The Surface and In-Depth Modification of Cellulose Fibers

  • Alessandro GandiniEmail author
  • Mohamed Naceur Belgacem
Part of the Advances in Polymer Science book series (POLYMER, volume 271)


This review updates the most relevant advances achieved in the field of surface and in-depth modification of cellulose fibers during the last 5 years. It reports work dealing with cellulose substrates on the nano- to micrometer scale, namely cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), microfibrillated cellulose (MFC), and bacterial cellulose (BC), as well as conventional lignocellulosic fibers. Several approaches have been applied for surface modification of these substrates, namely hydrophobization and oleophobization, physico-chemical adsorption, oxidation, cationization, esterification, urethane and siloxane formation, and grafting-from and grafting-onto macromolecular sequences. In-depth modification can be achieved by both partial esterification and partial oxypropylation.


Bacterial cellulose Cellulose nanocrystals (CNCs) Cellulose nanofibrils (CNFs) In-depth modification of cellulose Lignocellulosic fibers Nano- and microfibrillated cellulose Surface modification of cellulose 


  1. 1.
    Gassan J, Bledzki AK (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  2. 2.
    Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview macromolecular. Mater Eng 276(277):1–24Google Scholar
  3. 3.
    Belgacem MN, Gandini A (2005) Physical, chemical and physico-chemical modification of cellulose fibers. Compos Interfaces 12:41–75CrossRefGoogle Scholar
  4. 4.
    Belgacem MN, Gandini A (2008) Surface modification of cellulose fibers. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 385–400CrossRefGoogle Scholar
  5. 5.
    Gandini A, Belgacem MN (2011) Modifying cellulose fiber surface in the manufacture of natural fiber composites. In: Zafeiropoulos NE (ed) Interface engineering of natural fiber composites for maximum performance. Woodhead, Oxford, pp 3–42CrossRefGoogle Scholar
  6. 6.
    Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  8. 8.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  9. 9.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  10. 10.
    Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  11. 11.
    Trovatti E (2013) The future of bacterial cellulose and other microbial polysaccharides. J Renew Mater 1(1):28–41CrossRefGoogle Scholar
  12. 12.
    Gandini A, Cunha AG (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17:875–889CrossRefGoogle Scholar
  13. 13.
    Song J, Rojas OJ (2013) Approaching superhydrophobicity based on cellulosic materials: a review. Nord Pulp Pap Res J 28:216–238CrossRefGoogle Scholar
  14. 14.
    Gandini A, Cunha AG (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065CrossRefGoogle Scholar
  15. 15.
    Roberts JC (1996) Paper chemistry, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  16. 16.
    Lindstrom T, Larsson PT (2008) Alkyl Ketene Dimer (AKD) sizing – a review. Nord Pulp Pap Res J 23(2):202–209CrossRefGoogle Scholar
  17. 17.
    Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloid Surf A 297(1–3):203–210CrossRefGoogle Scholar
  18. 18.
    Werner O, Quan C, Turner C, Petterson B, Wågberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17(1):187–198CrossRefGoogle Scholar
  19. 19.
    Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993CrossRefGoogle Scholar
  20. 20.
    Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102CrossRefGoogle Scholar
  21. 21.
    Freire CSR, Silvestre AJD, Pascoal Neto AC, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. JCIS 301:205–209Google Scholar
  22. 22.
    Pasquini D, Belgacem MN, Gandini A, Curvelo AAS (2006) Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J Colloid Interface Sci 295:79–83CrossRefGoogle Scholar
  23. 23.
    Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68(1):193–201CrossRefGoogle Scholar
  24. 24.
    Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Martin L, Mondragon I (2008) Composites based on acylated cellulose and low-density polyethylene: effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Compos Sci Technol 68:3358–3364CrossRefGoogle Scholar
  25. 25.
    de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  26. 26.
    Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2010) Preparation and characterization of novel highly omniphobic cellulose fibers organic–inorganic hybrid materials. Carbohydr Polym 80(4):1048–1056CrossRefGoogle Scholar
  27. 27.
    Ly B, Belgacem MN, Bras J, Salon MCB (2009) Grafting of cellulose by fluorine-bearing silane coupling agents. Mater Sci Eng C 30(3):343–347CrossRefGoogle Scholar
  28. 28.
    Erasmus E, Barkhuysen FA (2009) Superhydrophobic cotton by fluorosilane modification. Indian J Fibre Text Res 34:377–379Google Scholar
  29. 29.
    Gonçalves G, Marques PAAP, Trindade T, Neto CP, Gandini A (2008) Superhydrophobic cellulose nanocomposites. J Colloid Interf Sci 324(1–2):42–46CrossRefGoogle Scholar
  30. 30.
    Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A, Belgacem MN, Chaussy D, Beneventi D (2010) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas–solid reaction. J Colloid Interf Sci 344(2):588–595CrossRefGoogle Scholar
  31. 31.
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  32. 32.
    Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411CrossRefGoogle Scholar
  33. 33.
    Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801CrossRefGoogle Scholar
  34. 34.
    Costa AP, Belgacem MN, Santos Silva M, Thielemans W, Gaiolas C (2013) Cold-plasma assisted hydrophobisation of cellulosic fibers. Curr Org Chem 17:892–899CrossRefGoogle Scholar
  35. 35.
    Boufi S, Gandini A (2001) Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4):303–312CrossRefGoogle Scholar
  36. 36.
    Trovatti E, Ferreira AM, Carvalho AJF, Lima Ribeiro SJ, Gandini A (2013) Sleeving nanocelluloses by admicellar polymerization. J Colloid Interface Sci 408:256–258CrossRefGoogle Scholar
  37. 37.
    Trovatti E, Carvalho AJF, Lima Ribeiro SJ, Gandini A (2013) Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromolecules 14:2667–2674CrossRefGoogle Scholar
  38. 38.
    Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRefGoogle Scholar
  39. 39.
    Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRefGoogle Scholar
  40. 40.
    Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRefGoogle Scholar
  41. 41.
    Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630CrossRefGoogle Scholar
  42. 42.
    Kim J, Montero G, Habibi Y, Hinestroza JP, Genzer J, Argyropoulos DS, Rojas OJ (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49:2054–2061CrossRefGoogle Scholar
  43. 43.
    Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935CrossRefGoogle Scholar
  44. 44.
    Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42:5430–5432CrossRefGoogle Scholar
  45. 45.
    Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13:773–782CrossRefGoogle Scholar
  46. 46.
    Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18:257–270CrossRefGoogle Scholar
  47. 47.
    Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798–19805CrossRefGoogle Scholar
  48. 48.
    Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081CrossRefGoogle Scholar
  49. 49.
    Zhou Q, Malm E, Nilsson H, Larsson PT, Iversen T, Berglund LA, Bulone V (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5:4124–4130CrossRefGoogle Scholar
  50. 50.
    Changsarn S, Mendez JD, Shanmuganathan K, Foster EJ, Weder C, Supaphol P (2011) Biologically inspired hierarchical design of nanocomposites based on poly(ethylene oxide) and cellulose nanofibers. Macromol Rapid Commun 32:1367–1372CrossRefGoogle Scholar
  51. 51.
    Orelma H, Filpponen I, Johansson L-S, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318CrossRefGoogle Scholar
  52. 52.
    Larsson E, Sanchez CC, Porsch C, Karabulut E, Wagberg L, Carlmark A (2013) Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. Eur Polym J 49:2689–2696CrossRefGoogle Scholar
  53. 53.
    Podsiadlo P, Choi SY, Shim B, Lee J, Cuddihy M, Kotov NA (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 2005(6):2914–2918CrossRefGoogle Scholar
  54. 54.
    Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7:2522–2530CrossRefGoogle Scholar
  55. 55.
    Podsiadlo P, Sui L, Elkasabi Y, Burgardt P, Lee J, Miryala A, Kusumaatmaja W, Carman MR, Shtein M, Kieffer J, Lahann J, Kotov NA (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906CrossRefGoogle Scholar
  56. 56.
    Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134CrossRefGoogle Scholar
  57. 57.
    Eronen P, Laine J, Ruokolainen J, Osterberg M (2012) Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers. J Colloid Interface Sci 373:84–93CrossRefGoogle Scholar
  58. 58.
    Shim BS, Podsiadlo P, Lilly DG, Agarwal A, Leet J, Tang Z, Ho S, Ingle P, Paterson D, Lu W, Kotov NA (2007) Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett 7:3266–3273CrossRefGoogle Scholar
  59. 59.
    de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480CrossRefGoogle Scholar
  60. 60.
    Wågberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  61. 61.
    He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406CrossRefGoogle Scholar
  62. 62.
    Pinto RJB, Marques PAAP, Martins MA, Pascoal Neto C, Trinidade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512CrossRefGoogle Scholar
  63. 63.
    Pinto RJB, Marques PAAP, Barros-Timmons A, Trinidade T, Pascoal Neto C (2008) Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolyte assembly. Compos Sci Technol 68:1088–1093CrossRefGoogle Scholar
  64. 64.
    Gonçalves G, Marques PAAP, Pinto RJB, Trindade T, Pascoal Neto C (2009) Surface modification of cellulosic fibers for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69:1051–1056CrossRefGoogle Scholar
  65. 65.
    Pinto RJB, Marques PAAP, Pascoal Neto C, Trinidade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289CrossRefGoogle Scholar
  66. 66.
    Dong H, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1:797–803CrossRefGoogle Scholar
  67. 67.
    Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, Rei Vilar M (2010) Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26:1996–2001CrossRefGoogle Scholar
  68. 68.
    Martins N, Freire C, Pinto R, Fernandes S, PascoalNeto C, Silvestre A, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436CrossRefGoogle Scholar
  69. 69.
    Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A 417:111–119CrossRefGoogle Scholar
  70. 70.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  71. 71.
    Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  72. 72.
    Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 2010(11):1696–1700CrossRefGoogle Scholar
  73. 73.
    Ott G, Schempp W, Krause T (1989) Production of cationic cellulose ofhigh substitution grades in the system lithium-chloride/dimethylacetamide. Papier 43:694–699Google Scholar
  74. 74.
    Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264CrossRefGoogle Scholar
  75. 75.
    Prado HJ, Matulewicz MC (2014) Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J 52:53–75CrossRefGoogle Scholar
  76. 76.
    Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRefGoogle Scholar
  77. 77.
    Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406CrossRefGoogle Scholar
  78. 78.
    Olszewska A, Eronen P, Johansson L-S, Malho J-M, Ankerfors M, Lindström T, Ruokolainen J, Laine J, Österberg M (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18:1213–1226CrossRefGoogle Scholar
  79. 79.
    Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341CrossRefGoogle Scholar
  80. 80.
    Sobkowicz MJ, Braun B, Dorgan JR (2009) Decorating in green: surface esterification of carbon and cellulosic nanoparticles. Green Chem 11:680–682CrossRefGoogle Scholar
  81. 81.
    Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 2012(5):2319–2322CrossRefGoogle Scholar
  82. 82.
    Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151CrossRefGoogle Scholar
  83. 83.
    Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309–11317CrossRefGoogle Scholar
  84. 84.
    Çetin NS, Tingaut P, Oezmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003CrossRefGoogle Scholar
  85. 85.
    Missoum K, Belgacem MN, Barnes JP, Brochier-Salon MC, Bras J (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8:8338–8349CrossRefGoogle Scholar
  86. 86.
    Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’hommeand R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227CrossRefGoogle Scholar
  87. 87.
    Siqueira G, Bras J, Follain N, Belbekhouche S, Maraisand S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffacylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717CrossRefGoogle Scholar
  88. 88.
    Follain N, Belbekhouche S, Bras J, Siqueira G, Maraisand S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffacylindrica cellulose nanocrystals. J Membr Sci 427:218–229CrossRefGoogle Scholar
  89. 89.
    Missoum K, Bras J, Belgacem M (2012) Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose 19:1957–1973CrossRefGoogle Scholar
  90. 90.
    Tonoli GHD, Belgacem MN, Siqueira G, Bras J, Savastano H Jr, Rocco Lahr FA (2013) Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem Concr Compos 37:68–75CrossRefGoogle Scholar
  91. 91.
    Tonoli GHD, Mendes RF, Siqueira G, Bras J, Belgacem MN, Savastano H Jr (2013) Isocyanate-treated cellulose pulp and its effecton the alkali resistance and performance of fiber cement composites. Holzforschung 67:853–861CrossRefGoogle Scholar
  92. 92.
    Rueda L, Fernández d’Arlas B, Zhou Q, Berglund LA, Corcuera MA, Mondragon I, Eceiza A (2011) Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Compos Sci Technol 71:1953–1960CrossRefGoogle Scholar
  93. 93.
    de Oliveira Taipina M, Ferrarezi M, Yoshida I, Goncalves MD (2012) Cellulose 20:217–226CrossRefGoogle Scholar
  94. 94.
    Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575CrossRefGoogle Scholar
  95. 95.
    Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRefGoogle Scholar
  96. 96.
    Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRefGoogle Scholar
  97. 97.
    Andresen M, Stenius P (2007) Water‐in‐oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:837–844CrossRefGoogle Scholar
  98. 98.
    Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRefGoogle Scholar
  99. 99.
    Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  100. 100.
    Cervin NT, Aulin C, Larsson PT, Waagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRefGoogle Scholar
  101. 101.
    Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511CrossRefGoogle Scholar
  102. 102.
    Frone AN, Berlioz S, Chailan JF, Panaitescu DM, Donescu D (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985CrossRefGoogle Scholar
  103. 103.
    Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549CrossRefGoogle Scholar
  104. 104.
    Yang Q, Pan X (2010) A facile approach for fabricating fluorescent cellulose. J Appl Polym Sci 117:3639–3644Google Scholar
  105. 105.
    Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21:16066–16076CrossRefGoogle Scholar
  106. 106.
    Huang J-L, Li C-J, Gray DG (2014) Functionalization of cellulose nanocrystals films via “thiol-ene” click reaction. RSC Adv 4:6965–6969CrossRefGoogle Scholar
  107. 107.
    Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931CrossRefGoogle Scholar
  108. 108.
    Pahimanolis N, Hippi U, Johansson L-S, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212CrossRefGoogle Scholar
  109. 109.
    Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12:3528–3539CrossRefGoogle Scholar
  110. 110.
    Eyley S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47:4177–4179CrossRefGoogle Scholar
  111. 111.
    Young R, Aubrecht KB, Ma H, Wang R, Grubbs RB, Hsiao BS, Chu B (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 55:1167–1176CrossRefGoogle Scholar
  112. 112.
    Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibriels: from strong materials to bioactive surfaces. J Renew Mater 1:195–211CrossRefGoogle Scholar
  113. 113.
    Orelma H, Filpponen H, Johansson L-S, Österberg M, Rojas OJ, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoessays and diagnostics. Biointerphases 7:61–72CrossRefGoogle Scholar
  114. 114.
    Junka K, Guo J, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose nanifibrils with luminescent carbon dots. Biomacromolecules 15(3):876–881CrossRefGoogle Scholar
  115. 115.
    Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materialsin aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13(3):736–742CrossRefGoogle Scholar
  116. 116.
    Junka K, Filpponen I, Johansson LS, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115CrossRefGoogle Scholar
  117. 117.
    Lokanathan AR, Nykänen A, Seitsonen J, Johansson L-S, Campbell J, Rojas OJ, Ikkala O, Laine J (2013) Cilia-mimetic hairy surfaces based on end-immobilized colloidal rods. Biomacromolecules 14:2807–2813CrossRefGoogle Scholar
  118. 118.
    Gandini A, Botaro VR, Zeno E, Bach S (2001) Activation of solid polymer surfaces with bifunctional reagents. Polym Int 50:7–11CrossRefGoogle Scholar
  119. 119.
    Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Surface functionalization of cellulose fibers and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201CrossRefGoogle Scholar
  120. 120.
    Carlmark A, Larsson E, Malmstrom E (2012) Grafting of cellulose by ring-opening polymerisation – a review. Eur Polym J 48:1646–1659CrossRefGoogle Scholar
  121. 121.
    Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  122. 122.
    Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRefGoogle Scholar
  123. 123.
    Littunen K, Hippi U, Johansson L-S, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047CrossRefGoogle Scholar
  124. 124.
    Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123CrossRefGoogle Scholar
  125. 125.
    Zhou C, Wu Q, Zhang Q (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255CrossRefGoogle Scholar
  126. 126.
    Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480CrossRefGoogle Scholar
  127. 127.
    Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286CrossRefGoogle Scholar
  128. 128.
    Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson L-S, Efimenko K, Osterberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691CrossRefGoogle Scholar
  129. 129.
    Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006CrossRefGoogle Scholar
  130. 130.
    Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312CrossRefGoogle Scholar
  131. 131.
    Xiao M, Li S, Chanklin W, Zheng A, Xiao H (2011) Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519CrossRefGoogle Scholar
  132. 132.
    Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules 14:2063–2073CrossRefGoogle Scholar
  133. 133.
    Yuan W, Yuan J, Zhang F, Xie X (2007) Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly (e-caprolactone)-block-poly (L-lactide) copolymers by sequential ring-opening polymerization. Biomacromolecules 8(4):1101–1108CrossRefGoogle Scholar
  134. 134.
    Goffin A-L, Habibi Y, Raquez J-M, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4:3364–3371CrossRefGoogle Scholar
  135. 135.
    Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRefGoogle Scholar
  136. 136.
    Ly EB, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120:438–445CrossRefGoogle Scholar
  137. 137.
    Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRefGoogle Scholar
  138. 138.
    Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546CrossRefGoogle Scholar
  139. 139.
    Yao X, Qi X, He Y, Tan D, Chen F, Fu Q (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507CrossRefGoogle Scholar
  140. 140.
    Svagan AJ, Musyanovych A, Kappl M, Bernhardt M, Glasser G, Wohnhaas C, Berglund LA, Risbo J, Landfester K (2014) Cellulose nanofiber/nanocrystal reinforced capsules: a fast and facile approach toward assembly of liquid-core capsules with high mechanical stability. Biomacromolecules 15:1852–1859CrossRefGoogle Scholar
  141. 141.
    Cusola O, Tabary N, Belgacem MN, Bras J (2013) Cyclodextrin functionalization of several cellulosic substrates for prolonged release of antibacterial agents. J Appl Polym Sci 129:604–613CrossRefGoogle Scholar
  142. 142.
    Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766CrossRefGoogle Scholar
  143. 143.
    Ward IM, Hine PJ (1997) Novel composites by hot compaction of fibers. Polym Eng Sci 37:1809–1814CrossRefGoogle Scholar
  144. 144.
    Ward IM, Hine PJ (2004) The science and technology of hot compaction. Polymer 45:1413–1427CrossRefGoogle Scholar
  145. 145.
    Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  146. 146.
    Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716CrossRefGoogle Scholar
  147. 147.
    Soykeabkaew N, Arimoto N, Nishno T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207CrossRefGoogle Scholar
  148. 148.
    Soykeabkaew N, Sian C, Gea S, Nishno T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRefGoogle Scholar
  149. 149.
    Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 2005(46):10221–10225CrossRefGoogle Scholar
  150. 150.
    Gindl W, Schoberl T, Keckes J (2006) Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. J Appl Phys A Mater Sci Proc 83:19–22CrossRefGoogle Scholar
  151. 151.
    Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320CrossRefGoogle Scholar
  152. 152.
    Duchemin BJC, Newman RH, Staiger MP (2009) Structure–property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230CrossRefGoogle Scholar
  153. 153.
    Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221CrossRefGoogle Scholar
  154. 154.
    Gandini A, Curvelo AAS, Pasquini D, de Menezes AJ (2005) Direct transformation of cellulose fibres into self-reinforced composites by partial oxypropylation. Polymer 46:10611–10613CrossRefGoogle Scholar
  155. 155.
    Belgacem MN, Gandini A (2008) Partial or total oxypropylation of natural polymers and the use of the ensuing materials as composites or polyolmacromonomers. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, AmsterdamGoogle Scholar
  156. 156.
    DeMenezes AJ, Pasquini D, Curvelo AAS, Gandini A (2008) Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 1. Characterization of the materials obtained with different types of fibers. Carbohydr Polym 76:437–442CrossRefGoogle Scholar
  157. 157.
    de Menezes AJ, Pasquini D, Curvelo AAS, Gandini A (2007) Novel thermoplastic materials based on the outer-shelloxypropylation of corn starch granules. Biomacromolecules 8:2047–2050CrossRefGoogle Scholar
  158. 158.
    de Menezes AJ, Pasquini D, Curvelo AAS, Gandini A (2009) Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties. Cellulose 16:238–246CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The International School of Paper, Print Media and Biomaterials (Pagora), Grenoble Polytechnic InstituteSaint Martin d’Hères CedexFrance

Personalised recommendations