Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents

  • Ana P. Gomes
  • João F. Mano
  • João A. Queiroz
  • Isabel C. GouveiaEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 271)


Coating with polyelectrolyte multilayers has become a generic way to functionalize a variety of materials. In particular, the layer-by-layer (LbL) technique allows the coating of solid surfaces to give them several functionalities, including controlled release of bioactive agents. At present there are a large number of applications of the LbL technique; however, it is still little explored in the area of textiles. In this review we present an overview of LbL for textile materials made from synthetic or natural fibers. More specifically, LbL is presented as a method for obtaining new bioactive cotton (as in cellulosic fibers) for potential application in the medical field. We also review recent progress in the embedding of active agents in adsorbed multilayers as a novel way to provide the system with a “reservoir” where bioactive agents can be loaded for subsequent release.


Bioactive agents Bioactive textiles Cellulosic fibers Cotton Layer-by-layer 



The authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for the funding granted for the project PTDC/EBB-BIO/113671/2009 (FCOMP-01-0124-FEDER-014752) Skin2Tex. Also, we would like to thank Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE – Programa Operacional Factores de Competitividade (POFC) for co-funding.


  1. 1.
    Gouveia IC, Sa D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124(2):1352–1358CrossRefGoogle Scholar
  2. 2.
    Gouveia IC (2012) Synthesis and characterization of a microsphere-based coating for textiles with potential as an in situ bioactive delivery system. Polym Adv Technol 23(3):350–356CrossRefGoogle Scholar
  3. 3.
    Caldeira E et al (2013) Biofunctionalization of cellulosic fibers with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiellapneumoniae. J Biotechnol 168(4):426–435CrossRefGoogle Scholar
  4. 4.
    Nogueira F et al (2014) Covalent modification of cellulosic-based textiles: a new strategy to obtain antimicrobial properties. Biotechnol Bioprocess Eng 19(3):526–533CrossRefGoogle Scholar
  5. 5.
    Singh R et al (2005) Antimicrobial activity of some natural dyes. Dyes Pigments 66(2):99–102CrossRefGoogle Scholar
  6. 6.
    Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72CrossRefGoogle Scholar
  7. 7.
    Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: natural fiber composites, anti-microbial, and flame-retardant fabrics. Proc Inst of Mech Eng L J Mater Des Appl 223(2):91–102CrossRefGoogle Scholar
  8. 8.
    Chang SC et al (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53(10):3805–3812CrossRefGoogle Scholar
  9. 9.
    Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436Google Scholar
  10. 10.
    Gowri S et al (2010) Polymer nanocomposites for multifunctional finishing of textiles – a review. Text Res J 80(13):1290–1306CrossRefGoogle Scholar
  11. 11.
    MazeyarGashti FA, Song G, Kiumarsi A (2012) Characterization of nanocomposite coating on textiles: a brief review on microscopic technology. Curr Microsc Contrib Adv Sci Technol 2:1424–1437Google Scholar
  12. 12.
    Lee H et al (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623CrossRefGoogle Scholar
  13. 13.
    Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2):831–835CrossRefGoogle Scholar
  14. 14.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRefGoogle Scholar
  15. 15.
    Lvov Y et al (1999) A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids Surf A Physicochem Eng Asp 146(1–3):337–346CrossRefGoogle Scholar
  16. 16.
    Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63(9):822–836CrossRefGoogle Scholar
  17. 17.
    Picart C et al (2001) Determination of structural parameters characterizing thin films by optical methods: a comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. J Chem Phys 115(2):1086–1094CrossRefGoogle Scholar
  18. 18.
    Li Y, Wang X, Sun JQ (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41(18):5998–6009CrossRefGoogle Scholar
  19. 19.
    Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40(1):19–29CrossRefGoogle Scholar
  20. 20.
    de Villiers MM et al (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715CrossRefGoogle Scholar
  21. 21.
    Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRefGoogle Scholar
  22. 22.
    Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1):78–86CrossRefGoogle Scholar
  23. 23.
    Caruso F et al (2000) Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir 16(23):8932–8936CrossRefGoogle Scholar
  24. 24.
    Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158(1):2–14CrossRefGoogle Scholar
  25. 25.
    Mano JF et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030CrossRefGoogle Scholar
  26. 26.
    Onda M et al (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51(2):163–167CrossRefGoogle Scholar
  27. 27.
    Onda M et al (1996) Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. J Ferment Bioeng 82(5):502–506CrossRefGoogle Scholar
  28. 28.
    Lvov Y et al (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin a and glycogen. Thin Solid Films 284:797–801CrossRefGoogle Scholar
  29. 29.
    Caruso F et al (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing.2. Langmuir 13(13):3427–3433CrossRefGoogle Scholar
  30. 30.
    Cai P et al (2013) Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids Surf A Physicochem Eng Asp 434:110–117CrossRefGoogle Scholar
  31. 31.
    Divyalakshmi TV et al (2013) Subpicomolar sensing of hydrogen peroxide with ovalbumin-embedded chitosan/polystyrene sulfonate multilayer membrane. Anal Biochem 440(1):49–55CrossRefGoogle Scholar
  32. 32.
    Guillot R et al (2013) The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 34(23):5737–5746CrossRefGoogle Scholar
  33. 33.
    Anandhakumar S, Raichur AM (2013) Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater 9(11):8864–8874CrossRefGoogle Scholar
  34. 34.
    Ladam G et al (2001) Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17(3):878–882CrossRefGoogle Scholar
  35. 35.
    Jessel N et al (2003) Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv Mater 15(9):692–695CrossRefGoogle Scholar
  36. 36.
    Vodouhe C et al (2006) Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 27(22):4149–4156CrossRefGoogle Scholar
  37. 37.
    Chluba J et al (2001) Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2(3):800–805CrossRefGoogle Scholar
  38. 38.
    Caruso F, Schuler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16(24):9595–9603CrossRefGoogle Scholar
  39. 39.
    Vodouhe C et al (2005) Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials 26(5):545–554CrossRefGoogle Scholar
  40. 40.
    Tezcaner A et al (2006) Polyelectrolyte multilayer films as substrates for photoreceptor cells. Biomacromolecules 7(1):86–94CrossRefGoogle Scholar
  41. 41.
    Leguen E et al (2007) Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. Biomol Eng 24(1):33–41CrossRefGoogle Scholar
  42. 42.
    Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43(10):3453–3479CrossRefGoogle Scholar
  43. 43.
    Wang Q, Hauser PJ (2010) Developing a novel UV protection process for cotton based on layer-by-layer self-assembly. Carbohydr Polym 81(2):491–496CrossRefGoogle Scholar
  44. 44.
    Iamphaojeen Y, Siriphannon P (2012) Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte. Int J Mater Res 103(5):643–647CrossRefGoogle Scholar
  45. 45.
    Wang LL et al (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3(4):1277–1281CrossRefGoogle Scholar
  46. 46.
    Zhao Y et al (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256(22):6736–6742CrossRefGoogle Scholar
  47. 47.
    Carosio F et al (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54(19):5148–5153CrossRefGoogle Scholar
  48. 48.
    Carosio F et al (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750CrossRefGoogle Scholar
  49. 49.
    Li YC et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337CrossRefGoogle Scholar
  50. 50.
    Joshi M et al (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119(5):2793–2799CrossRefGoogle Scholar
  51. 51.
    Ali SW, Joshi M, Rajendran S (2011) Novel, self-assembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11(5):49–55Google Scholar
  52. 52.
    Gomes AP et al (2012) Layer-by-layer deposition of antibacterial polyelectrolytes on cotton fibers. J Polym Environ 20(4):1084–1094CrossRefGoogle Scholar
  53. 53.
    Gomes AP et al (2013) Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polym Adv Technol 24(11):1005–1010CrossRefGoogle Scholar
  54. 54.
    Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289(1–3):105–109CrossRefGoogle Scholar
  55. 55.
    Caridade SG et al (2013) Free-standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules 14(5):1653–1660CrossRefGoogle Scholar
  56. 56.
    Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623CrossRefGoogle Scholar
  57. 57.
    Polowinski S (2005) Polyelectrolyte layer-by-layer processed coated textiles. Fibers Text East Eur 13(6):50–52Google Scholar
  58. 58.
    Dubas ST et al (2006) Assembly of polyelectrolyte multilayers on nylon fibers. J Appl Polym Sci 101(5):3286–3290CrossRefGoogle Scholar
  59. 59.
    Polowinski S (2007) Deposition of polymer complex layers onto nonwoven textiles. J Appl Polym Sci 103(3):1700–1705CrossRefGoogle Scholar
  60. 60.
    Jantas R, Polowinski S (2007) Modifying of polyester fabric surface with polyelectrolyte nanolayers using the layer-by-layer deposition technique. Fibers Text East Eur 15(2):97–99Google Scholar
  61. 61.
    Polowinski S, Stawski D (2007) Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibers Text East Eur 15(4):82–85Google Scholar
  62. 62.
    Stawski D, Bellmann C (2009) Electrokinetic properties of polypropylene textile fabrics containing deposited layers of polyelectrolytes. Colloids Surf A Physicochem Eng Asp 345(1-3):191–194CrossRefGoogle Scholar
  63. 63.
    Park JH et al (2009) Polyelectrolyte multilayer coated nanofibrous mats: controlled surface morphology and cell culture. Fibers Polym 10(4):419–424CrossRefGoogle Scholar
  64. 64.
    Martin A et al (2013) Multilayered textile coating based on a beta-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydr Polym 93(2):718–730CrossRefGoogle Scholar
  65. 65.
    Martin A et al (2013) Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue-poly(cyclodextrin) complex. Biomed Mater 8(6):065006CrossRefGoogle Scholar
  66. 66.
    Hyde K, Rusa M, Hinestroza J (2005) Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibers: cotton. Nanotechnology 16(7):S422–S428CrossRefGoogle Scholar
  67. 67.
    Wang Q, Hauser PJ (2009) New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric. Cellulose 16(6):1123–1131CrossRefGoogle Scholar
  68. 68.
    Ali SW, Rajendran S, Joshi M (2010) Effect of process parameters on layer-by-layer self-assembly of polyelectrolytes on cotton substrate. Polym Polym Compos 18(5):175–187Google Scholar
  69. 69.
    Zhao Y et al (2013) Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl Surf Sci 286:364–370CrossRefGoogle Scholar
  70. 70.
    Ugur SS et al (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210CrossRefGoogle Scholar
  71. 71.
    Zhao Y et al (2012) Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir 28(15):6328–6335CrossRefGoogle Scholar
  72. 72.
    Apaydin K et al (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634CrossRefGoogle Scholar
  73. 73.
    Cerkez I (2013) Rapid disinfection by N-halamine polyelectrolytes. J Bioact Compat Polym 28(1):86–96CrossRefGoogle Scholar
  74. 74.
    Cerkez I et al (2011) N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27(7):4091–4097CrossRefGoogle Scholar
  75. 75.
    Gomes A, Mano J, Queiroz J, Gouveia I (2010) Assessment of bacteria-textile interactions using scanning electron microscopy: a study on LbL chitosan/alginate coated cotton. In: Méndez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education. Formatex, Badajoz, pp 286–292Google Scholar
  76. 76.
    Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506–2514CrossRefGoogle Scholar
  77. 77.
    Sanders W, Anderson MR (2009) Electrostatic deposition of polycations and polyanions onto cysteine monolayers. J Colloid Interface Sci 331(2):318–321CrossRefGoogle Scholar
  78. 78.
    Pedrosa VA et al (2007) Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe. J Electroanal Chem 602(2):149–155CrossRefGoogle Scholar
  79. 79.
    Martins GV et al (2010) Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study. Macromol Biosci 10(12):1444–1455CrossRefGoogle Scholar
  80. 80.
    Gomes AP et al (2014) New biomaterial based on cotton with incorporated biomolecules. J Appl Polym Sci 131(15):40519CrossRefGoogle Scholar
  81. 81.
    Wang YC et al (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24(6):1047–1057CrossRefGoogle Scholar
  82. 82.
    Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732CrossRefGoogle Scholar
  83. 83.
    Dong Y et al (2010) A novel CHS/ALG bi-layer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chin Chem Lett 21(8):1011–1014CrossRefGoogle Scholar
  84. 84.
    Seo MD et al (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286CrossRefGoogle Scholar
  85. 85.
    Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184CrossRefGoogle Scholar
  86. 86.
    Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547CrossRefGoogle Scholar
  87. 87.
    Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225Google Scholar
  88. 88.
    Costa F et al (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440CrossRefGoogle Scholar
  89. 89.
    Maroti G et al (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374CrossRefGoogle Scholar
  90. 90.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395CrossRefGoogle Scholar
  91. 91.
    Li YM et al (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215CrossRefGoogle Scholar
  92. 92.
    Edwards JV et al (1999) Synthesis and activity of NH2- and COOH-terminal elastase recognition sequences on cotton. J Pept Res 54(6):536–543CrossRefGoogle Scholar
  93. 93.
    Gouveia IC (2010) Nanobiotechnology: a new strategy to develop non-toxic antimicrobial textiles. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 407–414Google Scholar
  94. 94.
    da Silva FP, Machado MCC (2012) Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36(2):308–314CrossRefGoogle Scholar
  95. 95.
    Pedrosa M et al. (2014) Comparison of the antibacterial activity of modified-cotton with magainin I and LL-37 with potential as wound-dressings. J Appl Polym Sci 131(21):40997. doi: 10.1002/app.40997Google Scholar
  96. 96.
    Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2(1):1–33Google Scholar
  97. 97.
    Zhang LJ, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722CrossRefGoogle Scholar
  98. 98.
    Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10(6):585–606CrossRefGoogle Scholar
  99. 99.
    Zhang XJ, Clark CA, Pettis GS (2003) Interstrain inhibition in the sweet potato pathogen streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene. Appl Environ Microbiol 69(4):2201–2208CrossRefGoogle Scholar
  100. 100.
    Hassan M et al (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736CrossRefGoogle Scholar
  101. 101.
    Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6(10), e1001067CrossRefGoogle Scholar
  102. 102.
    Silva NC, Sarmento B, Pintado M (2013) The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. Int J Antimicrob Agents 41(1):5–10CrossRefGoogle Scholar
  103. 103.
    Gomes AP, Mano JF, Queiroz JA, Gouveia IC (2015) Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydr Polym 127:451–461CrossRefGoogle Scholar
  104. 104.
    Shukla A et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357CrossRefGoogle Scholar
  105. 105.
    Sobczak M et al (2013) Polymeric systems of antimicrobial peptides-strategies and potential applications. Molecules 18(11):14122–14137CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ana P. Gomes
    • 1
  • João F. Mano
    • 2
    • 3
  • João A. Queiroz
    • 4
  • Isabel C. Gouveia
    • 5
    Email author
  1. 1.Optical Center and Electron Microscopy CenterUniversity of Beira InteriorCovilhãPortugal
  2. 2.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
  3. 3.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  4. 4.Health Sciences Research CenterUniversity of Beira InteriorCovilhãPortugal
  5. 5.FibEnTech – Fiber Materials and Environmental Technologies Research Unit, Faculty of EngineeringUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations