Skip to main content

Strain-Induced Crystallization in Natural Rubber

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 277))

Abstract

Rather than an exhaustive review of the numerous reported studies of strain-induced crystallization (SIC) in natural rubber, this chapter discusses some aspects of the physical mechanisms involved that we think are fundamental for understanding crystallization kinetics and processes such as reinforcement. We mainly focus on the rich information that can be retrieved from X-ray diffraction studies. In particular, we show how easily knowledge of the strain state of the amorphous fraction can be obtained quantitatively from X-ray diffraction patterns and how informative that knowledge is. Considering, for instance, the hardening sequence observed during stretching, it is clear that no prediction of the stress level can be made without knowing both the crystalline content and the average elongation of the remaining molten chains. Particular emphasis is put on the strain relaxation effect that accompanies SIC in both static and dynamic conditions. This fundamental effect is described in the theory of SIC developed by Flory, which we present from an innovative perspective to emphasize its deep analogy to the liquid–gas phase transformation. In spite of the fact that Flory's theory has only been qualitatively verified experimentally and is limited to static and equilibrium conditions, it grasps the essential of the driving mechanisms at play. Some simple experiments are presented within this framework that should enlighten the most fundamental aspects of SIC. The crystallization kinetics underlies most aspects of SIC and is discussed in detail. Tensile impact tests, which allow conceptually simple but very informative experiments, are treated first. We try to show that the time dependence of the crystalline content is tentatively related to the mechanism of strain relaxation in a simple manner. Knowledge of crystallization kinetics is also essential for explaining the hysteretic behavior observed in dynamic conditions. Similarities and/or differences between dynamic and static SIC are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Katz JR (1925) Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 19:410–416

    Article  Google Scholar 

  2. Flory PJ (1947) Thermodynamics of crystallization in high polymers. I Crystallization induced by stretching. J Chem Phys 15:397–408

    Article  CAS  Google Scholar 

  3. Huneau B (2011) Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem Technol 84:425–452

    Article  CAS  Google Scholar 

  4. Toki S (2014) The effect of strain-induced crystallization (SIC) on the physical properties of natural rubber (NR). In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. WoodHead/Elsevier, Cambridge

    Google Scholar 

  5. Miyamoto Y, Yamao H, Sekimoto K (2003) Crystallization and melting of polyisoprene rubber under uniaxial deformation. Macromolecules 36:6462–6471

    Article  CAS  Google Scholar 

  6. Oono R, Miyasaka K, Ishikawa K (1973) Crystallization kinetics of biaxially stretched natural rubber. J Polym Sci Polym Phys 11:1477–1488

    Article  CAS  Google Scholar 

  7. Pannier Y, Proudhon H, Mocuta C, Thiaudière D, Cantournet S (2011) In situ multi-axial loading frame to probe elastomers using X-ray scattering. J Synchrotron Radiat 18:907–911

    Article  Google Scholar 

  8. Beurrot S, Huneau B, Verron E (2011) Strain-induced crystallization of natural rubber subjected to biaxial loading conditions as revealed by X-ray diffraction. In: Jerrams S, Murphy N (eds) Constitutive models for rubber VII: Proceedings of the 7th European conference on constitutive models for rubber, ECCMR, Dublin, Ireland, 20_23 Sept 2011. CRC/Taylor & Francis, Boca Raton, pp 23–28

    Google Scholar 

  9. Klug HP, Alexander LE (1959) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  10. Langford JI, Wilson JC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  11. Kakudo M, Kasai N (1972) X-ray diffraction by polymers. Kodansha Ltd/Elsevier, Tokyo/Amsterdam

    Google Scholar 

  12. Wendorff JH (1982) The structure of amorphous polymers. Polymer 23:543–557

    Article  CAS  Google Scholar 

  13. Simard GL, Warren BE (1936) X-ray study of amorphous rubber. J Am Chem Soc 58:507–509

    Article  CAS  Google Scholar 

  14. Wang CS, Yeh GS (1978) DRDF analysis of wide-angle X-ray scattering of natural rubber. J Macromol Sci Phys B15:107–118

    Article  CAS  Google Scholar 

  15. Yeh GSY (1980) Current concepts of morphology of amorphous polymers. Polym Sci USSR 21:2686–2703

    Article  Google Scholar 

  16. Rajkumar G, Squire JM, Arnott S (2006) A new structure for crystalline natural rubber. Macromolecules 39:7004–7014

    Article  CAS  Google Scholar 

  17. Che J, Burger C, Toki S, Amnuaypornsri S, Sakdapipanich J, Rong L, Hsiao SB (2013) Crystal and crystallite structure of natural rubber and synthetic cis-1,4- polyisoprene by a new two dimensional wide-angle X-ray diffraction simulation method. I. Strain-induced crystallization. Macromolecules 46:4520–4528

    Article  CAS  Google Scholar 

  18. Che J, Burger C, Toki S, Amnuaypornsri S, Sakdapipanich J, Rong L, Hsiao SB (2013) Crystal and crystallite structure of natural rubber and peroxide vulcanized natural rubber by a two dimensional wide-angle X-ray diffraction simulation method. II. Strain-induced crystallization versus temperature-induced crystallization. Macromolecules 46:9712–9721

    Article  CAS  Google Scholar 

  19. Immirzi A, Tedesco C, Monaco G, Tonelli AE (2005) Crystal structure and melting entropy of natural rubber. Macromolecules 38:1223–1231

    Article  CAS  Google Scholar 

  20. Benedetti E, Corradini P, Pedone C (1975) Conformational isomorphism in crystalline 1,4-cis-polyisoprene. Eur Polym J 11:585–587

    Article  CAS  Google Scholar 

  21. De Rosa C, Auriemma F (2014) Crystals and crystallinity in polymers. Wiley, Hoboken

    Google Scholar 

  22. Trabelsi S, Albouy P-A, Rault J (2003) Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 36:7624–7639

    Article  CAS  Google Scholar 

  23. Valentín JL, Psadas P, Fernández-Torres A, Malmierca MA, Gonzáles L, Chassé W, Saalwächter K (2010) Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 43:4210–4222

    Article  Google Scholar 

  24. Mitchell GR (1984) A wide-angle X-ray study of the development of molecular orientation in crosslinked natural rubber. Polymer 25:1562–1572

    Article  CAS  Google Scholar 

  25. Nobbs JH, Bower DI (1978) Orientation averages for drawn rubber networks. Polymer 19:1100–1103

    Article  CAS  Google Scholar 

  26. Deas HD (1952) The diffraction of X-rays by a random assemblage of molecules having partial alignment. Acta Crystallogr 5:542–546

    Article  Google Scholar 

  27. Michell GR, Windle AH (1982) Conformational analysis of oriented non-crystalline polymers using wide-angle X-ray scattering. Colloid Polym Sci 260:754–761

    Article  Google Scholar 

  28. Albouy P-A, Vieyres A, Pérez-Aparicio R, Sanséau O, Sotta P (2014) The impact of strain-induced crystallization on strain during mechanical cycling of cross-linked natural rubber. Polymer 55:4022–4031

    Article  CAS  Google Scholar 

  29. Vieyres A, Pérez-Aparicio R, Albouy P-A, Sanséau O, Saalwächter K, Long DR, Sotta P (2013) Sulfur-cured natural rubber elastomer networks: correlating cross-link density, chain orientation, and mechanical response by combined techniques. Macromolecules 46:889–899

    Article  CAS  Google Scholar 

  30. Albouy P-A, Guillier G, Petermann D, Vieyres A, Sanséau O, Sotta P (2012) A stroboscopic X-ray apparatus for the study of the kinetics of strain-induced crystallization in natural rubber. Polymer 53:3313–3324

    Article  CAS  Google Scholar 

  31. Philips PJ, Vatansever N (1987) Regime transitions in fractions of cis-polyisoprene. Macromolecules 20:2138–2146

    Article  Google Scholar 

  32. Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y (2000) Characterization of fatty acids linked to natural rubber – role of linked fatty acids on crystallization of the rubber. Polymer 41:7483–7488

    Article  CAS  Google Scholar 

  33. Andrews EH (1972) The influence of morphology on the mechanical properties of crystalline polymers. Pure Appl Chem 31:91–112

    Article  CAS  Google Scholar 

  34. Yamamoto M, White JL (1971) Theory of deformation and strain-induced crystallization of an elastomeric network polymer. J Polym Sci Polym Chem 9:1399–1415

    CAS  Google Scholar 

  35. Wu WL (1978) A thermodynamic approach to the stress-induced crystallization in cross-linked rubbers. J Polym Sci Polym Phys 16:1671–1683

    Article  CAS  Google Scholar 

  36. Gaylord RJ (1976) A theory of stress-induced crystallization of crosslinked polymeric networks. J Polym Sci Polym Phys 14:1827–1837

    Article  CAS  Google Scholar 

  37. Arlman JJ, Goppel JM (1951) On the degree of crystallinity in natural rubber. Appl Sci Res 2:1–8

    Article  Google Scholar 

  38. Luch D, Yeh GSY (1973) Strain-induced crystallization of natural rubber. III. Reexamination of axial-stress changes during oriented crystallization of natural rubber vulcanizates. J Polym Sci Polym Phys 11:467–486

    Article  CAS  Google Scholar 

  39. Gent AN (1954) Crystallization and the relaxation of stress in stretched natural rubber vulcanizates. Trans Faraday Soc 50:521–533

    Article  CAS  Google Scholar 

  40. Poompradub S, Tosaka M, Kojiya S, Ikeda Y, Toki S, Sics I, Hsiao B (2005) Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J Appl Phys 97:103529

    Article  Google Scholar 

  41. Kawai H (1975) Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials. Rheol Acta 14:27–47

    Article  CAS  Google Scholar 

  42. Candau N, Chazeau L, Chenal J-M, Gauthier C, Ferreira J, Munch E, Rochas C (2012) Characteristic time of strain induced crystallization of crosslinked natural rubber. Polymer 53:2540–2543

    Article  CAS  Google Scholar 

  43. Mitchell JC, Meir DJ (1968) Rapid stress-induced crystallization in natural rubber. J Polym Sci Polym Chem 6:1689–1703

    CAS  Google Scholar 

  44. Tosaka M, Senoo K, Sato K, Noda M, Ohta N (2012) Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene. Polymer 53:864–872

    Article  CAS  Google Scholar 

  45. Brüning K, Schneider K, Roth SV, Heinrich G (2012) Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45:7914–7919

    Article  Google Scholar 

  46. Trabelsi S, Albouy P-A, Rault J (2002) Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 35:10054–10061

    Article  CAS  Google Scholar 

  47. Brüning K, Schneider K, Roth SV, Heinrich G (2015) Kinetics of strain-induced crystallization in natural rubber: a diffusion-controlled rate law. Polymer 72:52–58

    Article  Google Scholar 

  48. Landau LD, Lifchitz EM (1967) Statistical physics. Nauka, Moscow

    Google Scholar 

  49. Treloar LRG (1975) The physics of rubber elasticity. Clarendon, Oxford, p 124

    Google Scholar 

  50. Toki S, Fujimaki T, Okuyama M (2000) Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer 41:5423–5429

    Article  CAS  Google Scholar 

  51. Toki S, Sics I, Ran S, Liu L, Hsiao BS (2003) Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. Polymer 44:6003–6011

    Article  CAS  Google Scholar 

  52. Tosaka M, Kohjiya S, Murakami S, Poompradub S, Ikeda Y, Toki S, Sics I, Hsiao B (2004) Effect of network-chain length on strain-induced crystallization of NR and IR vulcanizates. Rubber Chem Technol 77:711–723

    Article  CAS  Google Scholar 

  53. Ikeda Y, Yasuda Y, Hijikata K, Tosaka M, Kohjiya S (2008) Comparative study of strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 41:5876–5884

    Article  CAS  Google Scholar 

  54. Albouy P-A, Marchal J, Rault J (2006) Chain orientation in natural rubber, part I: the inverse yielding effect. Eur Phys J E17:247–259

    Google Scholar 

  55. Tosaka M, Murakami S, Poompradub S, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao B (2004) Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 37:3299–3309

    Article  CAS  Google Scholar 

  56. Chenal J-M, Chazeau L, Guy L, Bomal Y, Gauthier C (2007) Molecular weight between physical entanglements in natural rubber: a critical parameter during strain-induced crystallization. Polymer 48:1042–1046

    Article  CAS  Google Scholar 

  57. Candau N, Laghmach R, Chazeau L, Chenal J-M, Gauthier C, Biben T, Munch E (2014) Strain-induced crystallization of natural rubber and cross-link densities heterogeneities. Macromolecules 47:5815–5824

    Article  CAS  Google Scholar 

  58. Amran B, Bokobza L, Queslel J-P, Monnerie L (1986) Fourier-transform infra-red dichroism study of molecular orientation in synthetic high cis-1,4-polyisoprene and in natural rubber. Polymer 27:877–882

    Article  Google Scholar 

  59. Tosaka M, Kohjiya S, Ikeda Y, Toki S, Hsia B (2010) Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber. Polym J 42:474–481

    Article  CAS  Google Scholar 

  60. Sotta P (1998) Local order and induced orientation in PDMS model networks, studied by 2H NMR. Macromolecules 31:3872–3879

    Article  CAS  Google Scholar 

  61. Rault J, Marchal J, Judenstein P, Albouy P-A (2006) Chain orientation in natural rubber, part II: 2H-NMR study. Eur Phys J E21:243–261

    Google Scholar 

  62. Candau N, Laghmach R, Chazeau L, Chenal J-M, Gauthier C, Biben T, Munch E (2015) Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber. Eur Polym J 64:244–252

    Article  CAS  Google Scholar 

  63. Pérez-Aparicio R, Vieyres A, Albouy P-A, Sanséau O, Vanel L, Long DR, Sotta P (2013) Reinforcement in natural rubber elastomer nanocomposites: breakdown of entropic elasticity. Macromolecules 46:8964–8972

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Sotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albouy, PA., Sotta, P. (2015). Strain-Induced Crystallization in Natural Rubber. In: Auriemma, F., Alfonso, G., de Rosa, C. (eds) Polymer Crystallization II. Advances in Polymer Science, vol 277. Springer, Cham. https://doi.org/10.1007/12_2015_328

Download citation

Publish with us

Policies and ethics