Advertisement

Metal-Catalyzed Multicomponent Reactions for the Synthesis of Polymers

  • Ryohei KakuchiEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 269)

Abstract

Despite the chemical complexity of multicomponent reactions (MCRs), the dawn of MCRs was fairly early in the history of organic chemistry. After lagging behind successful utilization of MCRs in combinatorial chemistry, the integration of MCRs with polymer chemistry has very recently started, which offers new possibilities in polymer synthesis. In spite of a large number of MCRs available for organic transformation reactions, this chapter describes metal-catalyzed MCRs in the area of polymer chemistry.

Keywords

Multicomponent reactions Organometallic catalysts Polymer synthesis 

Abbreviations

A3-coupling

Metal-catalyzed three-component reactions between alkynes, amines, and aldehydes

CuAAC

Cu(I)-catalyzed cycloaddition reaction between terminal alkynes and azides

CuMCR

Cu(I)-catalyzed multicomponent reaction between terminal alkynes, sulfonyl azides, and nucleophiles

CuSeq

Sequential Cu(I)-catalyzed cycloaddition reaction between alkynes and azides and metal-catalyzed cross-coupling reaction of triazole derivatives

IMCR

Isocyanide-based multicomponent reaction

MC-MCR

Metal-catalyzed multicomponent reaction

References

  1. 1.
    Strecker A (1850) Liebigs Ann Chem 75(1):27–45CrossRefGoogle Scholar
  2. 2.
    Strecker A (1854) Liebigs Ann Chem 91(3):349–351CrossRefGoogle Scholar
  3. 3.
    Biginelli P (1891) Ber Dtsch Chem Ges 24(1):1317–1319CrossRefGoogle Scholar
  4. 4.
    Gewald K, Schinke E, Böttcher H (1966) Chem Ber 99(1):94–100CrossRefGoogle Scholar
  5. 5.
    Van Leusen AM, Wildeman J, Oldenziel OH (1977) J Org Chem 42(7):1153–1159CrossRefGoogle Scholar
  6. 6.
    Hantzsch A (1881) Ber Dtsch Chem Ges 14(2):1637–1638CrossRefGoogle Scholar
  7. 7.
    Mannich C, Krösche W (1912) Arch Pharm 250(1):647–667CrossRefGoogle Scholar
  8. 8.
    Cherkasov RA, Galkin VI (1998) Russ Chem Rev 67(10):857–882CrossRefGoogle Scholar
  9. 9.
    Fields EK (1952) J Am Chem Soc 74(6):1528–1531CrossRefGoogle Scholar
  10. 10.
    Passerini M (1921) Gazz Chim Ital 51(II):181–189Google Scholar
  11. 11.
    Ugi I, Steinbrückner C (1960) Angew Chem 72(7–8):267–268CrossRefGoogle Scholar
  12. 12.
    Ugi I (1962) Angew Chem Int Ed 1(1):8–21CrossRefGoogle Scholar
  13. 13.
    Zhu J, Bienaymé H (eds) (2005) Multicomponent reactions. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
    Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Acc Chem Res 29(3):123–131CrossRefGoogle Scholar
  15. 15.
    Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Chem Rev 114(16):8323–8359CrossRefGoogle Scholar
  16. 16.
    Estevez V, Villacampa M, Menendez JC (2014) Chem Soc Rev 43(13):4633–4657CrossRefGoogle Scholar
  17. 17.
    Cho HY, Morken JP (2014) Chem Soc Rev 43(13):4368–4380CrossRefGoogle Scholar
  18. 18.
    Brauch S, van Berkel SS, Westermann B (2013) Chem Soc Rev 42(12):4948–4962CrossRefGoogle Scholar
  19. 19.
    Nair V, Menon RS, Biju AT, Abhilash KG (2012) Chem Soc Rev 41(3):1050–1059CrossRefGoogle Scholar
  20. 20.
    Marson CM (2012) Chem Soc Rev 41(23):7712–7722CrossRefGoogle Scholar
  21. 21.
    Dömling A, Wang W, Wang K (2012) Chem Rev 112(6):3083–3135CrossRefGoogle Scholar
  22. 22.
    de Graaff C, Ruijter E, Orru RVA (2012) Chem Soc Rev 41(10):3969–4009CrossRefGoogle Scholar
  23. 23.
    Estevez V, Villacampa M, Menendez JC (2010) Chem Soc Rev 39(11):4402–4421CrossRefGoogle Scholar
  24. 24.
    González-López M, Shaw JT (2009) Chem Rev 109(1):164–189CrossRefGoogle Scholar
  25. 25.
    Tejedor D, Garcia-Tellado F (2007) Chem Soc Rev 36(3):484–491CrossRefGoogle Scholar
  26. 26.
    Dömling A (2005) Chem Rev 106(1):17–89CrossRefGoogle Scholar
  27. 27.
    Brown ED, Wright GD (2005) Chem Rev 105(2):759–774CrossRefGoogle Scholar
  28. 28.
    Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C (2011) Chem Rev 111(11):6919–6946CrossRefGoogle Scholar
  29. 29.
    Kassel DB (2001) Chem Rev 101(2):255–268CrossRefGoogle Scholar
  30. 30.
    Theato P, Klok H-A (eds) (2012) Functional polymers by post-polymerization modification: concepts, guidelines, and applications. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Chu C, Liu R (2011) Chem Soc Rev 40(5):2177–2188CrossRefGoogle Scholar
  32. 32.
    Fournier D, Hoogenboom R, Schubert US (2007) Chem Soc Rev 36(8):1369–1380CrossRefGoogle Scholar
  33. 33.
    Franc G, Kakkar AK (2010) Chem Soc Rev 39(5):1536–1544CrossRefGoogle Scholar
  34. 34.
    Golas PL, Matyjaszewski K (2010) Chem Soc Rev 39(4):1338–1354CrossRefGoogle Scholar
  35. 35.
    Hoyle CE, Lowe AB, Bowman CN (2010) Chem Soc Rev 39(4):1355–1387CrossRefGoogle Scholar
  36. 36.
    Jewett JC, Bertozzi CR (2010) Chem Soc Rev 39(4):1272–1279CrossRefGoogle Scholar
  37. 37.
    Qin A, Lam JWY, Tang BZ (2010) Chem Soc Rev 39(7):2522–2544CrossRefGoogle Scholar
  38. 38.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40(11):2004–2021CrossRefGoogle Scholar
  39. 39.
    Lowe AB (2010) Polym Chem 1(1):17–36CrossRefGoogle Scholar
  40. 40.
    Theato P (2008) J Polym Sci A 46(20):6677–6687CrossRefGoogle Scholar
  41. 41.
    Manetsch R, Krasiński A, Radić Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) J Am Chem Soc 126(40):12809–12818CrossRefGoogle Scholar
  42. 42.
    Kakuchi R (2014) Angew Chem Int Ed 53(1):46–48CrossRefGoogle Scholar
  43. 43.
    Rudick JG (2013) J Polym Sci A 51(19):3985–3991CrossRefGoogle Scholar
  44. 44.
    Groebke K, Weber L, Mehlin F (1998) Synlett 1998(06):661–663CrossRefGoogle Scholar
  45. 45.
    Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Tetrahedron Lett 39(22):3635–3638CrossRefGoogle Scholar
  46. 46.
    Bienaymé H, Bouzid K (1998) Angew Chem Int Ed 37(16):2234–2237CrossRefGoogle Scholar
  47. 47.
    Petasis NA, Akritopoulou I (1993) Tetrahedron Lett 34(4):583–586CrossRefGoogle Scholar
  48. 48.
    Petasis NA, Zavialov IA (1997) J Am Chem Soc 119(2):445–446CrossRefGoogle Scholar
  49. 49.
    Petasis NA, Zavialov IA (1998) J Am Chem Soc 120(45):11798–11799CrossRefGoogle Scholar
  50. 50.
    Povarov LS (1967) Russ Chem Rev 36(9):656CrossRefGoogle Scholar
  51. 51.
    Döbner O (1887) Liebigs Ann Chem 242(3):265–289CrossRefGoogle Scholar
  52. 52.
    Catellani M (2003) Synlett 2003(03):0298–0313CrossRefGoogle Scholar
  53. 53.
    Sakurai H, Sasaki K, Hayashi J, Hosomi A (1984) J Org Chem 49(15):2808–2809CrossRefGoogle Scholar
  54. 54.
    Wei C, Li Z, Li C-J (2004) Synlett 2004(09):1472–1483Google Scholar
  55. 55.
    Bae I, Han H, Chang S (2005) J Am Chem Soc 127(7):2038–2039CrossRefGoogle Scholar
  56. 56.
    Pirrung MC, Ghorai S (2006) J Am Chem Soc 128(36):11772–11773CrossRefGoogle Scholar
  57. 57.
    Ugi I, Fetzer U, Eholzer U, Knupfer H, Offermann K (1965) Angew Chem Int Ed 4(6):472–484CrossRefGoogle Scholar
  58. 58.
    Corbet J-P, Mignani G (2006) Chem Rev 106(7):2651–2710CrossRefGoogle Scholar
  59. 59.
    Jana R, Pathak TP, Sigman MS (2011) Chem Rev 111(3):1417–1492CrossRefGoogle Scholar
  60. 60.
    Miyaura N, Suzuki A (1995) Chem Rev 95(7):2457–2483CrossRefGoogle Scholar
  61. 61.
    Kreye O, Tóth T, Meier MAR (2011) J Am Chem Soc 133(6):1790–1792CrossRefGoogle Scholar
  62. 62.
    Jee J-A, Spagnuolo LA, Rudick JG (2012) Org Lett 14(13):3292–3295CrossRefGoogle Scholar
  63. 63.
    Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C (2012) ACS Macro Lett 1(11):1300–1303CrossRefGoogle Scholar
  64. 64.
    Lutz J-F (2010) Nat Chem 2(2):84–85CrossRefGoogle Scholar
  65. 65.
    Lutz J-F, Ouchi M, Liu DR, Sawamoto M (2013) Science 341(6146): 628. doi:10.1126/science.1238149Google Scholar
  66. 66.
    Lutz J-F (2013) Acc Chem Res 46(11):2696–2705CrossRefGoogle Scholar
  67. 67.
    Kreye O, Türünç O, Sehlinger A, Rackwitz J, Meier MAR (2012) Chem Eur J 18(18):5767–5776CrossRefGoogle Scholar
  68. 68.
    Yang B, Zhao Y, Fu C, Zhu C, Zhang Y, Wang S, Wei Y, Tao L (2014) Polym Chem 5(8):2704CrossRefGoogle Scholar
  69. 69.
    Sehlinger A, Meier MAR (2015) Passerini and Ugi multicomponent reactions in polymer science. Adv Polym Sci. doi: 10.1007/12_2014_298 Google Scholar
  70. 70.
    Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y (2013) Polym Chem 4(21):5395–5400CrossRefGoogle Scholar
  71. 71.
    Zhao Y, Yang B, Zhu CY, Zhang YL, Wang SQ, Fu CK, Wei Y, Tao L (2014) Polym Chem 5(8):2695–2699CrossRefGoogle Scholar
  72. 72.
    Kakuchi R, Theato P (2014) ACS Macro Lett 3(4):329–332CrossRefGoogle Scholar
  73. 73.
    Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L (2014) Polym Chem 5(6):1857CrossRefGoogle Scholar
  74. 74.
    Chan CYK, Tseng N-W, Lam JWY, Liu J, Kwok RTK, Tang BZ (2013) Macromolecules 46(9):3246–3256CrossRefGoogle Scholar
  75. 75.
    Liu Y, Gao M, Lam JWY, Hu R, Tang BZ (2014) Macromolecules 47(15):4908–4919CrossRefGoogle Scholar
  76. 76.
    Sharma A, Mejía D, Regnaud A, Uhlig N, Li C-J, Maysinger D, Kakkar A (2014) ACS Macro Lett 3(10):1079–1083CrossRefGoogle Scholar
  77. 77.
    Miyaki N, Tomita I, Endo T (1996) Macromolecules 29(21):6685–6690CrossRefGoogle Scholar
  78. 78.
    Miyaki N, Tomita I, Endo T (1997) J Polym Sci A 35(7):1211–1218CrossRefGoogle Scholar
  79. 79.
    Miyaki N, Tomita I, Kido J, Endo T (1997) Macromolecules 30(15):4504–4506CrossRefGoogle Scholar
  80. 80.
    Choi C-K, Tomita I, Endo T (2000) Macromolecules 33(5):1487–1488CrossRefGoogle Scholar
  81. 81.
    Ishibe S, Tomita I (2005) J Polym Sci A 43(15):3403–3410CrossRefGoogle Scholar
  82. 82.
    Nakagawa K, Tomita I (2007) Macromolecules 40(26):9212–9216CrossRefGoogle Scholar
  83. 83.
    Ihara E, Hara Y, Itoh T, Inoue K (2011) Macromolecules 44(15):5955–5960CrossRefGoogle Scholar
  84. 84.
    Huisgen R (1963) Angew Chem Int Ed 2(10):565–598CrossRefGoogle Scholar
  85. 85.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41(14):2596–2599CrossRefGoogle Scholar
  86. 86.
    Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67(9):3057–3064CrossRefGoogle Scholar
  87. 87.
    Yoo EJ, Ahlquist M, Bae I, Sharpless KB, Fokin VV, Chang S (2008) J Org Chem 73(14):5520–5528CrossRefGoogle Scholar
  88. 88.
    Yoo EJ, Chang S (2009) Curr Org Chem 13(18):1766–1776CrossRefGoogle Scholar
  89. 89.
    Kim SH, Park SH, Choi JH, Chang S (2011) Chem Asian J 6(10):2618–2634CrossRefGoogle Scholar
  90. 90.
    Selander N, Worrell BT, Fokin VV (2012) Angew Chem Int Ed 51(52):13054–13057CrossRefGoogle Scholar
  91. 91.
    Mudraboyina BP, Obadia MM, Abdelhedi-Miladi I, Allaoua I, Drockenmuller E (2014) Eur Polym J (in press). doi: 10.1016/j.eurpolymj.2014.08.025
  92. 92.
    Cassidy MP, Raushel J, Fokin VV (2006) Angew Chem Int Ed 45(19):3154–3157CrossRefGoogle Scholar
  93. 93.
    Stevens MY, Sawant RT, Odell LR (2014) J Org Chem 79(11):4826–4831CrossRefGoogle Scholar
  94. 94.
    Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem Int Ed 48(43):8018–8021CrossRefGoogle Scholar
  95. 95.
    Mc Cartney D, Guiry PJ (2011) Chem Soc Rev 40(10):5122–5150CrossRefGoogle Scholar
  96. 96.
    Kakuchi R, Theato P (2013) ACS Macro Lett 2:419–422CrossRefGoogle Scholar
  97. 97.
    Lee I-H, Kim H, Choi T-L (2013) J Am Chem Soc 135(10):3760–3763CrossRefGoogle Scholar
  98. 98.
    Kim H, Choi T-L (2014) ACS Macro Lett 3(8):791–794CrossRefGoogle Scholar
  99. 99.
    Schwartz E, Breitenkamp K, Fokin VV (2011) Macromolecules 44(12):4735–4741CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Natural System, Institute of Science and EngineeringKanazawa UniversityKanazawaJapan

Personalised recommendations