Skip to main content

Continuum Mechanical Description of an Extrinsic and Autonomous Self-Healing Material Based on the Theory of Porous Media

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 273))

Abstract

Polymers and polymeric composites are used in many engineering applications, but these materials can spontaneously lose structural integrity as a result of microdamage caused by stress peaks during service. This internal microdamage is hard to detect and nearly impossible to repair. To extend the lifetime of such materials and save maintenance costs, self-healing mechanisms can be applied that are able to repair internal microdamage during the usual service load. This can be realized, for example, by incorporating microcapsules filled with monomer and dispersed catalysts into the polymeric matrix material. If a crack occurs, the monomer flows into the crack, reacts with the catalysts, and closes the crack.

This contribution focuses on the development of a thermodynamically consistent constitutive model that is able to describe the damage and healing behavior of a microcapsule-based self-healing material. The material under investigation is an epoxy matrix with microencapsulated dicyclopentadiene healing agents and dispersed Grubbs’ catalysts. The simulation of such a multiphase material is numerically very expensive if the microstructure is to be completely resolved. To overcome this, a homogenization technique can be applied to decrease the computational costs of the simulation. Here, the theoretical framework is based on the theory of porous media, which is a macroscopic continuum mechanical homogenization approach. The developed five-phase model consists of solid matrix material with dispersed catalysts, liquid healing agents, solidified healed material, and gas phase. A discontinuous damage model is used for the description of the damage behavior, and healing is simulated by a phase transition between the liquid-like healing agents and the solidified healed material. Applicability of the developed model is shown by means of numerical simulations of the global damage and healing behavior of a tapered double cantilever beam, as well as simulations of the flow behavior of the healing agents at the microscale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. van der Zwaag S (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht

    Book  Google Scholar 

  2. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  3. van der Zwaag S (2010) Routes and mechanisms towards self healing behaviour in engineering materials. Bull Polish Acad Sci 58:227–236

    Google Scholar 

  4. Gosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. In: Gosh SK (ed) Self-healing materials. Wiley-VCH, Weinheim, pp 1–28

    Google Scholar 

  5. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430

    Article  CAS  Google Scholar 

  6. Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. concept, realization and outlook: a review. Express Polym Lett 2:238–250

    Article  CAS  Google Scholar 

  7. Grigoleit S (2010) Überblick über Selbstheilende Materialien. Technical report, Frauenhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen (INT)

    Google Scholar 

  8. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  9. Beres W, Koul AK, Thamburaj R (1997) A tapered double-cantilever-beam specimen designed for constant-K testing at elevated temperatures. J Test Eval 25:536–542

    Article  Google Scholar 

  10. Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42:372–379

    Article  CAS  Google Scholar 

  11. Brown EN (2011) Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its applictaion to the quantification of self-healing. J Strain Anal Eng Des 46:167–186

    Article  Google Scholar 

  12. Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent based self-healing systems. Adv Funct Mater 18:1898–1904

    Article  CAS  Google Scholar 

  13. Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A, Binder WH (2014) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23:045001

    Article  Google Scholar 

  14. Raimondo M, Guadagno L (2013) Healing efficiency of epoxy-based materials for structural applications. Polym Compos 34:1525–1532

    Article  CAS  Google Scholar 

  15. Barbero EJ, Ford KJ (2007) Characterization of self-healing fiber-reinforced polymer-matrix composite with distributed damage. J Adv Mater 39:20–27

    CAS  Google Scholar 

  16. Mergheim J, Steinmann P (2013) Phenomenological modelling of self-healing polymers based on integrated healing agents. Comput Mech. doi:10.1007/s00466-013-0840-0

    Google Scholar 

  17. Schimmel EC, Remmers JJC (2006) Development of a constitutive model for self-healing materials. Technical report, Delft Aerospace Computational Science

    Google Scholar 

  18. Voyiadjis GZ, Shojaei A, Li G, Kattan PI (2012) A theory of anisotropic healing and damage mechanics of materials. Proc R Soc Lond A 468:163–183

    Article  Google Scholar 

  19. Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27:1025–1044

    Article  CAS  Google Scholar 

  20. Henson GM (2012) Continuum modeling of synthetic microvascular materials. In: Proceedings of the 53rd AIAA structures, dynamics and materials conference, Honolulu, Hawaii. doi: 10.2514/6.2012-2001

    Google Scholar 

  21. Maiti S, Shankar C, Geubelle PH, Kieffer J (2006) Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers. J Eng Mater Technol 128:595–602

    Article  CAS  Google Scholar 

  22. Sanada K, Itaya N, Shindo Y (2008) Self-healing of interfacial debonding in fiber-reinforced polymers and effect of microstructure on strength recovery. Open Mech Eng J 2:97–103

    Article  CAS  Google Scholar 

  23. Zemskov SV, Jonkers HM, Vermolen FJ (2011) Two analytical models for the probability characteristics of a crack hitting encapsulated particles: application to self-healing materials. Comput Mater Sci 50:3323–3333

    CAS  Google Scholar 

  24. Yagimli B, Lion A (2011) Experimental investigations and material modelling of curing processes under small deformations. Z Angew Math Mech 91:342–359

    Article  Google Scholar 

  25. de Boer R (2000) Theory of porous media. Springer, Berlin

    Book  Google Scholar 

  26. Bluhm J (2002) Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers W, Bluhm J (eds) Porous media. Springer, Berlin, pp 87–118

    Chapter  Google Scholar 

  27. de Boer R, Ehlers W (1986) Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Technical report, Universität - Gesamthochschule Essen

    Google Scholar 

  28. Ehlers W (1996) Grundlegende Konzepte in der Theorie Poröser Medien. Tech Mech 16:63–76

    Google Scholar 

  29. Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media. Springer, Berlin, pp 3–86

    Chapter  Google Scholar 

  30. Ehlers W (2012) Poröse Medien - ein kontinuummechanisches Modell auf der Basis der Mischungstheorie. Nachdruck der Habilitationsschrift aus dem Jahr 1989, Universität - Gesamthochschule Essen

    Google Scholar 

  31. Acartürk AY (2009) Simulation of charged hydrated porous materials. PhD thesis, Universität Stuttgart

    Google Scholar 

  32. Truesdell C (1984) Rational thermodynamics, 2nd edn. Springer, New York

    Book  Google Scholar 

  33. Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  CAS  Google Scholar 

  34. Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735

    Article  CAS  Google Scholar 

  35. Kachanov LM (1958) Time of the rupture process under creep conditions. Izvestija Akademii Nauk Sojuza Sovetskich Socialisticeskich Republiki (SSSR) Otdelenie Techniceskich Nauk (Moskra) 8:26–31

    Google Scholar 

  36. Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol 9:689–702

    Article  Google Scholar 

  37. Humphrey J, Rajagopal K (2002) A constrained mixture model for growth and remodelling of soft tissues. Math Models Methods Appl Sci 12:407–430

    Article  Google Scholar 

  38. Rodriguez E, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467

    Article  CAS  Google Scholar 

  39. Bluhm J, Specht S, Schröder J (2014) Modeling of self-healing effects in polymeric composites. Arch Appl Mech 85:1469–1481. doi:10.1007/s00419-014-0946-7

    Article  Google Scholar 

  40. Ehlers W (1989) On the thermodynamics of elasto-plastic porous media. Arch Mech 41:73–93

    Google Scholar 

  41. Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215

    Article  Google Scholar 

  42. Miehe C (1988) Zur numerischen behandlung thermomechanischer Prozesse. PhD thesis, Universität Hannover

    Google Scholar 

  43. Bluhm J, Ricken T, Bloßfeld M (2011) Ice formation in porous media. In: Markert B (ed) Advances in extended & multifield theories for continua, vol 59, Lecture notes in applied and computational mechanics. Springer, Berlin, pp 153–174

    Chapter  Google Scholar 

  44. Michalowski RL, Zhu M (2006) Frost heave modelling using porosity rate function. Int J Numer Anal Methods Geomech 30:703–722

    Article  Google Scholar 

  45. Taylor RL (2008) FEAP – a finite element analysis program, Version 8.2. Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA

    Google Scholar 

  46. Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self healing materials. Compos Sci Technol 68:978–986

    Article  CAS  Google Scholar 

  47. Alzari V, Nuvoli D, Sanna D, Ruiu A, Mariani A (2015) Effect of limonene on the frontal ring opening metathesis polymerization of dicyclopentadiene. J Polym Sci A Polym Chem. doi:10.1002/pola.27776

    Google Scholar 

Download references

Acknowledgement

This work was supported by the German Research Society (DFG) within the Priority Program SPP 1568 “Design and Generic Principles of Self-healing Materials” under the grant number BL 417/7-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Specht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Specht, S., Bluhm, J., Schröder, J. (2015). Continuum Mechanical Description of an Extrinsic and Autonomous Self-Healing Material Based on the Theory of Porous Media. In: Hager, M., van der Zwaag, S., Schubert, U. (eds) Self-healing Materials. Advances in Polymer Science, vol 273. Springer, Cham. https://doi.org/10.1007/12_2015_338

Download citation

Publish with us

Policies and ethics