Advertisement

Biginelli Multicomponent Reactions in Polymer Science

  • Lei TaoEmail author
  • Chongyu Zhu
  • Yen Wei
  • Yuan Zhao
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 269)

Abstract

The Biginelli reaction, a three-component cyclocondensation reaction, is an important member of the multicomponent reaction (MCR) family. The Biginelli reaction is so efficient and shares many similar properties as the recent click reactions. In this chapter, we summarised the current applications of the Biginelli reaction in polymer chemistry including polymer coupling, post polymer modification, and new functional polymer synthesis. We expect this ‘old’ reaction (>120 years) can draw attention from polymer chemists and play new roles in the polymer science.

Keywords

Biginelli reaction Click reaction MCR Polymer synthesis and modification PPM 

References

  1. 1.
    Tron GC, Minassi A, Appendino G (2011) Eur J Org Chem 2011:5541–5550Google Scholar
  2. 2.
    Aron ZD, Overman LE (2004) Chem Commun 2004:253–265Google Scholar
  3. 3.
    Kappe CO (2000) Acc Chem Res 33:879–888Google Scholar
  4. 4.
    Dharma Rao GB, Anjaneyulu B, Kaushik MP (2014) Tetrahedron Lett 55:19–22Google Scholar
  5. 5.
    Oliverio M, Costanzo P, Nardi M, Rivalta I, Procopio A (2014) ACS Sustainable Chem Eng 2:1228–1233Google Scholar
  6. 6.
    Kappe CO (2000) Eur J Med Chem 35:1043–1052Google Scholar
  7. 7.
    Sandhu JS (2012) Arkivoc 1:66–133Google Scholar
  8. 8.
    Sabitha G, Kiran Kumar Reddy GS, Reddy S, Yadav JS (2003) Synlett 2003:0858–0860Google Scholar
  9. 9.
    Bose AK, Manhas MS, Pednekar S, Ganguly SN, Dang H, He W, Mandadi A (2005) Tetrahedron Lett 46:1901–1903Google Scholar
  10. 10.
    Panda SS, Khanna P, Khanna L (2012) Curr Org Chem 16:507–520Google Scholar
  11. 11.
    Warekar PP, Kolekar GB, Deshmukh MB, Anbhule PV (2014) Synth Commun 44:3594–3601Google Scholar
  12. 12.
    Kappe CO (2003) QSAR Comb Sci 22:630–645Google Scholar
  13. 13.
    Stadler A, Kappe CO (2001) J Comb Chem 3:624–630Google Scholar
  14. 14.
    Sabitha G, Reddy GS, Reddy KB, Yadav JS (2003) Tetrahedron Lett 44:6497–6499Google Scholar
  15. 15.
    Khanetskyy B, Dallinger D, Kappe CO (2004) J Comb Chem 6:884–892Google Scholar
  16. 16.
    Wipf P, Cunningham A (1995) Tetrahedron Lett 36:7819–7822Google Scholar
  17. 17.
    Cushman M, Nagarathnam D, Burg DL, Geahlen RL (1991) J Med Chem 34:798–806Google Scholar
  18. 18.
    Rovnyak GC, Atwal KS, Hedberg A, Kimball SD, Moreland S, Gougoutas JZ, O’Reilly BC, Schwartz J, Malley MF (1992) J Med Chem 35:3254–3263Google Scholar
  19. 19.
    Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, Brosse CD, Mai S, Truneh A, Carte B (1995) J Org Chem 60:1182–1188Google Scholar
  20. 20.
    Jadhav VB, Holla HV, Tekale SU, Pawar RP (2012) Der Chem Sin 3:1213–1228Google Scholar
  21. 21.
    Grover GJ, Dzwonczyk S, McMullen DM, Normandin DE, Parham CS, Sleph PG, Moreland S (1995) J Cardiovasc Pharmacol 26:289–294Google Scholar
  22. 22.
    Chikhale RV, Bhole RP, Khedekar PB, Bhusari KP (2009) Eur J Med Chem 44:3645–3653Google Scholar
  23. 23.
    Marvaniya HM, Parikh PK, Sen DJ (2011) J Appl Pharm Sci 1:109–113Google Scholar
  24. 24.
    Lewis RW, Mabry J, Polisar JG, Eagen KP, Ganem B, Hess GP (2010) Biochemistry 49:4841–4851Google Scholar
  25. 25.
    Trivedi AR, Bhuva VR, Dholariya BH, Dodiya DK, Kataria VB, Shah VH (2010) Bioorg Med Chem Lett 20:6100–6102Google Scholar
  26. 26.
    Chiang AN, Valderramos J-C, Balachandran R, Chovatiya RJ, Mead BP, Schneider C, Bell SL, Klein MG, Huryn DM, Chen XS, Day BW, Fidock DA, Wipf P, Brodsky JL (2009) Bioorg Med Chem Lett 17:1527–1533Google Scholar
  27. 27.
    Ravendra Babu K, Koteswara Rao V, Nanda Kumar Y, Polireddy K, Venkata Subbaiah K, Bhaskar M, Lokanatha V, Naga Raju C (2012) Antiviral Res 95:118–127Google Scholar
  28. 28.
    Deshmukh MB, Salunkhe SM, Patil DR, Anbhule PV (2009) Eur J Med Chem 44:2651–2654Google Scholar
  29. 29.
    Chitra S, Devanathan D, Pandiarajan K (2010) Eur J Med Chem 45:367–371Google Scholar
  30. 30.
    Tawfik HA, Bassyouni F, Gamal-Eldeen AM, Abo-Zeid MA, El-Hamouly WS (2009) Pharmacol Rep 61:1153–1162Google Scholar
  31. 31.
    Agbaje OC, Fadeyi OO, Fadeyi SA, Myles LE, Okoro CO (2011) Bioorg Med Chem Lett 21:989–992Google Scholar
  32. 32.
    Bose DS, Sudharshan M, Chavhan SW (2005) Arkivoc 3:228–236Google Scholar
  33. 33.
    Li N, Chen X-H, Song J, Luo S-W, Fan W, Gong L-Z (2009) J Am Chem Soc 131:15301–15310Google Scholar
  34. 34.
    Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y (2013) Polym Chem 4:5395–5400Google Scholar
  35. 35.
    Jenner G (2004) Tetrahedron Lett 45:6195–6198Google Scholar
  36. 36.
    Pramanik T, Wani TA, Singh A (2013) Orient J Chem 29:1209–1212Google Scholar
  37. 37.
    Khaleghi S, Heravi MM, Khosroshahi M, Kargar Behbahani F, Daroogheha Z (2008) Green Chem Lett Rev 1:133–139Google Scholar
  38. 38.
    Martínez J, Romero-Vega S, Abeja-Cruz R, Álvarez-Toledano C, Miranda R (2013) Int J Mol Sci 14:2903–2915Google Scholar
  39. 39.
    Kefayati H, Rad-Moghadam K, Zamani M, Hosseyni S (2010) Lett Org Chem 7:277–282Google Scholar
  40. 40.
    Svĕtlík J, Veizerová L (2011) Helv Chim Acta 94:199–205Google Scholar
  41. 41.
    Dzvinchuk IB, Makitruk TV, Lozinskii MO (2002) Chem Heterocycl Compd 38:1000–1007Google Scholar
  42. 42.
    Nadaraj V, Thamarai Selvi S, Abirami M, Daniel Thangadurai T (2014) Res J Recent Sci 3:370–374Google Scholar
  43. 43.
    Remennikov GY (1997) Chem Heterocycl Compd 33:1369–1381Google Scholar
  44. 44.
    Gong D, Zhang L, Yuan C (2003) Heteroat Chem 14:13–17Google Scholar
  45. 45.
    Vdovina SV, Mamedov VA (2008) Russ Chem Rev 77:1017Google Scholar
  46. 46.
    Essid I, Touil S (2013) Arkivoc 4:98–106Google Scholar
  47. 47.
    Nilsson BL, Overman LE (2006) J Org Chem 71:7706–7714Google Scholar
  48. 48.
    Alvim HGO, Lima TB, de Oliveira AL, de Oliveira HCB, Silva FM, Gozzo FC, Souza RY, da Silva WA, Neto BAD (2014) J Org Chem 79:3383–3397Google Scholar
  49. 49.
    Kundu SK, Majee A, Hajra A (2009) Indian J Chem 48:408–412Google Scholar
  50. 50.
    Dewan M, Kumar A, Saxena A, De A, Mozumdar S (2012) PLoS One 7:e43078Google Scholar
  51. 51.
    Bose DS, Fatima L, Mereyala HB (2003) J Org Chem 68:587–590Google Scholar
  52. 52.
    Dong F, Jun L, Xinli Z, Zhiwen Y, Zuliang L (2007) J Mol Catal A Chem 274:208–211Google Scholar
  53. 53.
    Alvim HGO, de Lima TB, de Oliveira HCB, Gozzo FC, de Macedo JL, Abdelnur PV, Silva WA, Neto BAD (2013) ACS Catal 3:1420–1430Google Scholar
  54. 54.
    Isambert N, Duque MdMS, Plaquevent J-C, Genisson Y, Rodriguez J, Constantieux T (2011) Chem Soc Rev 40:1347–1357Google Scholar
  55. 55.
    Tu S, Fang F, Zhu S, Li T, Zhang X, Zhuang Q (2004) Synlett 15:537–539Google Scholar
  56. 56.
    Yu Y, Liu D, Liu C, Jiang H, Luo G (2007) Prep Biochem Biotechnol 37:381–387Google Scholar
  57. 57.
    Salim SD, Akamanchi KG (2011) Catal Commun 12:1153–1156Google Scholar
  58. 58.
    Liberto NA, de Paiva Silva S, de Fátima Â, Fernandes SA (2013) Tetrahedron 69:8245–8249Google Scholar
  59. 59.
    Zhidovinova MS, Fedorova OV, Rusinov GL, Ovchinnikova IG (2003) Russ Chem Bull 52:2527–2528Google Scholar
  60. 60.
    Liu C-J, Wang J-D (2010) Molecules 15:2087–2095Google Scholar
  61. 61.
    Dallinger D, Kappe CO (2007) Nat Protoc 2:317–321Google Scholar
  62. 62.
    Harikrishnan PS, Rajesh SM, Perumal S, Almansour AI (2013) Tetrahedron Lett 54:1076–1079Google Scholar
  63. 63.
    Bose AK, Pednekar S, Ganguly SN, Chakraborty G, Manhas MS (2004) Tetrahedron Lett 45:8351–8353Google Scholar
  64. 64.
    Jayakumar S, Shabeer TK (2011) J Chem Pharm Res 3:1089–1096Google Scholar
  65. 65.
    Franzén RG (2000) J Comb Chem 2:195–214Google Scholar
  66. 66.
    Thompson LA (2000) Curr Opin Chem Biol 4:324–337Google Scholar
  67. 67.
    Xia M, Wang Y-G (2002) Tetrahedron Lett 43:7703–7705Google Scholar
  68. 68.
    Wang X, Quan Z, Wang F, Wang M, Zhang Z, Li Z (2006) Synth Commun 36:451–456Google Scholar
  69. 69.
    Lei M, Wu D-D, Wei H-G, Wang Y-G (2009) Synth Commun 39:475–483Google Scholar
  70. 70.
    Eynde JJV, Watté O (2003) Arkivoc 4:93–101Google Scholar
  71. 71.
    Wang Z-T, Wang S-C, Xu L-W (2005) Helv Chim Acta 88:986–989Google Scholar
  72. 72.
    Valverde MG, Dallinger D, Kappe CO (2001) Synlett 2001:0741–0744Google Scholar
  73. 73.
    Qin A, Lam JWY, Tang BZ (2010) Chem Soc Rev 39:2522–2544Google Scholar
  74. 74.
    Quemener D, Davis TP, Barner-Kowollik C, Stenzel MH (2006) Chem Commun 2006:5051–5053Google Scholar
  75. 75.
    Gauthier MA, Gibson MI, Klok H-A (2009) Angew Chem Int Ed 48:48–58Google Scholar
  76. 76.
    Kakuchi R (2014) Angew Chem Int Ed 53:46–48Google Scholar
  77. 77.
    Lowe AB (2014) Polym Chem 5:4820–4870Google Scholar
  78. 78.
    Billiet S, De Bruycker K, Driessen F, Goossens H, Van Speybroeck V, Winne JM, Prez FED (2014) Nat Chem 6:815–821Google Scholar
  79. 79.
    Tasdelen MA (2011) Polym Chem 2:2133–2145Google Scholar
  80. 80.
    Binder WH, Sachsenhofer R (2008) Macromol Rapid Commun 29:952–981Google Scholar
  81. 81.
    Gody G, Rossner C, Moraes J, Vana P, Maschmeyer T, Perrier S (2012) J Am Chem Soc 134:12596–12603Google Scholar
  82. 82.
    Hensarling RM, Rahane SB, LeBlanc AP, Sparks BJ, White EM, Locklin J, Patton DL (2011) Polym Chem 2:88–90Google Scholar
  83. 83.
    Kobayashi S, Makino A (2009) Chem Rev 109:5288–5353Google Scholar
  84. 84.
    Kreye O, Tóth T, Meier MAR (2011) J Am Chem Soc 133:1790–1792Google Scholar
  85. 85.
    Sehlinger A, Kreye O, Meier MAR (2013) Macromolecules 46:6031–6037Google Scholar
  86. 86.
    Solleder SC, Meier MAR (2014) Angew Chem Int Ed 53:711–714Google Scholar
  87. 87.
    Deng X-X, Cui Y, Du F-S, Li Z-C (2014) Polym Chem 5:3316–3320Google Scholar
  88. 88.
    Robotham C, Baker C, Cuevas B, Abboud K, Wright D (2003) Mol Diversity 6:237–244Google Scholar
  89. 89.
    Yang B, Zhao Y, Fu C, Zhu C, Zhang Y, Wang S, Wei Y, Tao L (2014) Polym Chem 5:2704–2708Google Scholar
  90. 90.
    Sehlinger A, Schneider R, Meier MAR (2014) Macromol Rapid Commun 35:1866–1871Google Scholar
  91. 91.
    McDonald CJ, Beaver RH (1979) Macromolecules 12:203–208Google Scholar
  92. 92.
    Ning X, Ishida H (1994) J Polym Sci Part A Polym Chem 32:1121–1129Google Scholar
  93. 93.
    Grimaldi S, Finet J-P, Le Moigne F, Zeghdaoui A, Tordo P, Benoit D, Fontanille M, Gnanou Y (2000) Macromolecules 33:1141–1147Google Scholar
  94. 94.
    Tai Q, Song L, Hu Y, Yuen RKK, Feng H, Tao Y (2012) Mater Chem Phys 134:163–169Google Scholar
  95. 95.
    Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L (2014) Polym Chem 5:1857–1862Google Scholar
  96. 96.
    Kakuchi R, Theato P (2014) ACS Macro Lett 3:329–332Google Scholar
  97. 97.
    Dharma Rao GB, Acharya BN, Kaushik MP (2013) Tetrahedron Lett 54:6644–6647Google Scholar
  98. 98.
    Novokshonov VV, Novokshonova IA, Nguyen HTT, Medvedeva AS (2011) Synth Commun 42:2346–2354Google Scholar
  99. 99.
    Salehi P, Dabiri M, Koohshari M, Movahed S, Bararjanian M (2011) Mol Diversity 15:833–837Google Scholar
  100. 100.
    Li M, De P, Gondi SR, Sumerlin BS (2008) J Polym Sci Part A Polym Chem 46:5093–5100Google Scholar
  101. 101.
    Koo SPS, Stamenović MM, Prasath RA, Inglis AJ, Prez FED, Barner-Kowollik C, Van Camp W, Junkers T (2010) J Polym Sci Part A Polym Chem 48:1699–1713Google Scholar
  102. 102.
    Hansell CF, Espeel P, Stamenovic MM, Barker IA, Dove AP, Prez FED, O’Reilly RK (2011) J Am Chem Soc 133:13828–13831Google Scholar
  103. 103.
    Levinger DC, Stevenson J-A, Wong L-L (1995) J Chem Soc Chem Commun 1995:2305–2306Google Scholar
  104. 104.
    Ponamarev MV, Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2002) J Biol Chem 277:15225–15228Google Scholar
  105. 105.
    Barford D, Das AK, Egloff M-P (1998) Annu Rev Biophys Biomol Struct 27:133–164Google Scholar
  106. 106.
    Thomas M, Dadgar N, Aphale A, Harrell JM, Kunkel R, Pratt WB, Lieberman AP (2004) J Biol Chem 279:8389–8395Google Scholar
  107. 107.
    Garriga P, Liu X, Khorana HG (1996) Proc Natl Acad Sci USA 93:4560–4564Google Scholar
  108. 108.
    Reinicke S, Espeel P, Stamenović MM, Prez FED (2013) ACS Macro Lett 2:539–543Google Scholar
  109. 109.
    Lallana E, Tirelli N (2013) Macromol Chem Phys 214:143–158Google Scholar
  110. 110.
    Funhoff AM, van Nostrum CF, Lok MC, Fretz MM, Crommelin DJA, Hennink WE (2004) Bioconjug Chem 15:1212–1220Google Scholar
  111. 111.
    Ahmed M, Narain R (2013) Prog Polym Sci 38:767–790Google Scholar
  112. 112.
    Wu G, Sun W, Shen Z (2009) Chin J Polym Sci 27:293–296Google Scholar
  113. 113.
    Al-Nasassrah MA, Podczeck F, Newton JM (1998) Eur J Pharm Biopharm 46:31–38Google Scholar
  114. 114.
    Uchida K, Tamura A, Yajima H (2010) Biointerphases 5:17–21Google Scholar
  115. 115.
    Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schubert US (2008) Chem Commun 2008:5758–5760Google Scholar
  116. 116.
    Peter KW, Mary SN, Judy J, Joel BC (1997) Poly(ethylene glycol), vol 680. American Chemical Society, Washington, pp 45–57Google Scholar
  117. 117.
    Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J (2006) Biomaterials 27:1741–1748Google Scholar
  118. 118.
    Günay KA, Theato P, Klok H-A (2012) Functional polymers by post-polymerization modification. Wiley-VCH, Weinheim, pp 1–44Google Scholar
  119. 119.
    Mantovani G, Ladmiral V, Tao L, Haddleton DM (2005) Chem Commun 2005:2089–2091Google Scholar
  120. 120.
    Fu C, Tao L, Zhang Y, Li S, Wei Y (2012) Chem Commun 48:9062–9064Google Scholar
  121. 121.
    Wang S, Fu C, Zhang Y, Tao L, Li S, Wei Y (2012) ACS Macro Lett 1:1224–1227Google Scholar
  122. 122.
    Zhang Y, Fu C, Zhu C, Wang S, Tao L, Wei Y (2013) Polym Chem 4:466–469Google Scholar
  123. 123.
    Nakatani K, Terashima T, Sawamoto M (2009) J Am Chem Soc 131:13600–13601Google Scholar
  124. 124.
    Nakatani K, Ogura Y, Koda Y, Terashima T, Sawamoto M (2012) J Am Chem Soc 134:4373–4383Google Scholar
  125. 125.
    Ogura Y, Terashima T, Sawamoto M (2013) ACS Macro Lett 2:985–989Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations