Advertisement

Characterization and Application of Graphene Nanoplatelets in Elastomers

  • M. Klüppel
  • M. M. Möwes
  • A. Lang
  • J. Plagge
  • M. Wunde
  • F. Fleck
  • C. W. Karl
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 275)

Abstract

The physical performance of elastomer composites based on graphene nanoplatelets (GNPs) was investigated regarding the mechanical and fracture mechanical properties, viscoelastic and dielectric responses, and friction, wear and gas permeation properties. Static gas-adsorption measurements at very low pressures demonstrated that pronounced differences in the surface activity and specific surface area can be observed for different GNPs. The surface activity was shown to be large for GNPs that indicate strong polymer–filler couplings for these systems. This is closely related to the energetic heterogeneity (i.e., the number of highly energetic sites) at the filler surface, which determines the polymer–filler interaction strength and is the main factor determining the reinforcing potential. Based on this information, the stress–strain responses of several GNP types and fine graphite were analyzed in styrene butadiene rubber (SBR) and nitrile butadiene rubber (NBR) with and without softener in relation to standard carbon black. Results demonstrated qualitatively different mechanical behaviors. It was revealed that the mechanical response of the composites under quasistatic cyclic loading can be well understood on the basis of quantitative analysis using a micromechanical model. Gas permeation is strongly reduced by GNPs and further reduced in anisotropic samples with orientation of GNPs perpendicular to the gas flow direction. In comparison with carbon black, dynamic crack growth under pulsed excitation remains almost unaltered for all GNP types, although the wear behavior under sharp abrading conditions is worse. The dry and wet friction properties of SBR composites are well described by hysteresis and adhesion friction theory for GNPs and for carbon black. The dry friction coefficient on rough granite and especially on smooth glass decreases significantly when GNPs are used instead of carbon black. However, the wet friction coefficient on rough granite increases slightly at small sliding velocities, which correlates with the higher hysteresis of GNP composites in the rubbery plateau region.

Keywords

Carbon nanotube (CNT) Elastomer composite Fracture mechanics Friction and wear properties Gas permeation Graphene nanoplatelet (GNP) Multilayer graphene (MLC) Ultrafine graphite (UG) Static gas adsorption 

Notes

Acknowledgements

Financial support of the project “Elastomer composites based on graphenes” by the BMBF (grant 03X0110A) is highly appreciated. Special thanks are extended to Prof. Gert Heinrich and Prof. Amit Das fromIPF Dresden for the very fruitful cooperation within this project. Prof. G. Lacayo-Pineda from Continental Reifen Deutschland GmbH is appreciated for performing the gas permeation measurements.

References

  1. 1.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183–191CrossRefGoogle Scholar
  2. 2.
    Verdejo R, Mar Bernal M, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310CrossRefGoogle Scholar
  3. 3.
    Jang BZ, Zhamu A (2008) J Mater Sci 43:5092–5101CrossRefGoogle Scholar
  4. 4.
    Li YJ et al (2012) J Mater Sci 47:730–738CrossRefGoogle Scholar
  5. 5.
    Lang A, Karl CW, Klüppel M (2012) In: Proceedings of the 10th fall rubber colloquium (KHK), Hanover, 7–9 November 2012, pp 99–105Google Scholar
  6. 6.
    Möwes M, Fleck F, Klüppel M (2013) Effect of filler surface activity and morphology on mechanical and dielectric properties of NBR/graphene nano-composites. Rubber Chem Technol 87:70–85CrossRefGoogle Scholar
  7. 7.
    Möwes M, Fleck F, Wunde M, Klüppel M (2013) Graphenes as new active filler in elastomer composites with special features. In: Proceedings of the 6th international conference on carbon nanoparticle-based components (CNPComp), Dresden, 22–25 September 2013Google Scholar
  8. 8.
    Klüppel M, Möwes M, Jungk J (2013) Carbon nano-particle based hybrid filler systems in elastomers. In: Proceedings of the 6th international conference on carbon nanoparticle-based components (CNPComp), Dresden, 22–25 September 2013Google Scholar
  9. 9.
    Klüppel M (2003) The role of disorder in filler reinforcement of elastomers on various length scales. Adv Polym Sci 164:1–86CrossRefGoogle Scholar
  10. 10.
    Vilgis TA, Heinrich G, Klüppel M (2009) Reinforcement of polymer nano-composites. Cambridge University Press, New YorkCrossRefGoogle Scholar
  11. 11.
    Vilgis TA, Heinrich G (1994) Macromolecules 27:7846Google Scholar
  12. 12.
    Gay C, de Gennes PG, Raphael E, Brochard-Wyart F (1996) Macromolecules 29:8379Google Scholar
  13. 13.
    Kremer F, Schönshals A (2003) Broadband dielectric spectroscopy. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  14. 14.
    Payne AR (1958) In: Mason P, Wookey N (eds) Rheology of elastomers. Pergamon, London, pp 86–112Google Scholar
  15. 15.
    Payne AR (1965) In: Kraus G (ed) Reinforcement of elastomers. Interscience, New YorkGoogle Scholar
  16. 16.
    Wang MJ (1999) Rubber Chem Technol 72:430Google Scholar
  17. 17.
    Klüppel M, Heinrich G (2005) Physics and engineering of reinforced elastomers. Kautschuk Gummi Kunstst 58:217–224Google Scholar
  18. 18.
    Medalia AI (1978) Rubber Chem Technol 51:437Google Scholar
  19. 19.
    Nawaz K, Khan U et al (2012) Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50:4489–4494CrossRefGoogle Scholar
  20. 20.
    Klüppel M, Schuster RH, Heinrich G (1997) Structure and properties of reinforcing fractal filler networks in elastomers. Rubber Chem Technol 70:243–255CrossRefGoogle Scholar
  21. 21.
    Das A, Stöckelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Klüppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends. Polymer 49:5276–5283CrossRefGoogle Scholar
  22. 22.
    Lorenz H, Fritzsche J, Das A, Stöckelhuber KW, Jurk R, Heinrich G, Klüppel M (2009) Advanced elastomer nano-composites based on CNT-hybrid filler systems. Compos Sci Technol 69:2135–2143CrossRefGoogle Scholar
  23. 23.
    Fritzsche J, Lorenz H, Klüppel M (2009) CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol Mater Eng 295:551–560CrossRefGoogle Scholar
  24. 24.
    Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47:3313–3321CrossRefGoogle Scholar
  25. 25.
    Fritzsche J, Lorenz H, Klüppel M (2011) Elastomer carbon nanotube composites. In: McNally T, Pötschke P (eds) Polymer carbon nanotube composites: preparation, properties and applications. Woodhead, CambridgeGoogle Scholar
  26. 26.
    Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47:2234–2243CrossRefGoogle Scholar
  27. 27.
    Patole AS, Patole SP, Jung SY, Yoo JB, An JH, Kim TH (2012) Eur Polym J 48:252Google Scholar
  28. 28.
    Wang L, Zhang L, Tian M (2012) Wear 276–277:85–93Google Scholar
  29. 29.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5–25Google Scholar
  30. 30.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350Google Scholar
  31. 31.
    Nawaz K, Khan U, Ul-Haq N, May P, O'Neill A (2012) Carbon 50:4489Google Scholar
  32. 32.
    Potts JR, Shankar O, Du L, Ruoff RS (2012) Macromolecules 45:6045Google Scholar
  33. 33.
    Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515Google Scholar
  34. 34.
    Varghese T, Kumar V, Ajith H et al (2013) Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers. Carbon 61:476–486CrossRefGoogle Scholar
  35. 35.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240Google Scholar
  36. 36.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924Google Scholar
  37. 37.
    Schröder A, Klüppel M, Schuster RH, Heidberg J (2001) Energetic surface structure of carbon black. Kautsch Gummi Kunstst 54:260–266Google Scholar
  38. 38.
    Schröder A, Klüppel M, Schuster RH, Heidberg J (2002) Surface energy distribution of carbon black measured by static gas adsorption. Carbon 40:207–210CrossRefGoogle Scholar
  39. 39.
    Schröder A, Klüppel M, Schuster RH (2007) Characterization of surface activity of carbon blacks and its relation to polymer-filler interaction. Macromol Mater Eng 292:885–916CrossRefGoogle Scholar
  40. 40.
    Jaroniec M (1988) Physical adsorption on heterogeneous solids. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Stanley BJ, Guiochon G (1993) J Phys Chem 97:8098–8104Google Scholar
  42. 42.
    Schröder A, Klüppel M, Schuster RH (1999) Kautsch Gummi Kunstst 52:814Google Scholar
  43. 43.
    Schröder A, Klüppel M, Schuster RH (2000) Kautsch Gummi Kunstst 53:257Google Scholar
  44. 44.
    Schröder A, Meier J, Klüppel M, Schuster RH (2003) Gummi Fasern Kunststoffe 56:162Google Scholar
  45. 45.
    Pfeifer P, Obert M, Cole MW (1989) Fractal BET and FHH theories of adsorption: a comparative study. Proc R Soc Lond A 423:169–188CrossRefGoogle Scholar
  46. 46.
    Heinrich G, Klüppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44CrossRefGoogle Scholar
  47. 47.
    Klüppel M, Schramm J (2000) A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol Theory Simul 9:742–754Google Scholar
  48. 48.
    Lorenz H, Klüppel M (2012) Microstructure-based modeling of arbitrary deformation histories of filler-reinforced elastomers. J Mech Phys Solids 60:1842–1861CrossRefGoogle Scholar
  49. 49.
    Lorenz H, Klüppel M, Heinrich G (2012) Micro-structure based modeling and FE-implementation of filler-induced stress softening and hysteresis of reinforced rubbers. Z Angew Math Mech 92:608–631CrossRefGoogle Scholar
  50. 50.
    Meier JG, Klüppel M (2008) Macromol Mater Eng 293:12–38Google Scholar
  51. 51.
    Meier JG, Mani JW, Klüppel M (2007) Phys Rev B 75:054202Google Scholar
  52. 52.
    Persson BNJ (2001) J Phys Condens Matter 115:3840Google Scholar
  53. 53.
    Klüppel M, Heinrich G (2000) Rubber friction on self-affine road tracks. Rubber Chem Technol 73:578–606CrossRefGoogle Scholar
  54. 54.
    Heinrich G (1997) Hysteresis friction of sliding rubbers on rough and fractal surfaces. Rubber Chem Technol 70:1CrossRefGoogle Scholar
  55. 55.
    Heinrich G, Klüppel M, Vilgis TA (2000) Evaluation of self-affine surfaces and their implication to frictional dynamics as illustrated with a rouse material. Comput Theor Polym Sci 10:53–61CrossRefGoogle Scholar
  56. 56.
    Müller A, Schramm J, Klüppel M (2002) Ein neues Modell der Hysteresereibung von Elastomeren auf fraktalen Oberflächen. Kautsch Gummi Kunstst 55:432–436Google Scholar
  57. 57.
    Schramm J (2002) Reibung von Elastomeren auf rauen Oberflächen und Beschreibung von Nassbremseigenschaften von PKW-Reifen. PhD Thesis, University of RegensburgGoogle Scholar
  58. 58.
    Le Gal A, Guy L, Orange G, Bomal Y, Klüppel M (2008) Modelling of sliding friction for carbon black and silica filled elastomers on road tracks. Wear 264:606–615CrossRefGoogle Scholar
  59. 59.
    Le Gal A, Klüppel M (2006) Investigation and modelling of adhesion friction on rough surfaces. Kautsch Gummi Kunstst 59:308–315Google Scholar
  60. 60.
    Le Gal A, Yang X, Klüppel M (2005) Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. J Chem Phys 123:014704CrossRefGoogle Scholar
  61. 61.
    Le Gal A (2007) Investigation and modelling of rubber stationary friction on rough surfaces. PhD Thesis, University of HannoverGoogle Scholar
  62. 62.
    Le Gal A, Klüppel M (2008) Investigation and modelling of rubber stationary friction on rough surfaces. J Phys Condens Matter 20:015007CrossRefGoogle Scholar
  63. 63.
    Busse L, Le Gal A, Klüppel M (2010) Modeling of wet and dry friction of silica filled elastomers on sef-affine road surfaces, Chapter 1. In: Besdo D, Heimann B, Klüppel M, Kröger M, Wriggers P, Nackenhorst U (eds) Elastomere friction: theory, experiment and simulation, vol 51, Lecture notes in applied and computational mechanics. Springer, Berlin, Heidelberg, New York. ISBN 978-3-642-10656-9CrossRefGoogle Scholar
  64. 64.
    Busse L, Klüppel M (2010) Wet and dry friction of elastomers in advanced simulation compared to experiment. In: Heinrich G, Kaliske M, Lion A, Reese S (eds) Constitutive models for rubber VI. A. A. Balkema, Lisse, Abingdon, Exton, Tokyo. ISBN 979-0-415-56327-7Google Scholar
  65. 65.
    Busse L, Bourbakri I, Klüppel M (2011) Friction master curves for rubber on dry and wet granite: experiments and simulations. Kautsch Gummi Kunstst 64(5):35–39Google Scholar
  66. 66.
    Busse L (2012) Investigation, prediction and control of rubber friction and stick–slip: experiments, simulations, applications. PhD Thesis, University of HannoverGoogle Scholar
  67. 67.
    Lang A, Klüppel M (2013) Hysteresis and adhesion friction of carbon based elastomer composites: theory, experiments and applications. In: Gil-Negrete N, Alonso A (eds) Constitutive models for rubber VIII. Taylor and Francis Group, London, pp 59–64. ISBN 978-1-138-00072-8CrossRefGoogle Scholar
  68. 68.
    Heinrich G, Klüppel M (2002) Elastomer friction and adhesion on self-affine interfaces. Theory, experiment and applications in tire industry. In: Proceedings of the IPF-Colloquium, Dresden, 14–15 November 2002Google Scholar
  69. 69.
    Heinrich G, Schramm J, Müller A, Klüppel M, Kendziorra N, Kelbch S (2002) Zum Einfluss der Straßenoberfläche auf das Bremsverhalten von PKW-Reifen beim ABS-nass und ABS-trocken Bremsvorgang. In: Proceedings of the 4 Darmstädter Reifenkolloquium, Darmstadt, 17 October 2002Google Scholar
  70. 70.
    Heinrich G, Klüppel M (2008) Rubber friction, tread deformation and tire traction. Wear 265:1052–1060CrossRefGoogle Scholar
  71. 71.
    Williams ML, Ferry JD (1953) J Polym Sci 11:169CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. Klüppel
    • 1
  • M. M. Möwes
    • 1
  • A. Lang
    • 1
  • J. Plagge
    • 1
  • M. Wunde
    • 1
  • F. Fleck
    • 1
  • C. W. Karl
    • 1
  1. 1.Deutsches Institut für Kautschuktechnologie e.V.HannoverGermany

Personalised recommendations