 48.
    Wang B, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, Ho RM (2001) Poly(trimethyleneteraphthalate) crystal structure and morphology in different length scales. Polymer 42:7171–7180CrossRefGoogle Scholar
  49. 49.
    Yang J, Sidoti G, Liu J, Geil PH, Li CY, Cheng SZD (2000) Morphology and crystal structure of CTFMP and bulk polymerized poly(trimethylene terephthalate). Polymer 42:7181–7195CrossRefGoogle Scholar
  50. 50.
    Hall IH (1984) Structure of crystalline polymers. Elsevier, London, p 39Google Scholar
  51. 51.
    Hong PD, Chung WT, Hsu CF (2002) Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 43:3335–33543CrossRefGoogle Scholar
  52. 52.
    Ho RM, Ke KZ, Chen M (2000) Crystal structure and banded spherulite of poly(trimethylene terephthalate). Macromolecules 33:7529–7537CrossRefGoogle Scholar
  53. 53.
    Chuang W-T, Hong P-D, Chuah HH (2004) Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites. Polymer 45:2413–2425CrossRefGoogle Scholar
  54. 54.
    Wu PL, Woo EM (2003) Correlation between melting behavior and ringed spherulites in poly(trimethylene terephthalate). J Polym Sci Part B: Polym Phys 41:80–93CrossRefGoogle Scholar
  55. 55.
    Sornette D (2006) Critical phenomena in natural science. Springer, New YorkGoogle Scholar
  56. 56.
    Auyang SY (1998) Foundations of complex system theories. Cambridge University Press, New YorkCrossRefGoogle Scholar
  57. 57.
    Wu PL, Woo EM (2002) Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene terephthalate) and miscible blend with poly(ether imide) exhibiting multiple melting peaks. J Polym Sci Part B: Polym Phys 40:1571–1581CrossRefGoogle Scholar
  58. 58.
    Yun HJ, Kuboyama K, Chiba T, Ougizawa T (2006) Crystallization temperature dependence of interference color and morphology in poly(trimethylene terephthalate) spherulite. Polymer 47:4831–4838Google Scholar
  59. 59.
    Yun JH, Kuboyama K, Ougizawa T (2006) High birefringence of poly(trimethylene terephthalate) spherulite. Polymer 47:1715–1721CrossRefGoogle Scholar
  60. 60.
    Chen YF, Woo EM, Wu PL (2007) Alternating-layered spherulites in thin-film poly(trimethylene terephthalate) by stepwise crystallization schemes. Mater Lett 61:4911–4915CrossRefGoogle Scholar
  61. 61.
    Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H (2008) Branching and higher order structure in banded polyethylene spherulites. Macromolecules 41:2484–2493CrossRefGoogle Scholar
  62. 62.
    Toda A, Taguchi K, Kajioka H (2008) Instability-driven branching of lamellar crystals in polyethylene spherulites. Macromolecules 41:7505–7512CrossRefGoogle Scholar
  63. 63.
    Eshelby JD (1953) Screw dislocations in thin rods. J Appl Phys 24:176–179CrossRefGoogle Scholar
  64. 64.
    Duke RW, DuPre DB, Samulski ET (1977) Temperature dependence of orientational order in a polypeptide liquid crystal. J Chem Phys 66:2748–2749Google Scholar
  65. 65.
    Ivanov DA, Bar G, Dosière M, Koch MHJ (2008) A novel view on crystallization and melting of semirigid chain polymers: The case of poly(trimethylene terephthalate). Macromolecules 41:9224–9231Google Scholar
  66. 66.
    Ivanov DA, Hocquet S, Dosière M, Koch M (2004) Exploring the melting of a semirigid chain polymer with synchrotron time- and temperature-resolved small-angle X-ray scattering. Eur Phys J E 13:363–378Google Scholar
  67. 67.
    Ivanov DA, Legras R, Jonas AM (1999) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Interdependence between the evolution of amorphous and crystalline regions during isothermal cold-crystallization. Macromolecules 32:1582–1592Google Scholar
  68. 68.
    Ivanov DA, Jonas AM, Legras R (2000) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Reorganization processes during gradual reheating of cold-crystallized samples. Polymer 41:3719–3727Google Scholar
  69. 69.
    Ivanov D, Pop T, Yoon D, Jonas A (2002) Direct space detection of order-disorder interphases at crystalline-amorphous boundaries in a semicrystalline polymer. Macromolecules 35:9813–9818Google Scholar
  70. 70.
    Kumar SK, Yoon DY (1989) Lattice model for interphases in binary semicrystalline/amorphous polymer blends. Macromolecules 22:4098–4101CrossRefGoogle Scholar
  71. 71.
    Kumar SK, Yoon DY (1991) A lattice model for interphases in binary semicrystalline/amorphous polymer blends. 2. Effects of tight fold energy. Macromolecules 24:5414–5420CrossRefGoogle Scholar
  72. 72.
    Amalou Z (2006) Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides. Thesis. Université Libre de Bruxelles, Brussels, BelgiumGoogle Scholar
  73. 73.
    Rosenthal M, Doblas D, Hernandez JJ, Odarchenko YaI, Burghammer M, Di Cola E, Spitzer D, Antipov AE, Aldoshin LS, Ivanov DA (2014) High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry. J Synchrotron Radiat 21:223–228Google Scholar
  74. 74.
    Riekel C, Di Cola E, Burghammer M, Reynolds M, Rosenthal M, Doblas D, Ivanov DA (2015) Thermal transformations of self-assembled gold glyconanoparticles probed by combined nanocalorimetry and X-ray nanobeam scattering. Langmuir 31:529–534Google Scholar
  75. 75.
    Melnikov AP, Rosenthal M, Rodygin AI, Doblas D, Anokhin DV, Burghammer M, Ivanov DA (2016) Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur Polym J 81:598–606. DOI:  10.1016/j.eurpolymj.2015.12.031 Google Scholar
  76. 76.
    Rosenthal M, Melnikov AP, Rychkov AA, Doblas D, Anokhin DV, Burghammer M, and Ivanov DA (2016) Design of an in-situ setup combining nanocalorimetry and nano- or micro-focus X-ray scattering to address fast structure formation processes. In: Schick C, Mathot V (eds) Fast scanning calorimetry. Springer, Switzerland, pp 299–326Google Scholar
  77. 77.
    Melnikov AP, Rosenthal M, Burghammer M, Anokhin DV, Ivanov DA (2016) Study of melting processes in semicrystalline polymers using a combination of ultrafast chip calorimetry and nanofocus synchrotron X-ray diffraction. Nanotechnol Russ 11:305–311. doi: 10.1134/S1995078016030113 Google Scholar
  78. 78.
    Ivanov DA, Jonas AM (1998) Isothermal growth and reorganization upon heating of a single poly(aryl-ether-ether-ketone) (PEEK) spherulite, as imaged by atomic force microscopy. Macromolecules 31:4546–4550Google Scholar
  79. 79.
    Ivanov DA, Nysten B, Jonas AM (1999) Atomic force microscopy imaging of single polymer spherulites during crystallization: application to a semi-crystalline blend. Polymer 40:5899–5905Google Scholar
  80. 80.
    Ivanov DA, Amalou Z, Magonov SN (2001) Real-time evolution of the lamellar organization of poly(ethylene terephthalate) during crystallization from the melt: high-temperature atomic force microscopy study. Macromolecules 34:8944–8952Google Scholar
  81. 81.
    Basire C, Ivanov DA (2000) Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: time-resolved hot-stage SPM study. Phys Rev Lett 85:5587–5590Google Scholar
  82. 82.
    Saracovan J, Keith HD, Manley RSJ, Brown GR (1999) Banding in spherulites of polymers having uncompensated main-chain chirality. Macromolecules 32:8918CrossRefGoogle Scholar
  83. 83.
    Ye HM, Xu J, Guo BH, Iwata T (2009) Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: dependence on growth axis. Macromolecules 42:694–701CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut de Sciences des Matériaux de Mulhouse - IS2M, CNRS UMR7361MulhouseFrance
  2. 2.Faculty of Fundamental Physical and Chemical EngineeringLomonosov Moscow State University (MSU)MoscowRussia
  3. 3.European Synchrotron Radiation Facility (ESRF)GrenobleFrance

Personalised recommendations