Advertisement

Non-isothermal Crystallization of Semi-Crystalline Polymers: The Influence of Cooling Rate and Pressure

  • M. van Drongelen
  • P. C. Roozemond
  • G. W. M. PetersEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 277)

Abstract

During industrial processing, polymer melts are exposed to local high cooling rates, strong deformation rates and high pressures. Nowadays, research in the field of semi-crystalline polymers still strives towards an accurate prediction of the evolution and final appearance of the crystalline morphology in polymer products. After all, the amount, number, phase and orientation of the crystallites act in a combined way and control the final optical and mechanical properties. This chapter discusses recent experimental and model developments concerning the influence of industrially relevant cooling rates and pressures on the non-isothermal crystallization of both an isotactic polypropylene and a linear low-density polyethylene grade. The influence of flow gradients is discussed in Chapter (Roozemond et al., Adv Polym Sci, 2016).

Keywords

Crystallization Kinetics Modelling Polypropylene Polyethylene 

References

  1. 1.
    Schrauwen BAG et al (2004) Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37:8618–8633CrossRefGoogle Scholar
  2. 2.
    Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28:1643–1699CrossRefGoogle Scholar
  3. 3.
    De Rosa C et al (2004) Structure–property correlations in polypropylene from metallocene catalysts: stereodefective, regioregular isotactic polypropylene. J Am Chem Soc 126:17040–17049CrossRefGoogle Scholar
  4. 4.
    De Rosa C, Auriemma F (2006) Structure and physical properties of syndiotactic polypropylene: a highly crystalline thermoplastic elastomer. Prog Polym Sci 31:145–237CrossRefGoogle Scholar
  5. 5.
    Custódio FJMF, Steenbakkers RJA, Anderson PD, Peters GWM, Meijer HEH (2009) Model development and validation of crystallization behavior in injection molding prototype flows. Macromol Theory Simul 18:469–494CrossRefGoogle Scholar
  6. 6.
    Roozemond PC, van Drongelen M, Ma Z, Hulsen MA, Peters GWM (2015) Modeling flow-induced crystallization in isotactic polypropylene at high shear rates. J Rheol N Y 59:613–642CrossRefGoogle Scholar
  7. 7.
    Doufas AK (2014) A microstructural flow-induced crystallization model for film blowing: validation with experimental data. Rheol Acta 53:269–293CrossRefGoogle Scholar
  8. 8.
    Guo X, Isayev AI, Guo L (1999) Crystallinity and microstructure in injection moldings of isotactic polypropylenes. Part 1: a new approach to modelling and model parameters. Polym Eng Sci 39:2096–2114CrossRefGoogle Scholar
  9. 9.
    Keller A (1957) A note on single crystals in polymers: evidence for a folded chain configuration. Philos Mag 2:1171–1175CrossRefGoogle Scholar
  10. 10.
    Mandelkern L (1964) Crystallization of polymers. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Armitstead K, Goldbeck-Wood G (1992) Polymer crystallization theories. Springer, Berlin, pp 219–312Google Scholar
  12. 12.
    Varga J, Eder G, Janeschitz-Kriegl H (1997) Materials science and technology. In: Meijer HEH (ed) vol 18. Wiley VCH, New York, pp 57–115Google Scholar
  13. 13.
    Strobl G (2006) Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398–442CrossRefGoogle Scholar
  14. 14.
    Ziabicki A, Alfonso GC (1994) Memory effects in isothermal crystallization. 1. Theory. Colloid Polym Sci 272:1027–1042CrossRefGoogle Scholar
  15. 15.
    Alfonso GC, Ziabicki A (1995) Memory effects in isothermal crystallization II. Isotactic polypropylene. Colloid Polym Sci 273:317–323CrossRefGoogle Scholar
  16. 16.
    Janeschitz-Kriegl H, Eder G, Stadlbauer M, Ratajski E (2005) A thermodynamic frame for the kinetics of polymer crystallization under processing conditions. Monatshefte fur Chem 136:1119–1137CrossRefGoogle Scholar
  17. 17.
    Housmans J-W, Steenbakkers RJA, Roozemond PC, Peters GWM, Meijer HEH (2009) Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 42:5728–5740CrossRefGoogle Scholar
  18. 18.
    Menyhárd A, Varga J, Molnár G (2006) Comparison of different β-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim 83:625–630CrossRefGoogle Scholar
  19. 19.
    Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J (2012) Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim 108:613–620CrossRefGoogle Scholar
  20. 20.
    D’Haese M, Van Puyvelde P, Langouche F (2010) Effect of particles on the flow-induced crystallization of polypropylene at processing speeds. Macromolecules 43:2933–2941CrossRefGoogle Scholar
  21. 21.
    Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  22. 22.
    Avrami M (1940) Kinetics of phase change. II – Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  23. 23.
    Kolmogoroff AN (1937) K statisticheskoi teorii kristallizacii metallov. Isvest Akad Nauk SSSR Ser Math 1:335–339Google Scholar
  24. 24.
    Nakamura K, Katayama K, Amano T (1973) Some aspects of nonisothermal crystallization in polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci 17:1031–1041CrossRefGoogle Scholar
  25. 25.
    La Carrubba V, Brucato V, Piccarolo S (2002) Phenomenological approach to compare the crystallization kinetics of isotactic polypropylene and polyamide-6 under pressure. J Polym Sci Part B Polym Phys 40:153–175CrossRefGoogle Scholar
  26. 26.
    La Carrubba V, Piccarolo S, Brucato V (2007) Crystallization kinetics of iPP: influence of operating conditions and molecular parameters. J Appl Polym Sci 104:1358–1367CrossRefGoogle Scholar
  27. 27.
    Pantani R, Coccorullo I, Speranza V, Titomanlio G (2007) Morphology evolution during injection molding: effect of packing pressure. Polymer 48:2778–2790CrossRefGoogle Scholar
  28. 28.
    Lamberti G (2011) Isotactic polypropylene crystallization: analysis and modeling. Eur Polym J 47:1097–1112CrossRefGoogle Scholar
  29. 29.
    Derakhshandeh M, Mozaffari G, Doufas AK, Hatzikiriakos SG (2014) Quiescent crystallization of polypropylene: experiments and modeling. J Polym Sci Part B Polym Phys 52:1259–1275CrossRefGoogle Scholar
  30. 30.
    Menyhárd A, Bredács M, Simon G, Horváth Z (2015) Determination of nucleus density in semicrystalline polymers from nonisothermal crystallization curves. Macromolecules 150409160303008. doi: 10.1021/acs.macromol.5b00275 Google Scholar
  31. 31.
    Boyer SAE, Robinson P, Ganet P, Melis J-P, Haudin J-M (2012) Crystallization of polypropylene at high cooling rates: microscopic and calorimetric studies. J Appl Polym Sci 125:4219–4232CrossRefGoogle Scholar
  32. 32.
    Patel RM (2012) Crystallization kinetics modeling of high density and linear low density polyethylene resins. J Appl Polym Sci 124:1542–1552CrossRefGoogle Scholar
  33. 33.
    Tavichai O, Feng L, Kamal MR (2006) Crystalline spherulitic growth kinetics during shear for linear low-density polyethylene. Polym Eng Sci 46:1468–1475CrossRefGoogle Scholar
  34. 34.
    Zachmann HG, Stuart HA (1960) Schmelz- und Kristallisationserscheinungen bei makromolekularen Substanzen. Die Makromol Chemie 41:131–147CrossRefGoogle Scholar
  35. 35.
    Hillier IH (1965) Modified {Avrami} equation for the bulk crystallization kinetics spherulitic polymers. J Polym Sci Part A Polym Chem 3:3067–3078Google Scholar
  36. 36.
    Perez-Cardenas FC, Del Castillo LF, Vera-Graziano R (1991) Modified Avrami expression for polymer crystallization kinetics. J Appl Polym Sci 43:779–782CrossRefGoogle Scholar
  37. 37.
    Hinrichs V, Kalinka G, Hinrichsen G (1996) An Avrami-based model for the description of the secondary crystallization of polymers. J Macromol Sci B 35:295–302CrossRefGoogle Scholar
  38. 38.
    Van Drongelen M, Van Erp TB, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53:4758–4769CrossRefGoogle Scholar
  39. 39.
    Van Drongelen M, Roozemond PC, Troisi EM, Doufas AK, Peters GWM (2015) Characterization of the primary and secondary crystallization kinetics of a linear low-density polyethylene in quiescent- and flow conditions. Polymer 76:254–270CrossRefGoogle Scholar
  40. 40.
    Brückner S, Meille SV, Petraccone VP, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16:361–404CrossRefGoogle Scholar
  41. 41.
    Lovinger AJ, Chua JO, Gryte CC (1976) An apparatus for in situ microscopy of zone solidifying polymers. J Phys E 9:927–929CrossRefGoogle Scholar
  42. 42.
    Morrow DR, Newman BA (1968) Crystallization of low-molecular-weight polypropylene fractions. J Appl Phys 39:4944–4950CrossRefGoogle Scholar
  43. 43.
    Somani RH et al (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909CrossRefGoogle Scholar
  44. 44.
    Mezghani K, Phillips PJ (1997) The γ-phase of high molecular weight isotactic polypropylene. II: the morphology of the γ-form crystallized at 200 MPa. Polymer 38:5725–5733CrossRefGoogle Scholar
  45. 45.
    Mezghani K, Phillips PJ (1998) The γ-phase of high molecular weight isotactic polypropylene. III: the equilibrium melting point and the phase diagram. Polymer 39:3735–3744CrossRefGoogle Scholar
  46. 46.
    Angelloz C et al (2000) Crystallization of isotactic polypropylene under high pressure (γ-phase). Macromolecules 33:4138–4145CrossRefGoogle Scholar
  47. 47.
    Foresta T, Piccarolo S, Goldbeck-Wood G (2001) Competition between α and γ phases in isotactic polypropylene: effects of ethylene content and nucleating agents at different cooling rates. Polymer 42:1167–1176CrossRefGoogle Scholar
  48. 48.
    Hosier IL, Alamo RG, Esteso P, Isasi JR, Mandelkern L (2003) Formation of the α and γ polymorphs in random metallocene-propylene copolymers. Effect of concentration and type of comonomer. Macromolecules 36:5623–5636CrossRefGoogle Scholar
  49. 49.
    Cavallo D et al (2010) Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers. Macromolecules 43:10208–10212CrossRefGoogle Scholar
  50. 50.
    Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662CrossRefGoogle Scholar
  51. 51.
    Eder G, Hierzenberger P, Amorim P (2010) Pressure effects on polymer crystal nucleation. In: Workshop on polymer crystallization under conditions relevant to processing, Genova, ItalyGoogle Scholar
  52. 52.
    Ito H (1997) Modelling and numerical simulation of polymer crystallization in injection moulding process. In: PPS Europe meeting, Göteborg, SwedenGoogle Scholar
  53. 53.
    Boyer SAE, Fournier FEJ, Gandin C-A, Haudin J-M (2014) CRISTAPRESS: an optical cell for structure development in high-pressure crystallization. Rev Sci Instrum 85:013906CrossRefGoogle Scholar
  54. 54.
    Lamberti G (2011) Flow-induced crystallization during isotactic polypropylene film casting. Polym Eng Sci 51:851–861CrossRefGoogle Scholar
  55. 55.
    Schneider W, Koppl A, Berger J (1988) Non-isothermal crystallization. System of rate equations. Int Polym Process 2:151–154Google Scholar
  56. 56.
    He J, Zoller P (1994) Crystallization of polypropylene, nylon-66 and poly(ethylene terephthalate) at pressurs to 200 MPa: kinetics and characterization of products. J Polym Sci Part B Polym Phys 32:1049–1067CrossRefGoogle Scholar
  57. 57.
    Ito H et al (1995) Simulations of polymer crystallization under high pressure. Colloid Polym Sci 273:811–815CrossRefGoogle Scholar
  58. 58.
    Gitsas A, Floudas G (2008) Pressure dependence of the glass transition in atactic and isotactic polypropylene. Macromolecules 41:9423–9429CrossRefGoogle Scholar
  59. 59.
    Cavallo D et al (2010) Continuous cooling curves diagrams of propene/ethylene random copolymers. The role of ethylene counits in mesophase development. Macromolecules 43:2890–2896CrossRefGoogle Scholar
  60. 60.
    Gahleitner M et al (2005) Propylene-ethylene random copolymers: comonomer effects on crystallinity and application properties. J Appl Polym Sci 95:1073–1081CrossRefGoogle Scholar
  61. 61.
    Van der Beek MHE, Peters GWM, Meijer HEH (2006) Influence of shear flow on the specific volume and the crystalline morphology of isotactic polypropylene. Macromolecules 39:1805–1814CrossRefGoogle Scholar
  62. 62.
    Balzano L, Rastogi S, Peters GWM (2008) Flow induced crystallization in isotactic polypropylene – 1,3 : 2,4-bis(3,4-dimethylbenzylidene)sorbitol blends: implications on morphology of shear and phase separation. Macromolecules 41:399–408CrossRefGoogle Scholar
  63. 63.
    Lamberti G (2004) A direct way to determine iPP density nucleation from DSC isothermal measurements. Polym Bull 52:443–449CrossRefGoogle Scholar
  64. 64.
    Housmans J-W, Gahleitner M, Peters GWM, Meijer HEH (2009) Structure–property relations in molded, nucleated isotactic polypropylene. Polymer 50:2304–2319CrossRefGoogle Scholar
  65. 65.
    Mathot V et al (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45CrossRefGoogle Scholar
  66. 66.
    Van Herwaarden S et al (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52CrossRefGoogle Scholar
  67. 67.
    Iervolino E et al (2011) Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52CrossRefGoogle Scholar
  68. 68.
    De Santis F, Adamovsky SA, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031CrossRefGoogle Scholar
  69. 69.
    Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881CrossRefGoogle Scholar
  70. 70.
    Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53:277–282CrossRefGoogle Scholar
  71. 71.
    Housmans J, Balzano L, Santoro D, Peters G, Meijer H (2009) A design to study flow induced crystallization in a multipass rheometer. Int Polym Process 24(2):185–197CrossRefGoogle Scholar
  72. 72.
    Balzano L et al (2010) Dynamics of fibrillar precursors of shishes as a function of stress. J Phys Conf Ser 14:012005–1/7Google Scholar
  73. 73.
    Ma Z, Balzano L, Portale G, Peters GWM (2013) Short-term flow induced crystallization in isotactic polypropylene: how short is short? Macromolecules 46:9249–9258CrossRefGoogle Scholar
  74. 74.
    Van der Beek MHE, Peters GWM, Meijer HEH (2005) The influence of cooling rate on the specific volume of isotactic poly(propylene) at elevated pressures. Macromol Mater Eng 290:443–455CrossRefGoogle Scholar
  75. 75.
    Brückner S, Phillips PJ, Mezghani K, Meille SV (1997) On the crystallization of γ-isotactic polypropylene: a high pressure study. Macromol Rapid Commun 18:1–7CrossRefGoogle Scholar
  76. 76.
    Alamo RG, Ghosal A, Chatterjee J, Thompson KL (2005) Linear growth rates of random propylene ethylene copolymers. The changeover from γ dominated growth to mixed (α+γ) polymorphic growth. Polymer 46:8774–8789CrossRefGoogle Scholar
  77. 77.
    Van der Beek MHE, Peters GWM, Meijer HEH (2005) A dilatometer to measure the influence of cooling rate and melt shearing on specific volume. Int Polym Process 20:111–120CrossRefGoogle Scholar
  78. 78.
    Forstner R, Peters GWM, Meijer HEH (2009) A novel dilatometer for PVT measurements of polymers at high cooling – and shear rates. Int Polym Process 24:114–121CrossRefGoogle Scholar
  79. 79.
    Forstner R, Peters GWM, Rendina C, Housmans J-W, Meijer HEH (2009) Volumetric rheology of polymers: the influence of shear flow, cooling rate, and pressure on the specific volume of iPP and P/E random copolymers. J Therm Anal Calorim 98:683–691CrossRefGoogle Scholar
  80. 80.
    Zhang L, Van Drongelen M, Alfonso GC, Peters GWM (2015) The effect of pressure pulses on isotactic polypropylene crystallization. Eur Polym J 71:185–195CrossRefGoogle Scholar
  81. 81.
    Bassett DC, Hodge AM (1981) On the morphology of melt-crystallized polyethylene I. Lamellar profiles. Proc R Soc A Math Phys Eng Sci 377:25–37CrossRefGoogle Scholar
  82. 82.
    Bassett DC, Hodge AM, Olley RH (1981) On the morphology of melt-crystallized polyethylene II. Lamellae and their crystallization conditions. Proc R Soc A Math Phys Eng Sci 377:39–60CrossRefGoogle Scholar
  83. 83.
    Bassett DC, Hodge AM (1981) On the morphology of melt-crystallized polyethylene. III. Spherulitic organization. Proc R Soc A Math Phys Eng Sci 377:61–71CrossRefGoogle Scholar
  84. 84.
    Piccarolo S (1992) Morphological changes in isotactic polypropylene as a function of cooling rate. J Macromol Sci 31:501–511CrossRefGoogle Scholar
  85. 85.
    Kolb R, Wutz C, Stribeck N, Von Krosigk G, Riekel C (2001) Investigation of secondary crystallization of polymers by means of microbeam X-ray scattering. Polymer 42:5257–5266CrossRefGoogle Scholar
  86. 86.
    Akpalu Y et al (1999) Structure development during crystallization of homogeneous copolymers of ethene and 1-octene: time resolved synchrotron X-ray and SALS measurements. Macromolecules 32:765–770CrossRefGoogle Scholar
  87. 87.
    Alizadeh A et al (1999) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules 32:6221–6235CrossRefGoogle Scholar
  88. 88.
    Vanden Eynde S, Mathot VBF, Koch MHJ, Reynaers H (2000) Thermal behaviour and morphology of homogeneous ethylene-1-octene copolymers with high comonomer contents. Polymer 41:4889–4900CrossRefGoogle Scholar
  89. 89.
    Wilfong DL, Knight GW (1990) Crystallization mechanisms for LLDPE and its fractions. J Polym Sci Part B Polym Phys 28:861–870CrossRefGoogle Scholar
  90. 90.
    Jokela K et al (2001) Scattering, and wide-angle X-ray scattering on homogeneous and heterogeneous ethylene-α-copolymers. J Polym Sci Part B Polym Phys 39:1860–1875CrossRefGoogle Scholar
  91. 91.
    Rabiej S (2005) The influence of side branches on the structure of crystalline phase in ethylene-1-alkene copolymers. Eur Polym J 41:393–402CrossRefGoogle Scholar
  92. 92.
    Tarasova E, Poltimae T, Krumme A, Lehtinen A, Viikna A (2009) Study of very low temperature crystallization process in ethylene/alpha-olefin copolymers. Macromol Symp 282:175–184CrossRefGoogle Scholar
  93. 93.
    Hoffman JD, Miller RL (1997) Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212CrossRefGoogle Scholar
  94. 94.
    Mamum A, Chen X, Alamo RG (2014) Interplay between a strong memory effect of crystallization and liquid-liquid phase separation in melts of broadly distributed ethylene-1-alkene copolymers. Macromolecules 47:7958–7970CrossRefGoogle Scholar
  95. 95.
    Mathot VBF, Pijpers MFJ (1983) Heat capacity, enthalpy and crystallinity for a linear polyethylene obtained by (DSC). J Therm Anal Calorim 28:349–358CrossRefGoogle Scholar
  96. 96.
    Mathot VBF (1984) Temperature dependence of some thermodynamic functions for amorphous and semi-crystalline polymers. Polymer 25:579–599CrossRefGoogle Scholar
  97. 97.
    Goderis B, Reynaers H, Koch MHJ (2002) Primary and secondary crystallization in a homogeneous ethylene-1-octene copolymer: crystallinity heterogeneity studied by SAXS. Macromolecules 35:5840–5853CrossRefGoogle Scholar
  98. 98.
    Søndergaard K, Minà P, Piccarolo S (1997) Wide-range cooling characteristics of a selected isotactic polypropylene. J Macromol Sci Part B Phys 36:733–747CrossRefGoogle Scholar
  99. 99.
    Bernland KM (2010) Nucleating and clarifying polymers. Polymer. doi: 10.3929/ethz-a-006371353 Google Scholar
  100. 100.
    Acierno S, van Puyvelde P (2005) Effect of short chain branching upon the crystallization of model polyamides-11. Polymer 46:10331–10338CrossRefGoogle Scholar
  101. 101.
    Debye P, Bueche AM (1949) Scattering by an inhomogeneous solid. J Appl Phys 20:518–525CrossRefGoogle Scholar
  102. 102.
    Stein RS, Rhodes MB (1960) Photographic light scattering by polyethylene films. J Appl Phys 31:1873–1884CrossRefGoogle Scholar
  103. 103.
    Clough SB, Stein RS, Picot C (1971) Low-angle light-scattering equations for polymer spherulites. J Polym Sci Part A-2 Polym Phys 9:1147–1148CrossRefGoogle Scholar
  104. 104.
    Samuels RJ (1971) Small-angle light scattering from optically anisotropic spheres and disks. Theory and experimental verification. J Polym Sci Part A-2 Polym Phys 9:2165–2246CrossRefGoogle Scholar
  105. 105.
    Samuels RJ (1974) Small-angle light scattering and crystallization processes in solid polymers films. J Polym Sci Polym Phys Ed 12:1417–1439CrossRefGoogle Scholar
  106. 106.
    Haudin JM (1986) Optical properties of polymers. In: Meeten GH, Elsevier Applied Science, EssexGoogle Scholar
  107. 107.
    Ding Z, Spruiell JE (1996) An experimental method for studying nonisothermal crystallization of polymers at very high cooling rates. J Polym Sci Part B Polym Phys 34:2783–2803CrossRefGoogle Scholar
  108. 108.
    Patki RP, Philips PJ (2008) Crystallization kinetics of linear polyethylene: the maximum in crystal growth rate-temperature dependence. Eur Polym J 44:534–541CrossRefGoogle Scholar
  109. 109.
    Wagner J, Philips PJ (2001) The mechanism of crystallization of linear polyethylene, and its copolymers with octene, over a wide range of supercoolings. Polymer 42:8999–9013CrossRefGoogle Scholar
  110. 110.
    Derakhshandeh M et al (2014) Quiescent and shear-induced crystallization of polyprophylenes. Rheol Acta 53:519–535CrossRefGoogle Scholar
  111. 111.
    Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Introduction to heat transfer. Wiley, New YorkGoogle Scholar
  112. 112.
    Roozemond PC, van Drongelen M, Peters GWM (2016) Modeling fow-induced crystallization. Adv Polym Sci. doi: 10.1007/12_2016_351 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. van Drongelen
    • 1
  • P. C. Roozemond
    • 2
  • G. W. M. Peters
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringMaterials Technology Institute, Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.DSM Material Science CenterGeleenThe Netherlands

Personalised recommendations