Sequential Post-modifications of Polybutadiene for Industrial Applications

  • Jan-Philipp Dilcher
  • Hannes Jürgens
  • Gerrit A. LuinstraEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 269)


Polybutadiene is a versatile starting material for polymer-analogous reactions because of the high content of easily accessed double bonds. It is a large scale polymeric product with relatively low costs. Polybutadiene may be tuned in its properties by consecutive chemical functionalizations to expand its range of applications. The polarity decreases content double bond hydrogenation and may be increased by the addition of heteroatoms to the olefinic entities. The functionalized of double bonds (e.g. to epoxides, aldehydes, carboxylates, hydroxyls or amines) opens the option of subsequent reactions in particular with nucleophilic reagents. This article focuses on post-modifications of polybutadiene homo-polymers by such sequential reactions and shows their relevance to applications.


Epoxide Hydrogenation Multi-step functionalization Oxidation Polybutadiene Polymer-analogous reactions Post-modification Subsequent reactions 



Research on polybutadiene functionalization at the University of Hamburg was supported by LEXI “Key Technologies for Sustainable Energy Systems in Smart Grids”.


  1. 1.
    Ceresana (2013) Market study: synthetic rubber. Cerseana, Konstanz. Available from Scholar
  2. 2.
    Boeckeler RH (1996) Esters of hydroxyl-terminated polybutadiene compositions and methods for making same. US Patent 5587433Google Scholar
  3. 3.
    French D (1969) Rubber Chem Technol 42:71–109Google Scholar
  4. 4.
    Zelinski RP, Strobel CW (1966) Compositions from liquid conjugated dine polymers. US Patent 3274147Google Scholar
  5. 5.
    Tremblay M, Perrault G, Duchesne G (1979) Solid propellants containing polyether or polyester binders. US Patent 4156700Google Scholar
  6. 6.
    Gopala KPS, Ayyaswamy K, Nayak SK (2013) J Macromol Sci A 50:128–138. doi: 10.1080/10601325.2013.736275 Google Scholar
  7. 7.
    Liu F, Wang L, Zhang G, Zheng J, Tang T (2013) Chem Res Chin Univ 29:589–595. doi: 10.1007/s40242-013-3104-9 Google Scholar
  8. 8.
    Jones RV, Moberly CW, Reynolds BW (1953) Ind Eng Chem 45(5):1117–1122Google Scholar
  9. 9.
    Sasanuma H, Takeuchi M, Hattori I (1999) German Patent DE 69913891T2Google Scholar
  10. 10.
    Raju VR, Rachapudy H, Graessley WW (1979) J Polym Sci B Polym Phys 17:1223–1235Google Scholar
  11. 11.
    Staudinger H (1922) Helv Chim Acta 13:1324–1334Google Scholar
  12. 12.
    Osborn JA, Jardin FH, Young JF (1966) J Chem Soc A 1966:1711–1732. doi: 10.1039/J19660001711Google Scholar
  13. 13.
    Birch AJ, Walker KAM (1971) Aust J Chem 24:513–520Google Scholar
  14. 14.
    Gilliom RL (1989) Macromolecules 22:662–665Google Scholar
  15. 15.
    Doi Y, Yano A, Soga K (1986) Macromolecules 19:2409–2412Google Scholar
  16. 16.
    Mohammadi NA, Rempel GL (1989) J Mol Catal 50(3):259–275. doi: 10.1016/0304-5102(89)80284-6 Google Scholar
  17. 17.
    Bouchal K, Ilkavský M (1989) Zurková. Angew Makromol Chem 165:165–180Google Scholar
  18. 18.
    Guo X, Rempel GL (1990) J Mol Catal 63(3):279–298. doi: 10.1016/0304-5102(90)85120-7 Google Scholar
  19. 19.
    Khar’kova EM, Rozantseva LE, Frolov VM (2011) Polym Sci Ser B 53(7–8):420–426. doi: 10.1134/S1560090411070049 Google Scholar
  20. 20.
    Pan Q, Rempel GL (2000) Ind Eng Chem Res 39(2):277–284. doi: 10.1021/ie9904347 Google Scholar
  21. 21.
    MacLeod S, Rosso RJ (2003) Adv Synth Catal 345(5):568–571. doi: 10.1002/adsc.200202203 Google Scholar
  22. 22.
    Kotzabasakis V, Hadjichristidis N, Papadogianakis G (2009) J Mol Catal A Chem 304(1–2):95–100. doi: 10.1016/j.molcata.2009.01.032 Google Scholar
  23. 23.
    Liu Y, Wu J, Pan Q et al (2012) Top Catal 55(7–10):637–643. doi: 10.1007/s11244-012-9843-x Google Scholar
  24. 24.
    Urbano J, Korthals B, Díaz-Requejo MM (2010) J Polym Sci A Polym Chem 48(20):4439–4444. doi: 10.1002/pola.24231 Google Scholar
  25. 25.
    Sloan MF, Matlack AS, Breslow DS (1963) J Am Chem Soc 85:4014–4018Google Scholar
  26. 26.
    Breslow DS, Matlack AS (1962) Hydrogenation of unsaturated hydrocarbons. US patent 3113986Google Scholar
  27. 27.
    Rachapudy H, Smith GG, Raju VR (1979) J Polym Sci B Polym Phys 17:1211–1222Google Scholar
  28. 28.
    Halasa AF (1974) German patent DE2457646A1Google Scholar
  29. 29.
    Kang JW (1976) German patent DE2637767A1Google Scholar
  30. 30.
    Rao P, Upadhyay V, Pillai S (2001) Eur Polym J 37(6):1159–1164. doi: 10.1016/S0014-3057(00)00234-2 Google Scholar
  31. 31.
    Wilson DE, Stevens JC (1990) German patent DE69004326T2Google Scholar
  32. 32.
    Stere C, Obbrecht W (2004) Hydrogenated vinyl-polybutadienes. US patent 0242797A1Google Scholar
  33. 33.
    Duck EW, Locke JM, Mallinson CJ (1968) Liebigs Ann Chem 719:69–71Google Scholar
  34. 34.
    Kishimoto Y, Morita H (1984) German patent DE3401983A1Google Scholar
  35. 35.
    Kishimoto Y, Masubuchi T (1985) German patent DE3514063A1Google Scholar
  36. 36.
    Bridgestone Tire Kabushiki Kaisha (1967) GB patent 1213411AGoogle Scholar
  37. 37.
    Yoshimoto T, Narumiya T, Yoshii H (1967) German patent DE1770970A1Google Scholar
  38. 38.
    Yoshimoto T, Kameko S, Narumiya T (1968) US patent 3541064A1Google Scholar
  39. 39.
    Bronstert K, Ladenberger V, Fahrbach G (1971) US patent 3673281A1Google Scholar
  40. 40.
    Hsieh HL, Yeh HC (1986) Polymers from hydrogenated polydienes prepared with neodynium catalysts. In: Lal J, James EM, Wiff DR, Yeoh OH (eds) Advances in elastomers and rubber elasticity. Springer, New York, pp 197–220Google Scholar
  41. 41.
    Falk JC (1971) J Polym Sci A Polym Chem 9:2617–2623Google Scholar
  42. 42.
    Falk JC (1972) Makromol Chem 160:291–299Google Scholar
  43. 43.
    Sabata S, Hetflej J (2002) J Appl Polym Sci 85(6):1185–1193. doi: 10.1002/app.10712 Google Scholar
  44. 44.
    Camberlin Y, Pascault JP, Razzouk H, Cheradame H (1981) Makromol Chem Rapid Commun 2:232–327Google Scholar
  45. 45.
    Shahab YA, Basheer RA (1978) J Polym Sci A Polym Chem 16:2667–2670Google Scholar
  46. 46.
    Shahab YA, Basheer RA (1979) J Polym Sci A Polym Chem 17:919–921Google Scholar
  47. 47.
    Rosedale JH, Bates FS (1988) J Am Chem Soc 110:3542–3545Google Scholar
  48. 48.
    Wewerka D, Hummel K (1976) Colloid Polym Sci 254:116–117Google Scholar
  49. 49.
    Shiono T, Naga N, Soga K (1991) Makromol Chem Rapid Commun 12:387–392Google Scholar
  50. 50.
    Shiono T, Naofumi N, Soga K (1993) Makromol Chem Rapid Commun 14:323–327Google Scholar
  51. 51.
    Jayaraman RB, Facinelli JV, Riffle JS (1996) J Polym Sci A Polym Chem 34:1543–1552Google Scholar
  52. 52.
    Camberlin Y, Golé J, Pascault JP (1979) Makromol Chem 180:2309–2321Google Scholar
  53. 53.
    Harwood HJ, Russel DB, Verthe JJA (1973) Makromol Chem 163:1–12Google Scholar
  54. 54.
    Mango LA, Lenz RW (1973) Makromol Chem 163:13–36Google Scholar
  55. 55.
    Wideman LG (1983) US patent 4452950Google Scholar
  56. 56.
    Chen HY (1977) Polym Lett Ed 15:271–275Google Scholar
  57. 57.
    Edwards HGM, Farwell DW, Johnson AF (1992) Macromolecules 25:525–529Google Scholar
  58. 58.
    Edwards H, Johnson AF, Lewis IR (1992) J Mol Struc 268(4):363–372. doi: 10.1016/0022-2860(92)80223-5 Google Scholar
  59. 59.
    Hahn SF (1992) J Polym Sci A Polym Chem 30:397–408Google Scholar
  60. 60.
    Poshyachinda S, Kanitthanon V (1994) Spectrochim Acta A Mol Spectrosc 50(11):2011–2017. doi: 10.1016/0584-8539(94)80213-0 Google Scholar
  61. 61.
    Podesva J, Holler P (1999) J Appl Polym Sci 74:3203–3213Google Scholar
  62. 62.
    Ito M, Takeuchi A, Isotani K, Suzuki H, Kobayashi S (1989) Japan patent JP01009204AGoogle Scholar
  63. 63.
    Spanring J, Buchgraber C, Ebel M, Svagera R, Kern W (2006) Polymer 47(1):156–165. doi: 10.1016/ j.polymer.2005.11.016 Google Scholar
  64. 64.
    Gacal BN, Filiz V, Shishatskiy S, Rangou S, Neumann S, Abetz V (2013) J Polym Sci B Polym Phys 51(16):1252–1261Google Scholar
  65. 65.
    Ivin KJJ (1997) Advances in the metathesis of olefins. In: Patai’s chemistry of functional groups, vol 3. Part II, pp 1497–1616. Wiley, Hoboken. doi: 10.1002/9780470682531.pat0141Google Scholar
  66. 66.
    Shcheglova NM, Bogomolova MN, Yakimov RV, Ashirov RV (2012) Rezina 4:9–12Google Scholar
  67. 67.
    Ast W, Hummel K (1971) Kaut Gummi Kunstst 24(5):220Google Scholar
  68. 68.
    Ast W, Zott C, Kerber R (1979) Makromol Chem 180(2):315–323Google Scholar
  69. 69.
    Stelzer F, Hummel K, Thummer R (1979) Prog Colloid Polym Sci 66:11–416Google Scholar
  70. 70.
    Pampus G, Schoen N, Oberkirch W, Guenther P (1972) German patent DE2009740AGoogle Scholar
  71. 71.
    Kumar VG, Kummel K (1983) J Polym Sci Polym Chem Ed 21(4):1183–1193. doi: 10.1002/pol.1983.170210425 Google Scholar
  72. 72.
    Watson MD, Wagener KB (1999) J Polym Sci A Polym Chem 37(12):1857–1861. doi: 10.1002/(SICI)1099-0518(19990615)37:12<1857::AID-POLA15>3.0.CO;2-C Google Scholar
  73. 73.
    Otsuka H, Muta T, Sakada M, Maeda T, Takahara A (2009) J Chem Soc Chem Commun 9:1073–1975. doi: 10.1039/b818014h Google Scholar
  74. 74.
    Muta T, Otsuka H, Takahara A (2005) Trans Mater Res Soc Jpn 30(3):715–718Google Scholar
  75. 75.
    Coates GW, Grubbs RH (1996) J Am Chem Soc 118(1):229–230. doi: 10.1021/ja9532603 Google Scholar
  76. 76.
    Allaert B, Ledoux N, Dieltiens N, Vander Mierde H, Stevens C, Van Der Voort P, Verpoort F (2008) Catal Commun 9(6):1054–1059. doi: 10.1016/j.catcom.2007.10.006 Google Scholar
  77. 77.
    Struku G, Sinigalia R, Zanardo A, Pinna F, Michelin RA (1989) Inorg Chem 28:554–559. doi: 10.1021/ic00302a033 Google Scholar
  78. 78.
    Iraqi A, Cole-Hamilton DJ (1992) J Mater Chem 2:183–190Google Scholar
  79. 79.
    Iraqi A, Cole-Hamilton DJ (1991) Polyhedron 10:993–995Google Scholar
  80. 80.
    Ajjou A, Alper H (1996) Macromolecules 9:5072–5074Google Scholar
  81. 81.
    Jo EA, Cho EG, Jun CH (2007) Synlett 7:1059–1062. doi: 10.1055/s-2007-977426 Google Scholar
  82. 82.
    Jun CH, Lee H, Hong JB, Lee DY (2000). Modification of polybutadiene by transition metal catalysts: hydroacylation of polybutadiene. In: Saunders Boff L, Novak BM (eds) Transition metal catalysis in macromolecular design. ACS symposium series, vol 760. American Chemical Society, Washington DC, pp 94–107. doi:10.1021/bk-2000-0760.ch006
  83. 83.
    Lee JH, Jo EEA, Jun CH (2009) Synlett 16:2647–2650. doi: 10.1055/s-0029-1217753 Google Scholar
  84. 84.
    Beavan SW, Hackett PA, Phillips D (1974) Eur Polym J 10:925–932. doi: 10.1016/0014-3057(74)90030-5 Google Scholar
  85. 85.
    Guyader M, Audouin L, Colin X, Verdu J, Chevalier S (2006) Polym Degrad Stab 91:2813–2815. doi: 10.1016/j.polymdegradstab.2006.04.009 Google Scholar
  86. 86.
    Coquillat M, Verdu J, Colin X, Audouin L, Nevière R (2007) Polym Degrad Stab 92:1334–1342. doi: 10.1016/j.polymdegradstab.2007.03.019 Google Scholar
  87. 87.
    Coquillat M, Verdu J, Colin X, Audouin L, Nevière R (2007) Polym Degrad Stab 92:1343–1349. doi: 10.1016/j.polymdegradstab.2007.03.018 Google Scholar
  88. 88.
    Ahlblad G, Reitberger T, Terselius B, Stenberg B (1999) Polym Degrad Stab 65:179–184. doi: 10.1016/S0141-3910(98)00179-7 Google Scholar
  89. 89.
    Hayashi O, Takahashi T, Matsumoto Y, Ueno H (1986) Studies on chemical modification of polybutadiene. III. Permeability of nitrogen gas through chemically modified and vulcanized polybutadiene. Polym J 18(6):487–491. doi: 10.1295/polymj.18.487 Google Scholar
  90. 90.
    Hummel K, Wedam OA, Kathan W, Demel H (1978) Makromol Chem 179(5):1159–1165Google Scholar
  91. 91.
    Kayumova MA, Kukovinets OS, Sigaeva NN, Muslukhov RR, Zaboristov VN, Budtov VP, Abdullin MI (2008) Vysokomol Soedin Ser A Ser B 50(8):1546–1552 (from CAPLUS AN 2008:1259568)Google Scholar
  92. 92.
    Kathan W, Wedam OA, Hummel K (1977) Makromol Chem 178(6):1693–1697Google Scholar
  93. 93.
    Heiling P, Wewerka D, Hummel K (1976) Kautsch Gummi Kunstst 29(5):238–240Google Scholar
  94. 94.
    Ikeda H, Saegusa T (1974) Japan patent JP49054498AGoogle Scholar
  95. 95.
    Greenspan FP, Reich MH (1965) Curable compositions comprising unsaturated polyester, epoxidized polybutadiene, unsaturated monomer and organic peroxide. US Patent 3217066Google Scholar
  96. 96.
    Borman WFH, Reilly EP (1975) Stabilized polyester compositions. US Patent 3886104Google Scholar
  97. 97.
    Tarwid WA (1966) Coating for a metal surface containing PVC resins, epoxidized polybutadiene, formaldehyde resins and a methylol phenol ether. US Patent 3268620Google Scholar
  98. 98.
    Zuchowska D (1980) Polymer (Guildf) 21:514–520Google Scholar
  99. 99.
    Kurusu Y, Masuyama Y, Miyamoto M (1994) Polym J 26:1163–1169Google Scholar
  100. 100.
    Abdullin MI, Basyrov AA, Kukovinets OS, Glazyrin AB, Khamidullina GI (2013) Polym Sci Ser B 55:349–354. doi: 10.1134/S1560090413060018 Google Scholar
  101. 101.
    Maenz K, Möllhoff M, Stadermann D (1996) Acta Polym 47:208–213Google Scholar
  102. 102.
    Hayashi O, Takahashi T, Kurihara H, Ueno H (1980) Kobunshi Ronbunshu 37(3):195–198 (from CAPLUS AN 1980:199542)Google Scholar
  103. 103.
    Hayashi O, Kimura K, Ooi Y, Ueno H (1980) Kobunshi Ronbunshu 37(5):327–334 (from CAPLUS AN 1980:472693)Google Scholar
  104. 104.
    Greenspan FP, Rupert EL (1958) Epoxidized polybutadiene resin. US Patent 2829135Google Scholar
  105. 105.
    Heublein G, Albrecht G (1985) Acta Polym 36:357–361Google Scholar
  106. 106.
    Huang WK, Hsiue GH, Hou WH (1988) J Polym Sci A Polym Chem 26:1867–1883. doi: 10.1002/pola.1988.080260714 Google Scholar
  107. 107.
    Wang Q, Zhang X, Wang L, Mi Z (2009) J Mol Catal A Chem 309:89–94. doi: 10.1016/j.molcata.2009.04.019 Google Scholar
  108. 108.
    Jacobi M, Santin CK, Viganico ME, Schuster RH (2004) Kautsch Gummi Kunstst 57:82–89Google Scholar
  109. 109.
    Jacobi M, Neto C, Schneider C, Rocha T (2002) Kautsch Gummi Kunstst 55:590–595Google Scholar
  110. 110.
    Yasmuno H, Yoshinaga T, Nakano T (1981) Photocurable acrylic phoshate esters of epoxidized polybutadiene. US Patent 4250007Google Scholar
  111. 111.
    Maenz K, Schütz H, Stadermann D (1993) Eur Polym J 29Google Scholar
  112. 112.
    Wugang Y, Hongquan X (2007) Hecheng Xangjiao Gengye 30:156Google Scholar
  113. 113.
    He J, Wang J (2009) Preparation and characterization of epoxidate poly(1,2-butadiene) – toughened diglycidyl ether bisphenol-a epoxy composites. J Appl Polym Sci 113:3165–3170. doi: 10.1002/app Google Scholar
  114. 114.
    Krichhof W, Stumpf W, Schleimer B (1966) Preparation of liquide epoxides from polydiolefins. US Patent 3253000Google Scholar
  115. 115.
    Latha PB, Adhinarayanan K, Ramaswamy R (1994) Int J Adhes Adhes 14:57–61. doi: 10.1016/0143-7496(94)90021-3 Google Scholar
  116. 116.
    Gupta BR (1993) Polym Eng Sci 33:92–96Google Scholar
  117. 117.
    Sotiropoulou D (1992) J Appl Polym Sci 45:273–278Google Scholar
  118. 118.
    Wheelock C (1958) Ind Eng Chem 50:299–304Google Scholar
  119. 119.
    Chadwick A, Barlow D (1958) J Am Oil Chem Soc 35:355–358Google Scholar
  120. 120.
    Makowski HS, Lynn M, Rotenberg DH (1970) J Macromol Sci A Chem 4:1563–1597. doi: 10.1080/00222337008069370 Google Scholar
  121. 121.
    Ferrero F (2006) J Therm Anal Calorim 83:373–378Google Scholar
  122. 122.
    Wheelock CE, Franzus B (1959) Curing epoidized diene polymers with hydrazine and carbon disulfide. US Patent 2876214Google Scholar
  123. 123.
    Jarvie A (1998) Chem Commun 1998(2):177–178. doi: 10.1039/A707168JGoogle Scholar
  124. 124.
    Dittmann W, Krämer H (1969) Polymers with high heat distortion temperatures prepared from epoxypolybutadiene hardened with polyols and anhydrides. US Patent 3436377Google Scholar
  125. 125.
    Hirai T, Hatano Y, Nonogaki S (1971) J Electrochem 118:669–672Google Scholar
  126. 126.
    El Fayoumi A (1982) J Therm Anal 23:135–141Google Scholar
  127. 127.
    Nikje MMA, Rafiee A, Haghshenas M (2006) Des Monomers Polym 9:293–303. doi: 10.1163/156855506777351009 Google Scholar
  128. 128.
    Nikje MMA, Mozaffari Z (2007) Des Monomers Polym 10:67–77. doi: 10.1163/156855507779763630 Google Scholar
  129. 129.
    Nikje MMA, Hajifatheali H (2011) Polym Plast Technol Eng 50:1071–1076. doi: 10.1080/03602559.2011.557920 Google Scholar
  130. 130.
    Nikje MMA, Hajifatheali H (2011) Des Monomers Polym 14:155–165. doi: 10.1163/138577211X555794 Google Scholar
  131. 131.
    Saffer A, Johnson B (1948) Ind Eng Chem 40:538–541Google Scholar
  132. 132.
    Weidlein ER (1946) Chem Eng News 24:771Google Scholar
  133. 133.
    Wichacheewa P, Woodward A (1978) J Polym Sci B Polym Phys 16:1849–1859Google Scholar
  134. 134.
    Cameron GG, Duncana AWS (1983) Makromol Chem 184:1153–1161Google Scholar
  135. 135.
    Aguiar M, de Menezes SC, Akcelrud L (1994) Macromol Chem Phys 195:3937–3948. doi: 10.1002/macp.1994.021951219 Google Scholar
  136. 136.
    Choi J, Lee J, Park W (2002) Fibers Polym 3:109–112Google Scholar
  137. 137.
    Choi J, Lee J, You Y, Park W (2003) Fibers Polym 4:195–198Google Scholar
  138. 138.
    De Risi FR, D’Ilario L, Martinelli A (2004) J Polym Sci A Polym Chem 42:3082–3090. doi: 10.1002/pola.20150 Google Scholar
  139. 139.
    Kona B, Weidner SM, Friedrich JF (2005) Int J Polym Anal Char 10:85–108. doi: 10.1080/10236660490935736 Google Scholar
  140. 140.
    Zhang Y (2001) J Appl Polym Sci 81:2987–2992Google Scholar
  141. 141.
    Durand J-P, Dawans F, Gateau P, Chauvel B (1975) Polymere auf Basis von hydrierten und epoxydierten Polybutadienen, deren Herstellung und Verwendung als multifunktionelle Zusatzstoffe für Schmieröle. German patent DE2554093A1Google Scholar
  142. 142.
    Payne G (1959) J Org Chem 24:1354–1355Google Scholar
  143. 143.
    Jourdan-Laforte E (1970) Method for preparing stable monoperphthalic acid. US Patent 3510512Google Scholar
  144. 144.
    Minoun H, Mignard M, Brechot P, Saussine L (1986) J Am Chem Soc 108:3711–3718Google Scholar
  145. 145.
    Koshel N, Sapunov V, Turov B (1980) Polym Sci USSR 22:2642–2647Google Scholar
  146. 146.
    Gahagan M, Iraqi A, Cupertino DC, Mackie RK, Cole-Hamilton DJ (1989) J Chem Soc Chem Commun 1989(21):1688-1690. doi: 10.1039/c39890001688
  147. 147.
    Nicol M, Cole-Hamilton DJ (1998) J Mater Chem 8:1511–1515Google Scholar
  148. 148.
    Nippon Peroxide Co. Ltd. (1982) Epoxidation of diene polymers. Japanese patent JP57117506Google Scholar
  149. 149.
    Tornaritis M, Coutsolelos A (1992) Polymer (Guildf) 33:1771–1772Google Scholar
  150. 150.
    Tornaritis M, Davoras E, Vretzou K, Coutsolelos A (1994) Polymer (Guildf) 35:2857–2858. doi: 10.1016/0032-3861(94)90318-2 Google Scholar
  151. 151.
    Davoras EM, Coutsolelos AG (2003) J Inorg Biochem 94:161–170. doi: 10.1016/S0162-0134(02)00610-4 Google Scholar
  152. 152.
    Thordarson P, Bijsterveld EJA, Rowan AE, Nolte RJM (2003) Nature 424:915–918. doi: 10.1038/nature01925 Google Scholar
  153. 153.
    Mohammad ANM, Mozaffari Z (2008) Des Monomers Polym 11:271–281. doi: 10.1163/156855508X316872 Google Scholar
  154. 154.
    Nikje MMA, Soleimani M, Mozaffari Z (2009) J Elastom Plast 41:41–64. doi: 10.1177/0095244308088879 Google Scholar
  155. 155.
    Gregório JR, Engel GA, Martinelli M, Maldaner JMA, de Luca FL (2000) Ambros von Holleben ML, Dutra MP. Macromol Rapid Commun 21:401–403. doi: 10.1002/(SICI)1521-3927(20000401)21:7<401::AID-MARC401>3.0.CO;2-2 Google Scholar
  156. 156.
    Brosse JC, Koh MP, Derouet D (1983) Eur Polym J 19(12):1159–1165Google Scholar
  157. 157.
    Derouet D, Koh MP, Brosse JC (1894) Eur Polym J 20(7):671–677Google Scholar
  158. 158.
    Buchgraber C, Svagera R, Ebel MF, Schroettner H, Kern W (2007) Macromol Chem Phys 208(11):1159–1167. doi: 10.1002/macp.200600656 Google Scholar
  159. 159.
    Stratton CA (1969) US patent 3432480AGoogle Scholar
  160. 160.
    Fujimoto T, Okada S, Kawauchi Y (1974) Japan patent JP49006834BGoogle Scholar
  161. 161.
    Pielartzik H, Jacobs G(1999) US patent 5919976AGoogle Scholar
  162. 162.
    Suzuki A, Tokuda S, Kanaya Y, Shimizu T (1978) Japan patent JP53140289AGoogle Scholar
  163. 163.
    Buonerba A, Speranza V, Grassi A (2013) Macromolecules 46(3):778–784. doi: 10.1021/ ma301972m Google Scholar
  164. 164.
    Ten Brummelhuis N, Diehl C, Schlaad H (2008) Macromolecules 41(24):9946–9947. doi: 10.1021/ma802047w Google Scholar
  165. 165.
    Cameron GG (1979) Preprint of short contribution at IUPAC 5th international conference on modified polymers, Bratislava, July 1979. 1:65–69Google Scholar
  166. 166.
    Zuchowska D (1981) Macromol Chem Rapid Commun 2:135–138Google Scholar
  167. 167.
    Zuchowska D (1981) Polymer 22:1073–1075Google Scholar
  168. 168.
    Millar RW, Colclough ME, Golding P, Honey PJ, Paul NC, Sanderson AJ, Stewart MJ, Volk F, Thompson BJ (1992) Philos Trans R Soc A Math Phys Eng Sci 339:305–319. doi: 10.1098/rsta.1992.0037 Google Scholar
  169. 169.
    Colclough M, Paul N (1996) ACS Symp Ser 623:97–103Google Scholar
  170. 170.
    Dittmann W (1971) Angew Chem Int Ed 10:824Google Scholar
  171. 171.
    Schultz W, Etter M, Pocius A, Smith S (1980) J Am Chem Soc 102:7981–7982Google Scholar
  172. 172.
    Schultz WJ, Katritzky AR (1982) Polymers containing 2,5-oxolanylene segments. US Patent 4309516Google Scholar
  173. 173.
    Aida T, Inoue S (1996) Acc Chem Res 29:39–48Google Scholar
  174. 174.
    Durbetaki A (1956) Direct titration of oxirane oxygen with hydrogen bromide in acetic acid. Anal Chem 28:5–6Google Scholar
  175. 175.
    Jay RR (1964) Anal Chem 36:667–668. doi: 10.1021/ac60209a037 Google Scholar
  176. 176.
    Garschagen H (1962) Einfaches Verfahren zur Bestimmung der Epoxidkonzentration in Epoxidharzen. Fresenius’ Zeitschrift für Anal Chemie 387.Google Scholar
  177. 177.
    Gemmer R, Golub M (1978) J Polym Sci Polym Chem Ed 16:2985–2990Google Scholar
  178. 178.
    Lamprecht P, Luinstra GA, Fink I (2012) Polybutadien mit 1,3-Dioxolan-2-on Gruppen. German patent DE102012017055A1Google Scholar
  179. 179.
    The Firestone Tire & Rubber Co. (1972) Quarternäre Ammoniumpolymerkomositionen. German patent DE2141941A1Google Scholar
  180. 180.
    Ritter W, Tenhaef R, Seidel K (1983) Verwendung von kationischen Polymeren als antistatische Zusätze zu Haarbehandlungsmitteln. German patent DE3305964A1Google Scholar
  181. 181.
    Tamm H, Fischer H, Leder M (1986) Niedermolekulare Polykondensate sowie deren Verwendung in wässrigen Klebstoffdispersionen. German patent DE3627923A1Google Scholar
  182. 182.
    Konietzny A, Bartz W (1981) Wasserlösliche quartäre Ammoniumgruppen tragende Polymerisate, Verfahren ihrer Herstellung sowie ihre Verwendung. Eurpean patent EP0043901A1Google Scholar
  183. 183.
    Zagefka H-D, Bartz W (1982) Verfahren zur Behandlung von Holz mit wässrigen Behandlungsmitteln. German patent DE3200782A1Google Scholar
  184. 184.
    Gongda Z, Zhaoxin C, Zhiyuan P (2003) Hecheng Xangjiao Gengye 26:117Google Scholar
  185. 185.
    Konietzny A, Zagefka H-D, Rombusch K, Bax H-J (1982) Verwendung von Aminogruppen tragenden niedermolekularen 1,3-Butadienpolimerisates als Stabilisator für Klebstoffe. German patent DE3233949A1Google Scholar
  186. 186.
    Foa’ M, Casagrande F, Giannini U, Caselli G (1992) Polymer Comounds containing sterically hindered amino groups suitable to be used as stabilizers, and polymer compositions comprising them. European patent EP0519450A1Google Scholar
  187. 187.
    Akutsu M, Tabata K (1988) Process for producing ceramic molding. European patent EP0278404A2Google Scholar
  188. 188.
    Hayashi O, Kanda K, Matsumoto Y (1986) Kobunshi Ronbunshu 43(6):385–388. doi: 10.1295/koron.43.385 (from CAPLUS AN 1986:479490)Google Scholar
  189. 189.
    Hayashi O, Kanda K, Matsumoto Y (1986) Kobunshi Ronbunshu 43(6):369–375. doi: 10.1295/koron.43.369 (from CAPLUS AN 1986:479489)Google Scholar
  190. 190.
    Soutif J, Brosse J (1984) Makromol Chem 185:839–846Google Scholar
  191. 191.
    Maenz K, Oehler R, Stadermann D, Zimmermann V (1990) Verfahren zur Herstellung von stickstoffhaltigen Polymeren. Eastern German patent DD296285A5Google Scholar
  192. 192.
    Anzinger H, Fischer H, Herold C-P, Zöllner W (1985) Polyolefine mit unverzweigten Alkylseitenketten. German patent DE3511513A1Google Scholar
  193. 193.
    Dawans F, Durand J-P (1977) Process for manufacturing flexible epoxide resins. US Patent 4028432Google Scholar
  194. 194.
    Richmond MH (1971) Makromolekulares Material enthaltend Gruppen mit CCunsätigungen an ab Stellung zu einer Carbonylgruppe. German patent DE2128290A1Google Scholar
  195. 195.
    Epel JN, Richmond MH (1973) Thermosetting composition. US Patent 3742086Google Scholar
  196. 196.
    Otsuki Y, Omika H, Oshima A, et al. (1985) Cathode depositing electrodeposition coating composition. European patent EP0159883A2Google Scholar
  197. 197.
    Nagai M, Hasui K, Shinohara T (1987) Beschichtungsmassen für kathodische Elektrobeschichtung. German patent DE3705013A1Google Scholar
  198. 198.
    Tobinaga K, Tsushima H, Tsuchiya Y (1989) Cathiodic electrodeposition paint composition. European patent 0339507A2Google Scholar
  199. 199.
    Gao Q, Ren Y, Li Y (2013) J Macromol Sci A 50:297–301. doi: 10.1080/10601325.2013.755848 Google Scholar
  200. 200.
    Lamprecht P (2012) Chemische Modifizierung von Synthesekautschuk durch polymeranaloge Reaktionen, Dissertation, University of HamburgGoogle Scholar
  201. 201.
    Noshay A, Gleason AH (1967) Chlorohydrin of oily polybutadiene polymers and methods for preparing same. US Patent 3317479Google Scholar
  202. 202.
    Peng CC, Abetz V (2005) Macromolecules 38(13):5575–5580. doi: 10.1021/ma050419f Google Scholar
  203. 203.
    Cameron GG, Duncanb AWS (1983) Makromol Chem 184:1645–1651Google Scholar
  204. 204.
    Cameron G (1986) Die Makromol Chem 187:2763–2774Google Scholar
  205. 205.
    Ito Y, Imanishi Y (1989) J Biomater Sci Polym Ed 1:111–122. doi: 10.1163/156856289X00109 Google Scholar
  206. 206.
    Spange S, Hortschansky P, Heublein G (1989) Acta Polym 40:602–606Google Scholar
  207. 207.
    Heublein G, Meissner H, Preuss I (1987) Acta Polym 38:548–549Google Scholar
  208. 208.
    Erler U, Spange S, Heublein G (1991) Acta Polym 42:389–393Google Scholar
  209. 209.
    Heublein G, Heublein B, Hortschansky P, Schiitz H, Flammersheim H, Jena SCDF (1989) Makromol Chem 190:9–18Google Scholar
  210. 210.
    Hortschansky P, Heublein G (1991) Makromol Chem 192:1535–1540Google Scholar
  211. 211.
    Erler U, Heublein G (1991) J Chromatogr 588:340–343Google Scholar
  212. 212.
    Erler U, Heublein B, Heublein G (1990) Acta Polym 41:103–107Google Scholar
  213. 213.
    Zelinski RP, Hsieh HL (1966) Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites. US Patent 3281383Google Scholar
  214. 214.
    Niemerich C (1969) Verfahren zur Herstellung anionisch gepfropfter Copolymeren. German patent DE1928253A1Google Scholar
  215. 215.
    Hsieh HL (1969) Control of branching and coupling in lithium-terminated polymers. US Patent 3468972Google Scholar
  216. 216.
    Zhang H, Li Y, Zhang C, Li Z, Li X, Wang Y (2009) Macromolecules 42:5073–5079.doi: 10.1021/ma900870c Google Scholar
  217. 217.
    Zhou LL, Roovers J (1991) Rubber Chem Technol 65:303–314Google Scholar
  218. 218.
    Gauthier M, Munam A (2010) Macromolecules 43:3672–3681. doi: 10.1021/ma1004056 Google Scholar
  219. 219.
    Fernyhough CM, Young RN, Poche D, Degroot AW, Bosscher F (2001) Macromolecules 34:7034–7041. doi: 10.1021/ma010713h Google Scholar
  220. 220.
    Dusek K (1983) Polym Mater Sci Eng 49:3–14Google Scholar
  221. 221.
    Stapleton R, Kyles R, Zoba D, Gilbert K (2007) Flexible Microelectronic Adhesive. WO Patent 2008030910A1Google Scholar
  222. 222.
    Coates Brothers & Co. Ltd. (1965) Curable compositions of epoxy resins and polyamides. GB Patent 1120738AGoogle Scholar
  223. 223.
    Lister F, Meade B, Cullen CG (1965) Modified epoxidized polybutadiene resin composition. US Patent 3215586Google Scholar
  224. 224.
    Bussi P (1994) J Polym Sci B Polym Phys 32:647–657Google Scholar
  225. 225.
    Dohy G, Kersten H, Meyer G, et al. (1978) Aus wässigen Lösungen kataphoretisch abscheidbare Beschichtungsmassen. German patent DE2833786A1Google Scholar
  226. 226.
    Kamakura T, Nanaumi K, Ikezawa R, Eriguchi H (1989) Klebstoffmasse für metallplattierte Schichtstoffe. DE Patent 3940236A1Google Scholar
  227. 227.
    Erler U, Heublein G (1990) Angew Makromol Chem 182:43–61Google Scholar
  228. 228.
    Lee J, Yandek GR, Kyu T (2005) Polymer (Guildf) 46:12511–12522. doi: 10.1016/j.polymer.2005.01.109 Google Scholar
  229. 229.
    Zengel H-G, Kersten H, Mägerlein H (1980) Verfahren zur Vernetzung von kathodisch abscheidbaren Überzugsmitteln. German patent DE3047525A1Google Scholar
  230. 230.
    Tsuchiya Y, Ito K, Hagihara K, et al. (1986) Quarternary ammonium group containing resins for use in cathodic electrodeposition coating systems. European patent EP0199473A1Google Scholar
  231. 231.
    Schenk H-U, Gulbins E (1979) Verfahren zur Herstellung kationischer Bindemittel und deren Verwendung. German patent DE2911243A1Google Scholar
  232. 232.
    Omika H, Hara H, Otsuki Y, et al. (1979) Überzugszusammensetzung zur elektrolytischen Abscheidung durch Kathodenausfällung. German patent DE2943879A1Google Scholar
  233. 233.
    Uglea CV (1998) Oligomer technology and applications, 1st edn. Dekker, New York, pp 194–248Google Scholar
  234. 234.
    Varron FA, Russo FR (1968) Epoxy resin containing ink and process for printing with said inks. US Patent 3393167Google Scholar
  235. 235.
    Hickner RA (1969) Thermoset resins from an epoxy alcohol a polyepoxide and cyclic anhydrides. US Patent 3444111AGoogle Scholar
  236. 236.
    Reese H-J, Wild H, Forster H (1996) Oxazolidon- und Urethangruppen enthaltende, unter Druck stehende isocyanatterminierte Prepolymere für Einkomponenten-Schäume. German patent DE19654149A1Google Scholar
  237. 237.
    Ramkrishna G, Mukerji P (1999) Epoxide Resin composition with cycloaliphatic epoxy-functional siloxane. US5863970Google Scholar
  238. 238.
    Berenbaum MB, Gobran RH (1960) Verfahren zur Herstellung von endgruppenmodifizierten Butadienpolymerisaten. German patent DE1150205Google Scholar
  239. 239.
    Thiokol Chemical Corp. (1962) Preparation of CTPBs by radical polymerization. GB patent 957652Google Scholar
  240. 240.
    Chang R, Arnold HB (1968) Polyanhydrides of polymeric fat acids as curing agents for epoxy resins. US Patent 3371070Google Scholar
  241. 241.
    Hopper TR (1967) Novel coating compositions. US Patent 3331795Google Scholar
  242. 242.
    Heinemann G, Köhler J, Schomburg G (1987) Chromatographia 23:435–441Google Scholar
  243. 243.
    Atoda N, Kawakatsu H (1977) J Electrochem Soc 123:1519–1524Google Scholar
  244. 244.
    Thompson L, Feit E, Heidenreich R (1974) Polym Eng Sci 14:529–533Google Scholar
  245. 245.
    Yasuno H, Yoshinaga T, Ichihara N (1979) Durch Photoreaktion härtbare Zusammensetzungen. German patent DE2910198A1Google Scholar
  246. 246.
    Yasuno H, Yoshinaga T, Nakano T (1979) Photosetting composition. GB patent 2017723AGoogle Scholar
  247. 247.
    Sakamoto H, Tobinaga K, Tsuchiya Y (1989) Aqueous dispersion of cationic cross-linked resin particles and its usage. European patent EP0351135A2Google Scholar
  248. 248.
    Sangermano M, Malucelli G, Bongiovanni R (2002) J Mater Sci 37:4753–4757Google Scholar
  249. 249.
    Priola A, Ferrero F, Panetti M (1983) Pitture Vernici 59(10):85–89Google Scholar
  250. 250.
    Gent AN (1981) Int J Adhes Adhes 1(4):175–180. doi: 10.1016/0143-7496(81)90048-8 Google Scholar
  251. 251.
    Ngo TT, McCarney J, Brown JS, Lazzaroni MJ, Counts K, Liotta CL, Eckert CA (2003) J Appl Polym Sci 88(2):522–530. doi: 10.1002/app.12069 Google Scholar
  252. 252.
    Ruaan RC, Wu TH, Chen SH, Lai JY (1998) J Membr Sci 138(2):213–222. doi: 10.1016/S0376-7388(97)00237-8 Google Scholar
  253. 253.
    Yang JM, Lai WC, Lin HT (2001) J Memb Sci 183:37–47. doi: 10.1016/S0376-7388(00)00550-0 Google Scholar
  254. 254.
    Yang JM, Lin HT, Lai WC (2002) J Memb Sci 208:105–117. doi: 10.1016/S0376-7388(02)00180-1 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jan-Philipp Dilcher
    • 1
  • Hannes Jürgens
    • 1
  • Gerrit A. Luinstra
    • 1
    Email author
  1. 1.Institute for Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations