Skip to main content

Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents

  • Chapter
  • First Online:
Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 271))

Abstract

Coating with polyelectrolyte multilayers has become a generic way to functionalize a variety of materials. In particular, the layer-by-layer (LbL) technique allows the coating of solid surfaces to give them several functionalities, including controlled release of bioactive agents. At present there are a large number of applications of the LbL technique; however, it is still little explored in the area of textiles. In this review we present an overview of LbL for textile materials made from synthetic or natural fibers. More specifically, LbL is presented as a method for obtaining new bioactive cotton (as in cellulosic fibers) for potential application in the medical field. We also review recent progress in the embedding of active agents in adsorbed multilayers as a novel way to provide the system with a “reservoir” where bioactive agents can be loaded for subsequent release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gouveia IC, Sa D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124(2):1352–1358

    Article  CAS  Google Scholar 

  2. Gouveia IC (2012) Synthesis and characterization of a microsphere-based coating for textiles with potential as an in situ bioactive delivery system. Polym Adv Technol 23(3):350–356

    Article  CAS  Google Scholar 

  3. Caldeira E et al (2013) Biofunctionalization of cellulosic fibers with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiellapneumoniae. J Biotechnol 168(4):426–435

    Article  CAS  Google Scholar 

  4. Nogueira F et al (2014) Covalent modification of cellulosic-based textiles: a new strategy to obtain antimicrobial properties. Biotechnol Bioprocess Eng 19(3):526–533

    Article  CAS  Google Scholar 

  5. Singh R et al (2005) Antimicrobial activity of some natural dyes. Dyes Pigments 66(2):99–102

    Article  CAS  Google Scholar 

  6. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72

    Article  CAS  Google Scholar 

  7. Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: natural fiber composites, anti-microbial, and flame-retardant fabrics. Proc Inst of Mech Eng L J Mater Des Appl 223(2):91–102

    Article  Google Scholar 

  8. Chang SC et al (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53(10):3805–3812

    Article  CAS  Google Scholar 

  9. Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436

    Google Scholar 

  10. Gowri S et al (2010) Polymer nanocomposites for multifunctional finishing of textiles – a review. Text Res J 80(13):1290–1306

    Article  CAS  Google Scholar 

  11. MazeyarGashti FA, Song G, Kiumarsi A (2012) Characterization of nanocomposite coating on textiles: a brief review on microscopic technology. Curr Microsc Contrib Adv Sci Technol 2:1424–1437

    Google Scholar 

  12. Lee H et al (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623

    Article  CAS  Google Scholar 

  13. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2):831–835

    Article  Google Scholar 

  14. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  15. Lvov Y et al (1999) A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids Surf A Physicochem Eng Asp 146(1–3):337–346

    Article  CAS  Google Scholar 

  16. Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63(9):822–836

    Article  CAS  Google Scholar 

  17. Picart C et al (2001) Determination of structural parameters characterizing thin films by optical methods: a comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. J Chem Phys 115(2):1086–1094

    Article  CAS  Google Scholar 

  18. Li Y, Wang X, Sun JQ (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41(18):5998–6009

    Article  CAS  Google Scholar 

  19. Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40(1):19–29

    Article  CAS  Google Scholar 

  20. de Villiers MM et al (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715

    Article  CAS  Google Scholar 

  21. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114

    Article  CAS  Google Scholar 

  22. Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1):78–86

    Article  CAS  Google Scholar 

  23. Caruso F et al (2000) Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir 16(23):8932–8936

    Article  CAS  Google Scholar 

  24. Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158(1):2–14

    Article  CAS  Google Scholar 

  25. Mano JF et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  CAS  Google Scholar 

  26. Onda M et al (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51(2):163–167

    Article  Google Scholar 

  27. Onda M et al (1996) Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. J Ferment Bioeng 82(5):502–506

    Article  CAS  Google Scholar 

  28. Lvov Y et al (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin a and glycogen. Thin Solid Films 284:797–801

    Article  Google Scholar 

  29. Caruso F et al (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing.2. Langmuir 13(13):3427–3433

    Article  CAS  Google Scholar 

  30. Cai P et al (2013) Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids Surf A Physicochem Eng Asp 434:110–117

    Article  CAS  Google Scholar 

  31. Divyalakshmi TV et al (2013) Subpicomolar sensing of hydrogen peroxide with ovalbumin-embedded chitosan/polystyrene sulfonate multilayer membrane. Anal Biochem 440(1):49–55

    Article  CAS  Google Scholar 

  32. Guillot R et al (2013) The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 34(23):5737–5746

    Article  CAS  Google Scholar 

  33. Anandhakumar S, Raichur AM (2013) Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater 9(11):8864–8874

    Article  CAS  Google Scholar 

  34. Ladam G et al (2001) Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17(3):878–882

    Article  CAS  Google Scholar 

  35. Jessel N et al (2003) Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv Mater 15(9):692–695

    Article  CAS  Google Scholar 

  36. Vodouhe C et al (2006) Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 27(22):4149–4156

    Article  CAS  Google Scholar 

  37. Chluba J et al (2001) Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2(3):800–805

    Article  CAS  Google Scholar 

  38. Caruso F, Schuler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16(24):9595–9603

    Article  CAS  Google Scholar 

  39. Vodouhe C et al (2005) Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials 26(5):545–554

    Article  CAS  Google Scholar 

  40. Tezcaner A et al (2006) Polyelectrolyte multilayer films as substrates for photoreceptor cells. Biomacromolecules 7(1):86–94

    Article  CAS  Google Scholar 

  41. Leguen E et al (2007) Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. Biomol Eng 24(1):33–41

    Article  CAS  Google Scholar 

  42. Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43(10):3453–3479

    Article  CAS  Google Scholar 

  43. Wang Q, Hauser PJ (2010) Developing a novel UV protection process for cotton based on layer-by-layer self-assembly. Carbohydr Polym 81(2):491–496

    Article  CAS  Google Scholar 

  44. Iamphaojeen Y, Siriphannon P (2012) Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte. Int J Mater Res 103(5):643–647

    Article  CAS  Google Scholar 

  45. Wang LL et al (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3(4):1277–1281

    Article  CAS  Google Scholar 

  46. Zhao Y et al (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256(22):6736–6742

    Article  CAS  Google Scholar 

  47. Carosio F et al (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54(19):5148–5153

    Article  CAS  Google Scholar 

  48. Carosio F et al (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750

    Article  CAS  Google Scholar 

  49. Li YC et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337

    Article  CAS  Google Scholar 

  50. Joshi M et al (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119(5):2793–2799

    Article  CAS  Google Scholar 

  51. Ali SW, Joshi M, Rajendran S (2011) Novel, self-assembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11(5):49–55

    CAS  Google Scholar 

  52. Gomes AP et al (2012) Layer-by-layer deposition of antibacterial polyelectrolytes on cotton fibers. J Polym Environ 20(4):1084–1094

    Article  CAS  Google Scholar 

  53. Gomes AP et al (2013) Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polym Adv Technol 24(11):1005–1010

    Article  CAS  Google Scholar 

  54. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289(1–3):105–109

    Article  CAS  Google Scholar 

  55. Caridade SG et al (2013) Free-standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules 14(5):1653–1660

    Article  CAS  Google Scholar 

  56. Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623

    Article  CAS  Google Scholar 

  57. Polowinski S (2005) Polyelectrolyte layer-by-layer processed coated textiles. Fibers Text East Eur 13(6):50–52

    CAS  Google Scholar 

  58. Dubas ST et al (2006) Assembly of polyelectrolyte multilayers on nylon fibers. J Appl Polym Sci 101(5):3286–3290

    Article  CAS  Google Scholar 

  59. Polowinski S (2007) Deposition of polymer complex layers onto nonwoven textiles. J Appl Polym Sci 103(3):1700–1705

    Article  CAS  Google Scholar 

  60. Jantas R, Polowinski S (2007) Modifying of polyester fabric surface with polyelectrolyte nanolayers using the layer-by-layer deposition technique. Fibers Text East Eur 15(2):97–99

    CAS  Google Scholar 

  61. Polowinski S, Stawski D (2007) Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibers Text East Eur 15(4):82–85

    CAS  Google Scholar 

  62. Stawski D, Bellmann C (2009) Electrokinetic properties of polypropylene textile fabrics containing deposited layers of polyelectrolytes. Colloids Surf A Physicochem Eng Asp 345(1-3):191–194

    Article  CAS  Google Scholar 

  63. Park JH et al (2009) Polyelectrolyte multilayer coated nanofibrous mats: controlled surface morphology and cell culture. Fibers Polym 10(4):419–424

    Article  CAS  Google Scholar 

  64. Martin A et al (2013) Multilayered textile coating based on a beta-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydr Polym 93(2):718–730

    Article  CAS  Google Scholar 

  65. Martin A et al (2013) Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue-poly(cyclodextrin) complex. Biomed Mater 8(6):065006

    Article  CAS  Google Scholar 

  66. Hyde K, Rusa M, Hinestroza J (2005) Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibers: cotton. Nanotechnology 16(7):S422–S428

    Article  CAS  Google Scholar 

  67. Wang Q, Hauser PJ (2009) New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric. Cellulose 16(6):1123–1131

    Article  CAS  Google Scholar 

  68. Ali SW, Rajendran S, Joshi M (2010) Effect of process parameters on layer-by-layer self-assembly of polyelectrolytes on cotton substrate. Polym Polym Compos 18(5):175–187

    CAS  Google Scholar 

  69. Zhao Y et al (2013) Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl Surf Sci 286:364–370

    Article  CAS  Google Scholar 

  70. Ugur SS et al (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210

    Article  CAS  Google Scholar 

  71. Zhao Y et al (2012) Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir 28(15):6328–6335

    Article  CAS  Google Scholar 

  72. Apaydin K et al (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634

    Article  CAS  Google Scholar 

  73. Cerkez I (2013) Rapid disinfection by N-halamine polyelectrolytes. J Bioact Compat Polym 28(1):86–96

    Article  CAS  Google Scholar 

  74. Cerkez I et al (2011) N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27(7):4091–4097

    Article  CAS  Google Scholar 

  75. Gomes A, Mano J, Queiroz J, Gouveia I (2010) Assessment of bacteria-textile interactions using scanning electron microscopy: a study on LbL chitosan/alginate coated cotton. In: Méndez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education. Formatex, Badajoz, pp 286–292

    Google Scholar 

  76. Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506–2514

    Article  CAS  Google Scholar 

  77. Sanders W, Anderson MR (2009) Electrostatic deposition of polycations and polyanions onto cysteine monolayers. J Colloid Interface Sci 331(2):318–321

    Article  CAS  Google Scholar 

  78. Pedrosa VA et al (2007) Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe. J Electroanal Chem 602(2):149–155

    Article  CAS  Google Scholar 

  79. Martins GV et al (2010) Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study. Macromol Biosci 10(12):1444–1455

    Article  CAS  Google Scholar 

  80. Gomes AP et al (2014) New biomaterial based on cotton with incorporated biomolecules. J Appl Polym Sci 131(15):40519

    Article  CAS  Google Scholar 

  81. Wang YC et al (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24(6):1047–1057

    Article  CAS  Google Scholar 

  82. Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732

    Article  CAS  Google Scholar 

  83. Dong Y et al (2010) A novel CHS/ALG bi-layer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chin Chem Lett 21(8):1011–1014

    Article  CAS  Google Scholar 

  84. Seo MD et al (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286

    Article  CAS  Google Scholar 

  85. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  CAS  Google Scholar 

  86. Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  Google Scholar 

  87. Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225

    CAS  Google Scholar 

  88. Costa F et al (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440

    Article  CAS  Google Scholar 

  89. Maroti G et al (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374

    Article  CAS  Google Scholar 

  90. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  Google Scholar 

  91. Li YM et al (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215

    Article  CAS  Google Scholar 

  92. Edwards JV et al (1999) Synthesis and activity of NH2- and COOH-terminal elastase recognition sequences on cotton. J Pept Res 54(6):536–543

    Article  CAS  Google Scholar 

  93. Gouveia IC (2010) Nanobiotechnology: a new strategy to develop non-toxic antimicrobial textiles. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 407–414

    Google Scholar 

  94. da Silva FP, Machado MCC (2012) Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36(2):308–314

    Article  CAS  Google Scholar 

  95. Pedrosa M et al. (2014) Comparison of the antibacterial activity of modified-cotton with magainin I and LL-37 with potential as wound-dressings. J Appl Polym Sci 131(21):40997. doi: 10.1002/app.40997

    Google Scholar 

  96. Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2(1):1–33

    CAS  Google Scholar 

  97. Zhang LJ, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722

    Article  CAS  Google Scholar 

  98. Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10(6):585–606

    Article  CAS  Google Scholar 

  99. Zhang XJ, Clark CA, Pettis GS (2003) Interstrain inhibition in the sweet potato pathogen streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene. Appl Environ Microbiol 69(4):2201–2208

    Article  CAS  Google Scholar 

  100. Hassan M et al (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736

    Article  CAS  Google Scholar 

  101. Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6(10), e1001067

    Article  CAS  Google Scholar 

  102. Silva NC, Sarmento B, Pintado M (2013) The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. Int J Antimicrob Agents 41(1):5–10

    Article  CAS  Google Scholar 

  103. Gomes AP, Mano JF, Queiroz JA, Gouveia IC (2015) Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydr Polym 127:451–461

    Article  CAS  Google Scholar 

  104. Shukla A et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357

    Article  CAS  Google Scholar 

  105. Sobczak M et al (2013) Polymeric systems of antimicrobial peptides-strategies and potential applications. Molecules 18(11):14122–14137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for the funding granted for the project PTDC/EBB-BIO/113671/2009 (FCOMP-01-0124-FEDER-014752) Skin2Tex. Also, we would like to thank Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE – Programa Operacional Factores de Competitividade (POFC) for co-funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel C. Gouveia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomes, A.P., Mano, J.F., Queiroz, J.A., Gouveia, I.C. (2015). Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents. In: Rojas, O. (eds) Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Advances in Polymer Science, vol 271. Springer, Cham. https://doi.org/10.1007/12_2015_318

Download citation

Publish with us

Policies and ethics