Passerini and Ugi Multicomponent Reactions in Polymer Science

  • Ansgar Sehlinger
  • Michael A. R. MeierEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 269)


Multicomponent reactions (MCRs) include more than two starting materials and are characterized by highly atom-efficient and straightforward practical procedures. Some of the most important MCRs in organic chemistry are the isocyanide-based MCRs, namely the Passerini three-component and Ugi four-component reaction. These reactions are, for example, often applied in combinatorial and medicinal chemistry due to their easy access to diversity or for the creation of complex structural motifs in the total synthesis of natural products.

Only recently, they also gained great interest in macromolecular chemistry, since the variation of the single components displays an easy tool to adjust the properties of the polymers and facile introduction of functional groups is enabled. Hereby, tailor-made high-performance and smart materials can be obtained, which are currently highly requested for many applications. In order to attain this objective, several strategies are followed: the MCRs are used to synthesize structurally diverse monomers for subsequent polymerization, or by the use of bifunctional components, these reactions are directly utilized as polymerization method. Moreover, the Passerini and Ugi reaction are applied in macromolecular engineering as conjugation method of two kinds of polymers, or as tool for grafting reactions as well as in the creation of defined primary structures. Finally, these valuable reactions are also used in the convergent and divergent synthesis of dendritic architectures.


Biocompatible hydrogels Complex architectures Functionalized vinyl monomers Janus-type dendrimers Modular nature Passerini three-component reaction PEGylation of proteins Photo-responsive polymers Sequence-defined structures Tailor-made materials Ugi four-component reaction 


  1. 1.
    Passerini M (1921) Gazz Chem Ital 51:126–129Google Scholar
  2. 2.
    Ugi I, Steinbrückner C (1960) Über ein neues Kondensations-Prinzip. Angew Chem 72(7–8):267–268CrossRefGoogle Scholar
  3. 3.
    Wessjohann LA, Neves Filho RAW, Rivera DG (2012) Multiple multicomponent reactions with isocyanides. In: Isocyanide chemistry. Wiley-VCH, Weinheim, pp 233–262CrossRefGoogle Scholar
  4. 4.
    Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89CrossRefGoogle Scholar
  5. 5.
    Mumm O (1910) Ber Dtsch Chem Ges 43:886–893CrossRefGoogle Scholar
  6. 6.
    Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112(6):3083–3135CrossRefGoogle Scholar
  7. 7.
    Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12(3):324–331CrossRefGoogle Scholar
  8. 8.
    Weber L (2002) Multi-component reactions and evolutionary chemistry. Drug Discov Today 7(2):143–147CrossRefGoogle Scholar
  9. 9.
    Dai Q, Xie X, Xu S, Ma D, Tang S, She X (2011) Total syntheses of tardioxopiperazine A, isoechinulin A, and variecolorin C. Org Lett 13(9):2302–2305CrossRefGoogle Scholar
  10. 10.
    Takiguchi S, Iizuka T, Kumakura Y-s, Murasaki K, Ban N, Higuchi K, Kawasaki T (2010) Total syntheses of (−)-fructigenine A and (−)-5-N-acetylardeemin. J Org Chem 75(4):1126–1131CrossRefGoogle Scholar
  11. 11.
    Falck JR, Manna S (1981) An intramolecular Passerini reaction: synthesis of hydrastine. Tetrahedron Lett 22(7):619–620CrossRefGoogle Scholar
  12. 12.
    Kakuchi R (2014) Multicomponent reactions in polymer synthesis. Angew Chem Int Ed 53(1):46–48CrossRefGoogle Scholar
  13. 13.
    Rudick JG (2013) Innovative macromolecular syntheses via isocyanide multicomponent reactions. J Polym Sci Part A Polym Chem 51(19):3985–3991CrossRefGoogle Scholar
  14. 14.
    Wang S, Fu C, Wei Y, Tao L (2014) Facile one-pot synthesis of new functional polymers through multicomponent systems. Macromol Chem Phys 215(6):486–492CrossRefGoogle Scholar
  15. 15.
    Rubinshtein M, James CR, Young JL, Ma YJ, Kobayashi Y, Gianneschi NC, Yang J (2010) Facile procedure for generating side chain functionalized poly(α-hydroxy acid) copolymers from aldehydes via a versatile Passerini-type condensation. Org Lett 12(15):3560–3563CrossRefGoogle Scholar
  16. 16.
    Kreye O, Tóth T, Meier MAR (2011) Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc 133(6):1790–1792CrossRefGoogle Scholar
  17. 17.
    Mutlu H, de Espinosa LM, Meier MAR (2011) Acyclic diene metathesis: a versatile tool for the construction of defined polymer architectures. Chem Soc Rev 40(3):1404–1445CrossRefGoogle Scholar
  18. 18.
    Atallah P, Wagener KB, Schulz MD (2013) ADMET: the future revealed. Macromolecules 46(12):4735–4741CrossRefGoogle Scholar
  19. 19.
    Simocko C, Atallah P, Wagener KB (2013) A brief examination of the latest ADMET chemistry. Curr Org Chem 17(22):2749–2763CrossRefGoogle Scholar
  20. 20.
    Mutlu H, Meier MAR (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112(1):10–30CrossRefGoogle Scholar
  21. 21.
    Kolb N, Meier MAR (2013) Grafting onto a renewable unsaturated polyester via thiol–ene chemistry and cross-metathesis. Eur Polym J 49(4):843–852CrossRefGoogle Scholar
  22. 22.
    Kreye O, Trefzger C, Sehlinger A, Meier MAR (2014) Multicomponent reactions with a convertible isocyanide: efficient and versatile grafting of ADMET-derived polymers. Macromol Chem Phys 215(22):2207–2220Google Scholar
  23. 23.
    Sehlinger A, Kreye O, Meier MAR (2013) Tunable polymers obtained from Passerini multicomponent reaction derived acrylate monomers. Macromolecules 46(15):6031–6037CrossRefGoogle Scholar
  24. 24.
    Sehlinger A, de Espinosa LM, Meier MAR (2013) Synthesis of diverse asymmetric α,ω-dienes via the Passerini three-component reaction for head-to-tail ADMET polymerization. Macromol Chem Phys 214(24):2821–2828CrossRefGoogle Scholar
  25. 25.
    Montero de Espinosa M, Meier MAR (2011) Synthesis of star- and block-copolymers using ADMET: head-to-tail selectivity during step-growth polymerization. Chem Commun 47(6):1908–1910CrossRefGoogle Scholar
  26. 26.
    Chatterjee AK, Choi T-L, Sanders DP, Grubbs RH (2003) A general model for selectivity in olefin cross metathesis. J Am Chem Soc 125(37):11360–11370CrossRefGoogle Scholar
  27. 27.
    Demel S, Slugovc C, Stelzer F, Fodor-Csorba K, Galli G (2003) Alternating diene metathesis polycondensation (ALTMET) – a versatile tool for the preparation of perfectly alternating AB copolymers. Macromol Rapid Commun 24(10):636–641CrossRefGoogle Scholar
  28. 28.
    Pirrung MC, Sarma KD (2003) Multicomponent reactions are accelerated in water. J Am Chem Soc 126(2):444–445CrossRefGoogle Scholar
  29. 29.
    Schmidt S, Koldevitz M, Noy J-M, Roth PJ (2015) Multicomponent isocyanide-based synthesis of reactive styrenic and (meth)acrylic monomers and their RAFT (co)polymerization. Polym Chem 6:44–54Google Scholar
  30. 30.
    Noy J-M, Koldevitz M, Roth PJ (2015) Thiol-reactive functional poly(meth)acrylates: multicomponent monomer synthesis, RAFT (co)polymerization and highly efficient thiol-para-fluoro postpolymerization modification. Polym Chem 6:436–447Google Scholar
  31. 31.
    Leon F, Rivera DG, Wessjohann LA (2008) Multiple multicomponent macrocyclizations including bifunctional building blocks (MiBs) based on Staudinger and Passerini three-component reactions. J Org Chem 73(5):1762–1767CrossRefGoogle Scholar
  32. 32.
    Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C (2012) Sequence regulated poly(ester-amide)s based on Passerini reaction. ACS Macro Lett 1(11):1300–1303CrossRefGoogle Scholar
  33. 33.
    Kan X-W, Deng X-X, Du F-S, Li Z-C (2015) Concurrent oxidation of alcohols and the Passerini three-component polymerization for the synthesis of functional poly(ester amide)s. Macromol Chem Phys 215(22): 2221–2228Google Scholar
  34. 34.
    Ngouansavanh T, Zhu J (2006) Alcohols in isonitrile-based multicomponent reaction: Passerini reaction of alcohols in the presence of O-iodoxybenzoic acid. Angew Chem Int Ed 45(21):3495–3497CrossRefGoogle Scholar
  35. 35.
    Wang Y-Z, Deng X-X, Li L, Li Z-L, Du F-S, Li Z-C (2013) One-pot synthesis of polyamides with various functional side groups via Passerini reaction. Polym Chem 4(3):444–448CrossRefGoogle Scholar
  36. 36.
    Obrecht R, Herrmann R, Ugi I (1985) Isocyanide synthesis with phosphoryl chloride and diisopropylamine. Synthesis 1985(04):400–402CrossRefGoogle Scholar
  37. 37.
    Ugi I, Fetzer U, Eholzer U, Knupfer H, Offermann K (1965) Isonitrile syntheses. Angew Chem Int Ed Engl 4(6):472–484CrossRefGoogle Scholar
  38. 38.
    Sehlinger A, Schneider R, Meier MAR (2014) Passerini addition polymerization of an AB-type monomer – a convenient route to versatile polyesters. Eur Polym J 50:150–157CrossRefGoogle Scholar
  39. 39.
    Zhang L-J, Deng X-X, Du F-S, Li Z-C (2013) Chemical synthesis of functional poly(4-hydroxybutyrate) with controlled degradation via intramolecular cyclization. Macromolecules 46(24):9554–9562CrossRefGoogle Scholar
  40. 40.
    Deng X-X, Cui Y, Du F-S, Li Z-C (2014) Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction. Polym Chem 5(10):3316–3320CrossRefGoogle Scholar
  41. 41.
    de Nooy AEJ, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1(2):259–267CrossRefGoogle Scholar
  42. 42.
    de Nooy AEJ, Masci G, Crescenzi V (1999) Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules 32(4):1318–1320CrossRefGoogle Scholar
  43. 43.
    Li L, Lv A, Deng X-X, Du F-S, Li Z-C (2013) Facile synthesis of photo-cleavable polymers via Passerini reaction. Chem Commun 49(76):8549–8551CrossRefGoogle Scholar
  44. 44.
    Li L, Deng X-X, Li Z-L, Du F-S, Li Z-C (2014) Multifunctional photodegradable polymers for reactive micropatterns. Macromolecules 47(14):4660–4667CrossRefGoogle Scholar
  45. 45.
    Lin W, Sun T, Zheng M, Xie Z, Huang Y, Jing X (2014) Synthesis of cross-linked polymers via multi-component Passerini reaction and their application as efficient photocatalysts. RSC Adv 4(48):25114–25117CrossRefGoogle Scholar
  46. 46.
    Wang S, Zhang N, Ge X, Wan Y, Li X, Yan L, Xia Y, Song B (2014) Self-assembly of an azobenzene-containing polymer prepared by a multi-component reaction: supramolecular nanospheres with photo-induced deformation properties. Soft Matter 10(27):4833–4839CrossRefGoogle Scholar
  47. 47.
    Li L, Kan X-W, Deng X-X, Song C-C, Du F-S, Li Z-C (2013) Simultaneous dual end-functionalization of PEG via the Passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci Part A Polym Chem 51(4):865–873CrossRefGoogle Scholar
  48. 48.
    Deng X-X, Cui Y, Wang Y-Z, Du F-S, Li Z-C (2014) Graft copolymers with polyamide backbones via combination of Passerini multicomponent polymerization and controlled chain-growth polymerization. Aust J Chem 67(4):555–561CrossRefGoogle Scholar
  49. 49.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154CrossRefGoogle Scholar
  50. 50.
    Espeel P, Carrette LLG, Bury K, Capenberghs S, Martins JC, Du Prez FE, Madder A (2013) Multifunctionalized sequence-defined oligomers from a single building block. Angew Chem Int Ed 52(50):13261–13264CrossRefGoogle Scholar
  51. 51.
    Li X, Liu DR (2004) DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed 43(37):4848–4870CrossRefGoogle Scholar
  52. 52.
    Lutz J-F, Ouchi M, Liu DR, Sawamoto M (2013) Sequence-controlled polymers. Science 341:6146CrossRefGoogle Scholar
  53. 53.
    Lv A, Deng X-X, Li L, Li Z-L, Wang Y-Z, Du F-S, Li Z-C (2013) Facile synthesis of multi-block copolymers containing poly(ester-amide) segments with an ordered side group sequence. Polym Chem 4(13):3659–3662CrossRefGoogle Scholar
  54. 54.
    Solleder SC, Meier MAR (2014) Sequence control in polymer chemistry through the Passerini three-component reaction. Angew Chem Int Ed 53(3):711–714CrossRefGoogle Scholar
  55. 55.
    Sowinska M, Urbanczyk-Lipkowska Z (2014) Advances in the chemistry of dendrimers. New J Chem 38(6):2168–2203CrossRefGoogle Scholar
  56. 56.
    Jee J-A, Spagnuolo LA, Rudick JG (2012) Convergent synthesis of dendrimers via the Passerini three-component reaction. Org Lett 14(13):3292–3295CrossRefGoogle Scholar
  57. 57.
    Wessjohann LA, Henze M, Kreye O, Rivera DG (2011) MCR dendrimers. Patent WO 2011/134607Google Scholar
  58. 58.
    Wessjohann LA, Henze M, Kreye O, Rivera DG (2013) MCR dendrimers. European Patent EP 2563847Google Scholar
  59. 59.
    Kreye O, Kugele D, Faust L, Meier MAR (2014) Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis. Macromol Rapid Commun 35(3):317–322CrossRefGoogle Scholar
  60. 60.
    Deng X-X, Du F-S, Li Z-C (2014) Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity. ACS Macro Lett 3(7):667–670CrossRefGoogle Scholar
  61. 61.
    Robotham C, Baker C, Cuevas B, Abboud K, Wright D (2003) A multi-component reaction (MCR) approach to the synthesis of highly diverse polymers with polypeptide-like features. Mol Diversity 6(3–4):237–244Google Scholar
  62. 62.
    Kreye O, Türünç O, Sehlinger A, Rackwitz J, Meier MAR (2012) Structurally diverse polyamides obtained from monomers derived via the Ugi multicomponent reaction. Chem-Eur J 18(18):5767–5776CrossRefGoogle Scholar
  63. 63.
    Keating TA, Armstrong RW (1998) The Ugi five-component condensation using CO2, CS2, and COS as oxidized carbon sources. J Org Chem 63(3):867–871CrossRefGoogle Scholar
  64. 64.
    Sehlinger A, Schneider R, Meier MAR (2014) Ugi reactions with CO2: access to functionalized polyurethanes, polycarbonates, polyamides, and polyhydantoins. Macromol Rapid Commun 35(21):1866–1871Google Scholar
  65. 65.
    Hulme C, Ma L, Romano JJ, Morton G, Tang S-Y, Cherrier M-P, Choi S, Salvino J, Labaudiniere R (2000) Novel applications of carbon dioxide/MeOH for the synthesis of hydantoins and cyclic ureas via the Ugi reaction. Tetrahedron Lett 41(12):1889–1893CrossRefGoogle Scholar
  66. 66.
    Wessjohann LA, Rivera DG, León F (2007) Freezing Imine exchange in dynamic combinatorial libraries with Ugi reactions: versatile access to templated macrocycles. Org Lett 9(23):4733–4736CrossRefGoogle Scholar
  67. 67.
    Wessjohann LA, Rivera DG, Vercillo OE (2009) Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem Rev 109(2):796–814CrossRefGoogle Scholar
  68. 68.
    Crescenzi V, Francescangeli A, Capitani D, Mannina L, Renier D, Bellini D (2003) Hyaluronan networking via Ugi’s condensation using lysine as cross-linker diamine. Carbohydr Polym 53(3):311–316CrossRefGoogle Scholar
  69. 69.
    Bu H, Kjøniksen A-L, Knudsen KD, Nyström B (2004) Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules 5(4):1470–1479CrossRefGoogle Scholar
  70. 70.
    Bu H, Kjøniksen A-L, Nyström B (2005) Effects of pH on dynamics and rheology during association and gelation via the Ugi reaction of aqueous alginate. Eur Polym J 41(8):1708–1717CrossRefGoogle Scholar
  71. 71.
    Sehlinger A, Dannecker P-K, Kreye O, Meier MAR (2014) Diversely substituted polyamides: macromolecular design using the Ugi four-component reaction. Macromolecules 47(9):2774–2783CrossRefGoogle Scholar
  72. 72.
    Sehlinger A, Schneider R, Meier MAR (2014) Ugi reactions with CO2: access to functionalized polyurethanes, polycarbonates, polyamides or polyhydantoins. Macromol Rapid Commun 35(21):1866–1871Google Scholar
  73. 73.
    Yang B, Zhao Y, Fu C, Zhu C, Zhang Y, Wang S, Wei Y, Tao L (2014) Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polym Chem 5(8):2704–2708CrossRefGoogle Scholar
  74. 74.
    Tao L, Xu J, Gell D, Davis TP (2010) Synthesis, characterization, and bioactivity of mid-functional polyHPMA−lysozyme bioconjugates. Macromolecules 43(8):3721–3727CrossRefGoogle Scholar
  75. 75.
    Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W (2011) “Clicking” polymers or just efficient linking: what is the difference? Angew Chem Int Ed 50(1):60–62CrossRefGoogle Scholar
  76. 76.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRefGoogle Scholar
  77. 77.
    Jevševar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5(1):113–128CrossRefGoogle Scholar
  78. 78.
    Yang B, Zhao Y, Wang S, Zhang Y, Fu C, Wei Y, Tao L (2014) Synthesis of multifunctional polymers through the Ugi reaction for protein conjugation. Macromolecules 47(16):5607–5612CrossRefGoogle Scholar
  79. 79.
    Yang B, Zhao Y, Ren X, Zhang X, Fu C, Zhang Y, Wei Y, Tao L (2015) The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes. Polym Chem 6:509–513Google Scholar
  80. 80.
    Barreto AdFS, Vercillo OE, Birkett MA, Caulfield JC, Wessjohann LA, Andrade CKZ (2011) Fast and efficient microwave-assisted synthesis of functionalized peptoids via Ugi reactions. Org Biomol Chem 9(14):5024–5027CrossRefGoogle Scholar
  81. 81.
    Wessjohann LA, Tran TPT, Westermann B (2008) Method for producing condensation products from n-substituted glycine derivatives (peptoids) by sequential Ugi-multicomponent reactions. Patent WO 2008/022800Google Scholar
  82. 82.
    Barreto AdFS, Vercillo OE, Wessjohann LA, Andrade CKZ (2014) Consecutive isocyanide-based multicomponent reactions: synthesis of cyclic pentadepsipeptoids. Beilstein J Org Chem 10:1017–1022CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations