Modeling Flow-Induced Crystallization

  • Peter C. Roozemond
  • Martin van Drongelen
  • Gerrit W. M. PetersEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 277)


A numerical model is presented that describes all aspects of flow-induced crystallization of isotactic polypropylene at high shear rates and elevated pressures. It incorporates nonlinear viscoelasticity, including viscosity change as a result of formation of oriented fibrillar crystals (shish), compressibility, and nonisothermal process conditions caused by shear heating and heat release as a result of crystallization. In the first part of this chapter, the model is validated with experimental data obtained in a channel flow geometry. Quantitative agreement between experimental results and the numerical model is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans’ orientation, and shear layer thickness. In the second part, the focus is on flow-induced crystallization of isotactic polypropylene at elevated pressures, resulting in multiple crystal phases and morphologies. All parameters but one are fixed a priori from the first part of the chapter. One additional parameter, determining the portion of β-crystal spherulites nucleated by flow, is introduced. By doing so, an accurate description of the fraction of β-phase crystals is obtained. The model accurately captures experimental data for fractions of all crystal phases over a wide range of flow conditions (shear rates from 0 to 200 s−1, pressures from 100 to 1,200 bar, shear temperatures from 130°C to 180°C). Moreover, it is shown that, for high shear rates and pressures, the measured γ-phase fractions can only be matched if γ-crystals can nucleate directly on shish.


Compressibility Dilatometry Flow induced crystallization Lamellar branching Non-isothermal Nonlinear viscoelasticity Polymer Processing Polymorphism Polypropylene Shish-kebab 


  1. 1.
    Schrauwen BAG, van Breemen LCA, Spoelstra AB, Govaert LE, Peters GWM, Meijer HEH (2004) Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37:8618–8633CrossRefGoogle Scholar
  2. 2.
    Bernland K, Tervoort T, Smith P (2010) Phase behavior and optical- and mechanical properties of the binary system isotactic polypropylene and the nucleating/clarifying agent 1,2,3-trideoxy-4,6:5,7-bis-O-[(4-propylphenyl) methylene]-nonitol. Polymer 50:2460–2464CrossRefGoogle Scholar
  3. 3.
    Ma Z, Balzano L, Peters GWM (2012) Pressure quench of flow-induced crystallization precursors. Macromolecules 45:4216–4224CrossRefGoogle Scholar
  4. 4.
    Fernandez-Ballester L, Thurmand DW, Kornfield JA (2009) Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow. J Rheol 53:1229–1254CrossRefGoogle Scholar
  5. 5.
    Roozemond PC, van Drongelen M, Ma Z, Hulsen MA, Peters GWM (2015) Modeling flow-induced crystallization in isotactic polypropylene at high shear rates. J Rheol 59:613–642CrossRefGoogle Scholar
  6. 6.
    Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento Ser 10 15:40–51CrossRefGoogle Scholar
  7. 7.
    Lotz B, Kopp S, Dorset D (1994) An original crystal-structure of polymers with ternary helices. Comptes Rendus de l’Academie des Sciences Serie II 319:187–192Google Scholar
  8. 8.
    Turner-Jones A (1971) Development of the γ-crystal form in random copolymers of propylene and their analysis by DSC and X-ray methods. Polymer 12(8):487–508CrossRefGoogle Scholar
  9. 9.
    Alamo RG, Kim M-H, Galante MJ, Isasi JR, Mandelkern L (1999) Structural and kinetic factors governing the formation of the γ polymorph of isotactic polypropylene. Macromolecules 32(12):4050–4064CrossRefGoogle Scholar
  10. 10.
    Auriemma F, De Rosa C (2002) Crystallization of metallocene-made isotactic polypropylene: Disordered modifications intermediate between the α and γ forms. Macromolecules 35(24):9057–9068CrossRefGoogle Scholar
  11. 11.
    Lotz B, Graff S, Straupe C, Wittmann JC (1991) Single crystals of γ phase isotactic polypropylene: combined diffraction and morphological support for a structure with non-parallel chains. Polymer 32(16):2092–2910CrossRefGoogle Scholar
  12. 12.
    Bruckner S, Meille SV (1989) Non-parallel chains in crystalline gamma-isotactic polypropylene. Nature 340:455–457CrossRefGoogle Scholar
  13. 13.
    Mezghani K, Phillips PJ (1997) The gamma-phase of high molecular weight isotactic polypropylene. II: The morphology of gamma-form crystallized at 200 MPa. Polymer 38:5725–5733CrossRefGoogle Scholar
  14. 14.
    Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G (1960) Crystalline high polymers of alpha-olefins. J Am Chem Soc 77:1708–170CrossRefGoogle Scholar
  15. 15.
    Wunderlich B, Grebowicz J (1984) Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. Adv Polym Sci 60:1–59CrossRefGoogle Scholar
  16. 16.
    De Rosa C, Auriemma F, Di Girolamo R, Romano L, De Luca MR (2010) A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 43:8559–8569CrossRefGoogle Scholar
  17. 17.
    Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene. Macromolecules 47:7612–7624CrossRefGoogle Scholar
  18. 18.
    Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) On the kinetics of shear-induced crystallization in polypropylene. Int Polym Process 8(3):236–244CrossRefGoogle Scholar
  19. 19.
    Lamberti G (2014) Flow induced crystallisation of polymers. Chem Soc Rev 43:2240–2252CrossRefGoogle Scholar
  20. 20.
    Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364CrossRefGoogle Scholar
  21. 21.
    Steenbakkers RJA, Peters GWM (2011) A stretch-based model for flow-enhanced nucleation of polymer melts. J Rheol 55(2):401–433CrossRefGoogle Scholar
  22. 22.
    Pantani R, Coccorullo I, Volpe V, Titomanlio G (2010) Shear-induced nucleation and growth in isotactic polypropylene. Macromolecules 43:9030–9038CrossRefGoogle Scholar
  23. 23.
    Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes. Int Polym Process 12:72–77CrossRefGoogle Scholar
  24. 24.
    Pogodina NV, Lavrenko VP, Srinivas S, Winter HH (2001) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer 42:9031–9043CrossRefGoogle Scholar
  25. 25.
    Ma Z, Steenbakkers RJA, Giboz J, Peters GWM (2011) Using rheometry to determine nucleation density in a colored system containing a nucleating agent. Rheol Acta 50:909–915CrossRefGoogle Scholar
  26. 26.
    Karger-Kocsis J, Csikai I (1987) Skin-core morphology and failure of injection-molded specimens of impact-modified polypropylene blends. Polym Eng Sci 27:241–253CrossRefGoogle Scholar
  27. 27.
    Fujiyama M (1995) Higher order structure of injection-molded polypropylene. In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites, vol 1. Chapmann & Hall, London, pp 167–204CrossRefGoogle Scholar
  28. 28.
    Varga J, Mudra I, Ehrenstein GW (1998) Morphology and properties of beta-nucleated injection molded isotactic polypropylene. ANTEC Proc 3:3492–3496Google Scholar
  29. 29.
    Roozemond PC, Peters GWM (2013) Flow-enhanced nucleation of poly(1-butene): model application to short-term and continuous shear and extensional flow. J Rheol 57:1633–1653CrossRefGoogle Scholar
  30. 30.
    Ottonello P (2003) Flow-induced crystal nucleation in polymeric systems. Master’s thesis, University of Genova, ItalyGoogle Scholar
  31. 31.
    Baert J (2009) Flow-induced crystallization of poly-1-butene. PhD thesis, Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  32. 32.
    Fang H, Zhang Y, Bai J, Wang Z (2013) Shear-induced nucleation and morphological evolution for bimodal long chain branched polylactide. Macromolecules 46:6555–6565CrossRefGoogle Scholar
  33. 33.
    Carrot C, Guillet J, Boutahar K (1993) Rheological behavior of a semi-crystalline polymer during isothermal crystallization. Rheol Acata 32:566–574CrossRefGoogle Scholar
  34. 34.
    Vleeshouwers S, Meijer HEH (1996) A rheological study of shear induced crystallization. Rheol Acta 35:391–399CrossRefGoogle Scholar
  35. 35.
    Housmans JW, Steenbakkers RJA, Roozemond PC, Peters GWM, Meijer HEH (2009) Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 42:5728–5740CrossRefGoogle Scholar
  36. 36.
    Hadinata C, Gabriel C, Ruellman M, Laun HM (2005) Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution. J Rheol 49(1):327–349CrossRefGoogle Scholar
  37. 37.
    Hadinata C, Boos D, Gabriel C, Wassner E, Ruellmann M, Kao N, Laun M (2007) Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol 51(2):195–215CrossRefGoogle Scholar
  38. 38.
    Acierno S, Coppola S, Grizzuti N (2008) Effects of molecular weight distribution on the flow-enhanced crystallization of poly(1-butene). J Rheol 52(2):551–566CrossRefGoogle Scholar
  39. 39.
    Steenbakkers RJA, Peters GWM (2008) Suspension-based rheological modeling of crystallizing polymer melts. Rheol Acta 47(5–6):643–665CrossRefGoogle Scholar
  40. 40.
    Roozemond PC, Janssens V, van Puyvelde P, Peters GWM (2012) Suspension-like hardening behavior of HDPE and time-hardening superposition. Rheol Acta 51:97–109CrossRefGoogle Scholar
  41. 41.
    Fernandez-Ballester L, Thurman DW, Zhou W, Kornfield JA (2012) Effect of long chains on the threshold stresses for flow-induced crystallization in iPP: shish kebabs vs sausages. Macromolecules 45:6557–6570CrossRefGoogle Scholar
  42. 42.
    Kornfield JA, Kumaraswamy G, Issaian AM (2002) Recent advances in understanding flow effects on polymer crystallization. Ind Eng Chem Res 41:6383–6392CrossRefGoogle Scholar
  43. 43.
    Baert J, van Puyvelde P, Langouche F (2006) Flow-induced crystallization of PB-1: from the low shear rate region up to processing rates. Macromolecules 39:9215–9222CrossRefGoogle Scholar
  44. 44.
    Kumaraswamy G, Issaian AM, Kornfield JA (1999) Shear-enhanced crystallization in isotactic polyproylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32:7537–7547CrossRefGoogle Scholar
  45. 45.
    Mykhaylyk OO, Chambom P, Graham RS, Fairclough JPA, Olmsted PD, Ryan AJ (2008) The specific work of flow as a criterion for orientation in polymer crystallization. Macromolecules 41:1901–1904CrossRefGoogle Scholar
  46. 46.
    Mykhaylyk OO, Chambon P, Impradice C, Fairclough JPA, Terrill NJ, Ryan AJ (2010) Control of structural morphology in shear-induced crystallization of polymers. Macromolecules 43:2389–2405CrossRefGoogle Scholar
  47. 47.
    Okura M, Mykhaylyk OO, Ryan AJ (2013) Effect of matrix polymer on flow-induced nucleation in polymer blends. Phys Rev Lett 110:087801CrossRefGoogle Scholar
  48. 48.
    Kumaraswamy G, Verma RK, Issaian AM, Wang P, Kornfield JA, Yeh F, Hsiao BS, Olley RH (2000) Shear-enhanced crystallization in isotactic polypropylene Part 2. Analysis of the formation of the oriented “skin”. Polymer 41:8931–8940CrossRefGoogle Scholar
  49. 49.
    Kumaraswamy G, Verma RK, Kornfield JA, Yeh F, Hsiao BS (2004) Shear-enhanced crystallization in isotactic polypropylene: in-situ synchrotron SAXS and WAXD. Macromolecules 37:9005–9017CrossRefGoogle Scholar
  50. 50.
    Somani RH, Hsiao BS, Nogales A, Sics I, Balta-Calleja FJ, Ezquerra TA (2000) Structure development during shear flow-induced crystallization of i-PP: in-situ small-angle X-ray scattering study. Macromolecules 33:9385–9394CrossRefGoogle Scholar
  51. 51.
    Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Shear-induced precursor structures in isotactic polypropylene melt by in-situ Rheo-SAXS and Rheo-WAXD studies. Macromolecules 35:9096–9104CrossRefGoogle Scholar
  52. 52.
    Somani RH, Yang L, Zhu L, Hsiao BS (2005) Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46:8587–8623CrossRefGoogle Scholar
  53. 53.
    Hsiao BS, Yang L, Somani R, Avila-Orta CA, Zhu L (2005) Unexpected shish-kebab structure in a sheared polyethylene melt. Phys Rev Lett 94:117802CrossRefGoogle Scholar
  54. 54.
    Somani RH, Yang L, Hsiao BS (2006) Effects of high molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene. Polymer 47:5657–5668CrossRefGoogle Scholar
  55. 55.
    Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316:1014–1017CrossRefGoogle Scholar
  56. 56.
    Avrami M (1939) Kinetics of phase change. I: General theory. J Chem Phys 7(12):1103–1112CrossRefGoogle Scholar
  57. 57.
    Avrami M (1940) Kinetics of phase change. II: Transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224CrossRefGoogle Scholar
  58. 58.
    Pogodina NV, Winter HH, Srinivas S (1999) Strain effects on physical gelation of crystallizing isotactic polypropylene. J Polym Sci B Polym Phys 37:3512–3519CrossRefGoogle Scholar
  59. 59.
    Balzano L, Ma Z, Cavallo D, van Erp TB, Fernandez-Ballester L, Peters GWM (2016) Molecular aspects of the formation of shish-kebab in isotactic polypropylene. Macromolecules 49:3799–3809CrossRefGoogle Scholar
  60. 60.
    Cui K, Meng L, Tian N, Zhou W, Liu Y, Wang Z, He J, Li L (2012) Self-acceleration of nucleation and formation of shish in extension-induced crystallization with strain beyond fracture. Macromolecules 45:5477–5486CrossRefGoogle Scholar
  61. 61.
    Ma Z, Balzano L, van Erp T, Portale G, Peters GWM (2013) Short-term flow induced crystallization in isotactic polypropylene: how short is short? Macromolecules 46:9249–9258CrossRefGoogle Scholar
  62. 62.
    Janeschitz-Kriegl H, Ratajski E (2005) Kinetics of polymer crystallization under processing conditions: transformation of dormant nuclei by the action of flow. Polymer 46:3856–3870CrossRefGoogle Scholar
  63. 63.
    Zuidema H, Peters GWM, Meijer HEH (2001) Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromol Theory Simul 10:447–460CrossRefGoogle Scholar
  64. 64.
    Swartjes FHM, Peters GWM, Rastogi S (2003) Stress induced crystallization in elongational flow. Int Polym Process 18:53–66CrossRefGoogle Scholar
  65. 65.
    Hwang WR, Peters GWM, Hulsen MA, Meijer HEH (2006) Modeling of flow-induced crystallization of particle-filled polymers. Macromolecules 39:8389–8398CrossRefGoogle Scholar
  66. 66.
    Custódio F, Steenbakkers RJA, Anderson PD, Peters GWM, Meijer HEH (2009) Model development and validation of crystallization behavior in injection molding prototype flows. Macromol Theory Simul 18(9):469–494CrossRefGoogle Scholar
  67. 67.
    van Erp TB, Roozemond PC, Peters GWM (2013) Flow-enhanced crystallization kinetics of iPP during cooling at elevated pressure: characterization, validation, and development. Macromol Theory Simul 22:309–318CrossRefGoogle Scholar
  68. 68.
    Schneider W, Köppl A, Berger J (1988) Non-isothermal crystallization of polymers. System of rate equations. Int Polym Process 2(3–4):151–154.Google Scholar
  69. 69.
    Eder G, Janeschitz-Kriegl H (1997) Structure development during processing: crystallization. In: Meijer HEH (ed) Processing of polymers, volume 18 of materials science and technology: a comprehensive treatment. Wiley-VCH, Weinheim, pp 269–342Google Scholar
  70. 70.
    Coppola S, Grizzuti N (2001) Microrheological modeling of flow-induced crystallization. Macromolecules 34:5030–5036CrossRefGoogle Scholar
  71. 71.
    Ziabicki A, Alfonso GC (1994) Memory effects in isothermal crystallization. I. Theory. Colloid Polym Sci 27:1027–1042CrossRefGoogle Scholar
  72. 72.
    Ziabicki A, Alfonso GC (2002) A simple model of flow-induced crystallization memory. Macromol Symp 185:211–231CrossRefGoogle Scholar
  73. 73.
    Lamberti G (2011) Flow-induced crystallization during isotactic polypropylene film casting. Polym Eng Sci 51:851–61CrossRefGoogle Scholar
  74. 74.
    Doufas AK, Dairanieh IS, McHugh AJ (1999) A continuum model for flow-induced crystallization of polymer melts. J Rheol 43:85–109CrossRefGoogle Scholar
  75. 75.
    Doufas AK, McHugh AJ (2001) Simulation of melt spinning including flow-induced crystallization. Part III. Quantitative comparisons with PET spinline data. J Rheol 45:403–420CrossRefGoogle Scholar
  76. 76.
    Doufas AK, Rice L, Thurston W (2011) Shear and extensional rheology of polypropylene melts: experimental and modeling studies. J Rheol 55:95–126CrossRefGoogle Scholar
  77. 77.
    Baig C, Edwards BJ (2010) Atomistic simulation of flow-induced crystallization at constant temperature. Eur Phys Lett 89:36003CrossRefGoogle Scholar
  78. 78.
    Graham RS, Olmsted PD (2009) Coarse-grained simulations of flow-induced nucleation in semicrystalline polymers. Phys Rev Lett 103(11):115702CrossRefGoogle Scholar
  79. 79.
    Graham RS, Olmsted PD (2010) Kinetic Monte-Carlo simulations of flow-induced nucleation in polymer melts. Faraday Discuss 144:1–22CrossRefGoogle Scholar
  80. 80.
    Muthukumar M (2005) Modeling polymer crystallization. Adv Polym Sci 191:241–274CrossRefGoogle Scholar
  81. 81.
    van Drongelen M, Roozemond PC, Troisi EM, Doufas AK, Peters GWM (2015) Characterization of the primary and secondary crystallization kinetics of a linear low-density polyethylene in quiescent- and flow-conditions. Polymer 76:254–270CrossRefGoogle Scholar
  82. 82.
    van Erp TB, Balzano L, Spoelstra AB, Govaert LE, Peters GWM (2013) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of shear and pressure. Polymer (United Kingdom) 53:5896–5908Google Scholar
  83. 83.
    Verbeeten WMH, Peters GWM, Baaijens FPT (2001) Differential constitutive equations for polymer melts: the extended pom-pom model. J Rheol 45(4):823–843CrossRefGoogle Scholar
  84. 84.
    Roozemond PC, Steenbakkers RJA, Peters GWM (2011) A model for flow-enhanced nucleation based on fibrillar dormant precursors. Macromol Theory Simul 20(2):93–109CrossRefGoogle Scholar
  85. 85.
    Housmans JW, Balzano L, Santoro D, Peters GWM, Meijer HEH (2009) A design to study flow induced crystallization in a multipass rheometer. Int Polym Process 24(2):185–197CrossRefGoogle Scholar
  86. 86.
    He J, Zoller P (1994) Crystallization of polypropylene, nylon-66 and poly(ethylene Terephthalate) at pressures to 200 MPa: kinetics and characterization of products. J Polym Sci B Polym Phys 32:1049–1087CrossRefGoogle Scholar
  87. 87.
    Roozemond PC, van Erp TB, Peters GWM (2016) Flow-induced crystallization of isotactic polypropylene: modeling formation of multiple crystal phases and morphologies. Polymer 89:69–80CrossRefGoogle Scholar
  88. 88.
    Portale G, Cavallo D, Alfonso GC, Hermida-Merino D, van Drongelen M, Balzano L, Peters GWM, Bras W (2013) Polymer crystallization studies under processing-relevant conditions at the SAXS/WAXS DUBBLE beamline at the ESRF. J Appl Crystallogr 46:1681–1689CrossRefGoogle Scholar
  89. 89.
    Roozemond PC, Ma Z, Cui K, Li L, Peters GWM (2014) Multimorphological crystallization of shish-kebab structures in isotactic polypropylene: quantitative modeling of parent–daughter crystallization kinetics. Macromolecules 47:5152–5162CrossRefGoogle Scholar
  90. 90.
    Dean DM, Rebenfeld L, Register RA, Hisao BS (1998) Matrix molecular orientation in fiber-reinforced polypropylene composites. J Mater Sci 33:4797–4812CrossRefGoogle Scholar
  91. 91.
    Hermans JJ, Vermaas D, Hermans PH, Weidinger A (1946) Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recueil des Travaux Chimiques des Pays-Bas 65:427–447CrossRefGoogle Scholar
  92. 92.
    Stein RS, Norris FH (1958) The X-ray diffraction, birefringence, and infrared dichroism of stretched polyethylene. J Polym Sci 21:381–396CrossRefGoogle Scholar
  93. 93.
    Wilchinsky ZW (1960) Measurement of orientation in polypropylene film. J Appl Phys 31:1969–1972CrossRefGoogle Scholar
  94. 94.
    Roozemond PC, van Drongelen M, Ma Z, Spoelstra AB, Hermida-Merino D, Peters GWM (2015) Self-regulation in flow-induced structure formation of isotactic polypropylene. Macromol Rapid Commun 36:385–390CrossRefGoogle Scholar
  95. 95.
    Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14:227–253CrossRefGoogle Scholar
  96. 96.
    D’Avino G, Hulsen MA (2010) Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution. J Non-Newtonian Fluid Mech 165:1602–1612CrossRefGoogle Scholar
  97. 97.
    Guenette R, Fortin M (1995) A new mixed finite element method for computing viscoelastic flows. J Non-Newtonian Fluid Mech 60:27–52CrossRefGoogle Scholar
  98. 98.
    Bogaerds ACB, Grillet AM, Peters GWM, Baaijens FPT (2002) Stability analysis of polymer shear flows using the eXtended Pom-Pom constitutive equations. J Non-Newtonian Fluid Mech 108:187–208CrossRefGoogle Scholar
  99. 99.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 33:199–259CrossRefGoogle Scholar
  100. 100.
    Hulsen MA, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J Non-Newtonian Fluid Mech 127:27–39CrossRefGoogle Scholar
  101. 101.
    Verbeeten WMH, Peters GWM, Baaijens FPT (2004) Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model. J Non-Newtonian Fluid Mech 117(2-3):73–84CrossRefGoogle Scholar
  102. 102.
    Zoller P (1979) Pressure-volume-temperature relationships of solid and molten polypropylene and poly(butene-1). J Appl Polym Sci 23:1057–1061CrossRefGoogle Scholar
  103. 103.
    van der Beek MHE (2005) Specific volume of polymers: influence of the thermomechanical history. PhD thesis, Eindhoven University of Technology, NetherlandsGoogle Scholar
  104. 104.
    Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Introduction to heat transfer. Wiley, HobokenGoogle Scholar
  105. 105.
    Venerus DC, Schieber JD, Iddir H, Guzman JD, Broerman AW (1999) Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain. Phys Rev Lett 82:366–369CrossRefGoogle Scholar
  106. 106.
    van Meerveld J, Peters GWM, Huetter M (2004) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta 44:119–134CrossRefGoogle Scholar
  107. 107.
    Hwang WR, Hulsen MA, Meijer HEH (2004) Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames. J Non-Newtonian Fluid Mech 121:15–33CrossRefGoogle Scholar
  108. 108.
    Keller A, Kolnaar HWH (1997) Flow-induced orientation and structure formation. In: Meijer HEM (ed) Processing of polymers, volume 18 of materials science and technology: a comprehensive treatment. Wiley-VCH, Weinheim, pp 189–268Google Scholar
  109. 109.
    Hill MJ, Keller A (1981) “Hairdressing” shish-kebabs by melting. Colloid Polym Sci 259:335–341CrossRefGoogle Scholar
  110. 110.
    Roozemond PC (2014) Flow-induced crystallization of polymers: modeling morphology and kinetics. PhD thesis, Eindhoven University of Technology, Netherlands. Available at
  111. 111.
    Le Moigne N, van den Oever M, Budtova T (2013) Dynamic and capillary shear rheology of natural fiber-reinforced composites. Polym Eng Sci 53:2582–2593CrossRefGoogle Scholar
  112. 112.
    Ballard DGH, Cheshire P, Longman GW, Schelten J (1978) Small-angle neutron scattering studies of isotropic polypropylene. Polymer 19:379–385CrossRefGoogle Scholar
  113. 113.
    van Drongelen M, van Erp TB, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53:4758–4769CrossRefGoogle Scholar
  114. 114.
    Seki M, Thurman DW, Oberhauser JP, Kornfield JA (2002) Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap. Macromolecules 35:2583–2594CrossRefGoogle Scholar
  115. 115.
    Hatzikiriakos S, Dealy JM (1994) Start-up pressure transients in a capillary rheometer. Polym Eng Sci 34:493–499CrossRefGoogle Scholar
  116. 116.
    Roozemond PC, van Drongelen M, Verbelen L, Van Puyvelde P, Peters GWM (2014) Flow-induced crystallization studied in the RheoDSC device: quantifying the importance of edge effects. Rheologica Acta. 54(1):1–8Google Scholar
  117. 117.
    van Erp TB, Balzano L, Peters GWM (2012) Oriented gamma phase in isotactic polypropylene homopolymer. ACS Macro Lett 1:618–622CrossRefGoogle Scholar
  118. 118.
    Hoffman JD, Guttman CM, DiMarzio EA (1979) On the problem of crystallization of polymers from the melt with chain folding. Faraday Discuss Chem Soc 68:177–197CrossRefGoogle Scholar
  119. 119.
    Schoonen JFM, Swartjes FHM, Peters GWM, Baaijens FPT, Meijer HEH (1998) A 3D numerical/experimental study on a stagnation flow of a polyisobutylene solution. J Non-Newtonian Fluid Mech 79:529–562CrossRefGoogle Scholar
  120. 120.
    Caelers HJM, Govaert LE, Peters GWM (2016) The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions. Polymer 86:116–128CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter C. Roozemond
    • 1
    • 2
  • Martin van Drongelen
    • 1
  • Gerrit W. M. Peters
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.DSM Ahead Materials Science CenterGeleenThe Netherlands

Personalised recommendations