Advertisement

Semiconductor–Polymer Hybrid Materials

  • Sarita Kango
  • Susheel KaliaEmail author
  • Pankaj Thakur
  • Bandna Kumari
  • Deepak Pathania
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 267)

Abstract

Semiconductor nanoparticles have attracted much attention due to their unique size and properties. Semiconductor–polymer hybrid materials are of great importance in the field of nanoscience as they combine the advantageous properties of polymers with the unique size-tunable optical, electronic, catalytic and other properties of semiconductor nanoparticles. Due to combination of the unique properties of organic and inorganic components in one material, these semiconductor–polymer hybrids find application in environmental, optoelectronic, biomedical and various other fields. A number of methods are available for the synthesis of semiconductor–polymer hybrid materials. Two methods, i.e. melt blending and in-situ polymerization, are widely used for the synthesis of semiconductor–polymer nanocomposites. The first part of this review article deals with the synthesis, properties and applications of semiconductor nanoparticles. The second part deals with the synthesis of semiconductor–polymer nanocomposites by melt blending and in-situ polymerization. The properties and some applications of semiconductor–polymer nanocomposites are also discussed.

Keywords

Biomedical applications Electronic applications Environmental applications Polymer nanocomposites Quantum dots Semiconductor nanoparticles 

References

  1. 1.
    Henglein A (1982) J Phys Chem 86:2291Google Scholar
  2. 2.
    Rossetii R, Nakahara S, Brus LE (1983) J Chem Phys 79:1086Google Scholar
  3. 3.
    Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Nanotechnology 15:5240Google Scholar
  4. 4.
    Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Science 295:1506Google Scholar
  5. 5.
    Klimov VL, Mikhailowsky AA, Xu S, Malko A, Hallingsworth JA, Leatherdole CA (2000) Science 290:340Google Scholar
  6. 6.
    Battaglia D, Peng X (2002) Nano Lett 2:1027Google Scholar
  7. 7.
    Abdulkhadar M, Thomas B (1995) Nanostruct Mater 5:289Google Scholar
  8. 8.
    Lee GJ, Nam HJ, Hwangbo CK, Lim H, Cheong H, Kim HS, Yoon CS, Min SK, Han SH, Lee YP (2010) Jpn J Appl Phys 49:105001Google Scholar
  9. 9.
    Lee GJ, Lee YP, Lim HH, Cha M, Kim SS, Cheong H, Min SK, Han SH (2010) J Korean Phys Soc 57:1624Google Scholar
  10. 10.
    Kamat PV, Meisel D (eds) (1996) Semiconductor nanoclusters. Studies in surface science and catalysis. Elsevier, Amsterdam, p 103Google Scholar
  11. 11.
    Weller H (1993) Angew Chem Int Ed Engl 32:41Google Scholar
  12. 12.
    Weller H (1993) Adv Mater 5:88Google Scholar
  13. 13.
    Gao MY, Lesser C, Kirstein S, Mohwald H, Rogach AL, Weller H (2000) Appl Phys 87:2297Google Scholar
  14. 14.
    Gaponik NP, Talapin DV, Ro-Gach AL, Eychmuller A (2000) J Mater Chem 10:2163Google Scholar
  15. 15.
    Pileni MP (1993) J Phys Chem 97:6961Google Scholar
  16. 16.
    Pileni MP (1997) Langmuir 13:3266Google Scholar
  17. 17.
    Korgel A, Monbouquette HG (1996) J Phys Chem 100:346Google Scholar
  18. 18.
    Spanhel L, Hasse M, Weller H, Henglein A (1987) J Am Chem Soc 109:5649Google Scholar
  19. 19.
    Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H (1994) J Phys Chem 98:7665Google Scholar
  20. 20.
    Rockenberger J, Troger L, Kornowski A, Vossmeyer T, Eychmuller A, Feldhaus J, Weller W (1997) J Phys Chem B 101:2691Google Scholar
  21. 21.
    Murray AB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706Google Scholar
  22. 22.
    Diaz B, Rivera M, Ni T, Rodriguez JC, Castillo-Blum SE, Nagesha D, Robles J, Alvarez-Fregoso OJ, Kotov NA (1999) J Phys Chem B 103:9854Google Scholar
  23. 23.
    Colvin VL, Schlamp MC, Alivisato AP (1994) Nature 370:354Google Scholar
  24. 24.
    Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Science 290:314Google Scholar
  25. 25.
    Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98:041301Google Scholar
  26. 26.
    Djurisic AB, Leung YH (2006) Small 2:944Google Scholar
  27. 27.
    Chan SW, Barille R, Nunzi JM, Tam KH, Leung YH, Chan WK, Djurisic AB (2006) Appl Phys B 84:351Google Scholar
  28. 28.
    Voss T, Kudyk I, Wischmeier L, Gutowski J (2009) Phys Status Solidi B 246:311Google Scholar
  29. 29.
    Cho S, Ma J, Kim Y, Sun Y, Wong GKL, Ketterson JB (1999) Appl Phys Lett 75:2761Google Scholar
  30. 30.
    Williams JV (2008) Hydrothermal synthesis and characterization of cadmium selenidenanocrystals. Doctoral thesis, University of MichiganGoogle Scholar
  31. 31.
    Gopinadhan K, Kashyap SC, Pandya DK, Chaudhary S (2007) J Appl Phys 102:113513Google Scholar
  32. 32.
    Vadivel K, Arivazhagan V, Rajesh S (2011) Int J Sci Eng Res 2(4):43–47 http://www.ijser.org/Journal_April_2011_Edition.pdf
  33. 33.
    Kant KM, Sethupathi K, Rao MSR (2004) Magnetic properties of 4f element doped SnO2. Paper presented at the international symposium of research students on materials science and engineering, Chennai, India, 20–22 Dec 2004Google Scholar
  34. 34.
    Santi M, Jakkapon S, Chunpen T, Jutharatana K (2006) J Magn Magn Mater 301:422Google Scholar
  35. 35.
    Lakshmi YK, Srinivas K, Sreedhar B, Raja MM, Vithal M, Reddy PV (2009) Mater Chem Phys 113:749Google Scholar
  36. 36.
    Jiang Y, Wang W, Jing C, Cao C, Chu J (2011) Mater Sci Eng B 176:1301Google Scholar
  37. 37.
    Li X, Wu S, Hu P, Xing X, Liu Y, Yu Y, Yang M, Lu J, Li S, Liu W (2009) J Appl Phys 106:043913(1)Google Scholar
  38. 38.
    Gan'shina EA, Granovsky AB, Orlov AF, Perov NS, Vashuk MV (2009) J Magn Magn Mater 321:723Google Scholar
  39. 39.
    Ianculescu A, Gheorghiu FP, Postolache P, Oprea O, Mitoseriu L (2010) J Alloys Compd 504:420Google Scholar
  40. 40.
    Gingasu D, Oprea O, Mindru I, Culita DC, Patron L (2011) Digest J Nanomater Biostruct 6:1215Google Scholar
  41. 41.
    Zhang K, Zhang X, Chen H, Chen X, Zheng L, Zhang J, Yang B (2004) Langmuir 20:11312Google Scholar
  42. 42.
    Qin J (2007) Nanoparticles for multifunctional drug delivery systems. Licentiate thesis, The Royal Institute of Technology, StockholmGoogle Scholar
  43. 43.
    Vafaee M, SasaniGhamsari M (2007) Mater Lett 61:3265Google Scholar
  44. 44.
    Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Photochem Photobiol 87:1002Google Scholar
  45. 45.
    Sugimoto T, Okada K, Itoh HJ (1997) Colloid Interface Sci 193:140Google Scholar
  46. 46.
    Sugimoto T, Okada K, Itoh HJ (1998) Dispers Sci Technol 19:143Google Scholar
  47. 47.
    Sugimoto T, Zhou X, Muramatzu AJ (2002) Colloid Interface Sci 252:339Google Scholar
  48. 48.
    Sugimoto T, Zhou XJ (2002) Colloid Interface Sci 252:347Google Scholar
  49. 49.
    Sugimoto T, Zhou X, Muramatzu AJ (2003) Colloid Interface Sci 259:43Google Scholar
  50. 50.
    Sugimoto T, Zhou X, Muramatsu AJ (2003) Colloid Interface Sci 259:53Google Scholar
  51. 51.
    Kanie K, Sugimoto TJ (2003) Am Chem Soc 125:10518Google Scholar
  52. 52.
    Kanie K, Sugimoto T (2004) Chem Commun 2004:1584Google Scholar
  53. 53.
    Lee S, Cho I-S, Lee JH, Kim DH, Kim DW, Kim JY, Shin H, Lee J-K, Jung HS, Park N-G, Kim K, Ko MJ, Hong KS (2010) Chem Mater 22:1958Google Scholar
  54. 54.
    Sambasivam S, Joseph DP, Jeong JH, Choi BC, Lim KT, Kim SS, Song TK (2011) J Nanoparticle Res 13:4623Google Scholar
  55. 55.
    Mălăeru T, Neamţu J, Morari C, Sbarcea G (2012) Rev Roum Chim 57:857Google Scholar
  56. 56.
    Aziz M, Abbas SS, Wan Baharom WR (2013) Mater Lett 91:31Google Scholar
  57. 57.
    Heqing Y, Banglao Z, Shouxin L, Yu F, Liangying Z, Xi Y (2001) Acta Chim Sinica 59:224Google Scholar
  58. 58.
    Zhang L, Wang X (2011) Preparation of GaN powder by sol-gel and theoretcal calculation. In: Proceedings photonics and optoelectronics (SOPO) symposium, Wuhan, 16–18 May 2011, pp 1–4. doi: 10.1109/SOPO.2011.5780494Google Scholar
  59. 59.
    Liu YA, Xue CS, Zhuang HZ, Zhang XK, Tian DH, Wu YX, Sun LL, Ai YJ, Wang FX (2006) Acta Phys Chim Sin 22:657Google Scholar
  60. 60.
    Samat NA, Nor RM (2013) Ceram Int 39:S545Google Scholar
  61. 61.
    Kolekar TV, Bandgar SS, Shirguppikar SS, Ganachari VS (2013) Archiv Appl Sci Res 5:20Google Scholar
  62. 62.
    Bhattacharjee B, Ganguli D, Iakoubovskii K, Stesmans A, Chaudhuri S (2002) Bull Mater Sci 25:175Google Scholar
  63. 63.
    Rao AY, Enkateswara KV, Srinivasa SP (2012) Int Proc Chem Biol Environ 48:156Google Scholar
  64. 64.
    Kondawar S, Mahore R, Dahegaonkar A, Agrawal S (2011) Adv Appl Sci Res 2:401Google Scholar
  65. 65.
    Wu W, He Q, Jiang C (2008) Nanoscale Res Lett 3:397Google Scholar
  66. 66.
    Williams JV, Adams CN, Kotov NA, Savage PE (2007) Ind Eng Chem Res 46:4358Google Scholar
  67. 67.
    Lu Q, Gao F, Zhao D (2002) Nano Lett 2:725Google Scholar
  68. 68.
    Yang R, Yan Y, Mu Y, Ji W, Li X, Zou MQ, Fei Q, Jin Q (2006) J Nanosci Nanotechnol 6:220Google Scholar
  69. 69.
    Aneesh PM, Jayaraj MK (2010) Bull Mater Sci 33:227Google Scholar
  70. 70.
    Gnanam S, Rajendran V (2010) Digest J Nanomater Biostruct 5(2):623-628 http://www.chalcogen.ro/623_Gnanam-urgent.pdf
  71. 71.
    Yan C, Sun L, Fu X, Liao C (2002) Mat Res Soc Symp Proc 692:549Google Scholar
  72. 72.
    Singh J, Verma NK (2012) J Supercond Nov Magn 25:2425Google Scholar
  73. 73.
    Lu J, Wei S, Yu W, Zhang H, Qian Y (2004) Inorg Chem 43:4543Google Scholar
  74. 74.
    Zhang X, Dai J, Ong H (2011) Open J Phys Chem 1:6Google Scholar
  75. 75.
    Rashad MM, Rayan DA, El-Barawy K (2010) J Phys Conf Ser 200:072077. doi:10.1088/1742-6596/200/7/072077Google Scholar
  76. 76.
    Tokeer A, Sarvari K, Kelsey C, Samuel LE (2013) J Mater Res 28:1245Google Scholar
  77. 77.
    Ghosh K, Kahol PK, Bhamidipati S, Das N, Khanra S, Wanekaya A, Delong R (2012) AIP Conf Proc 1461:87Google Scholar
  78. 78.
    Yong SM, Muralidharan P, Jo SH, Kim DK (2010) Mater Lett 64:1551Google Scholar
  79. 79.
    Zhang L, Zhao J, Zheng J, Li L, Zhu Z (2011) Sensors Actuators B 158:144Google Scholar
  80. 80.
    Ni YH, Wei XW, Hong JM, Ye Y (2005) Mater Sci Eng B Solid State Mater Adv Technol 121:42Google Scholar
  81. 81.
    Chiu H-C, Yeh CS (2007) J Phys Chem C 111:7256Google Scholar
  82. 82.
    Firooz AA, Mahjoub AR, Khodadadi AA (2011) World Acad Sci Eng Technol 5:04Google Scholar
  83. 83.
    Jain K, Srivastava V, Chouksey A (2009) Indian J Eng Mater Sci 16:188Google Scholar
  84. 84.
    Malik MA, Wani MY, Hashim MA (2012) Arabian J Chem 5:397Google Scholar
  85. 85.
    Petit C, Ixon L, Pileni MP (1990) J Phys Chem 94:1598Google Scholar
  86. 86.
    Eastoe J, Cox AR (1995) Colloid Surf A Physicochem Eng Asp 101:63Google Scholar
  87. 87.
    Eastoe J, Warne M (1996) Curr Opin Colloid Interface Sci 1:800Google Scholar
  88. 88.
    Robinson BH, Towey TF, Zourab S, Visser AJWG, Van Hoek A (1991) Colloid Surf 61:175Google Scholar
  89. 89.
    Haram SK, Mahadeshwar AR, Dixit SG (1996) J Phys Chem 100:5868Google Scholar
  90. 90.
    Wang Y, Zhang X, Wang A, Li X, Wang G, Zhao L (2014) Chem Eng J 235:191Google Scholar
  91. 91.
    Kripal R, Gupta AK, Srivastava RK, Mishra SK (2011) Spectrochimica Acta Part A 79:1605Google Scholar
  92. 92.
    Reddy BS, Reddy SV, Reddy NK, Kumari JP (2013) Res J Mater Sci 1:11Google Scholar
  93. 93.
    Naje AN, Norry AS, Suhail AM (2013) Int J Innovative Res Sci Eng Technol 2:7068Google Scholar
  94. 94.
    Abazovic ND, Mirenghi L, Jankovic IA, Bibic N, Sojic DV, Abramovic BF, Comor MI (2009) Nanoscale Res Lett 4:518Google Scholar
  95. 95.
    Shwe LT, Win PP (2013) Preparation of CuO nanoparticles by precipitation method. Paper presented at international workshop on nanotechnology, Serpong, Indonesia, 2-5 Oct 2103. http://www.academia.edu/4929894/PREPARATION_OF_CuO_NANOPARTICLES_BY_PRECIPITATION_METHOD
  96. 96.
    Rao BS, Kumar BR, Reddy VR, Rao TS (2011) Chalcogenide Lett 8:177Google Scholar
  97. 97.
    Bandaranayake RJ, Smith M, Lin JY, Jiang HX, Sorensen CM (2002) IEEE Trans Magn 30:4930Google Scholar
  98. 98.
    Chauhan R, Kumar A, Chaudhary RP (2010) J Chem Pharm Res 2:178Google Scholar
  99. 99.
    Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Int Nano Lett 3:30(1)Google Scholar
  100. 100.
    Shanthi S, Muthuselvi U (2012) Int J Chem Appl 4:39Google Scholar
  101. 101.
    Dehbashi M, Aliahmad M (2012) Int J Phys Sci 7:5415Google Scholar
  102. 102.
    Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS (2010) Arch Appl Sci Res 2:127Google Scholar
  103. 103.
    Mishra R, Bajpai PK (2010) J Int Acad Phys Sci 14:245Google Scholar
  104. 104.
    Rahnam A, Gharagozlou M (2012) Opt Quant Electron 44:313Google Scholar
  105. 105.
    Devi BSR, Raveendran R, Vaidyan AV (2007) Pharm J Phys 68:679Google Scholar
  106. 106.
    Xiao Q, Si Z, Yu Z, Qiu G (2007) Mater Sci Eng B 137:189Google Scholar
  107. 107.
    Didenko YT, Suslick KS (2005) J Am Chem Soc 127:12196Google Scholar
  108. 108.
    Treece RE, Macala GS, Rao L, Franke D, Eckert H, Kaner RB (1993) Inorg Chem 32:2745Google Scholar
  109. 109.
    Hwang H, Kim MG, Cho J (2007) J Phys Chem C 111:1186Google Scholar
  110. 110.
    Fojtik A, Henglein A (1994) Chem Phys Lett 221:363Google Scholar
  111. 111.
    Carpenter JP, Lukehart CM, Henderson DO, Mu R, Jones BD, Glosser R, Stock SR, Wittig JE, Zhu JG (1996) Chem Mater 8:1268Google Scholar
  112. 112.
    Kornowski A, Giersig M, Vogel M, Chemseddine A, Weller H (1993) Adv Mater 5:634Google Scholar
  113. 113.
    Heath JR, Shiang JJ, Alivisatos APJ (1994) Chem Phys 101:1607Google Scholar
  114. 114.
    Jegier JA, McKernan S, Gladfelter WL (1998) Chem Mater 10:2041Google Scholar
  115. 115.
    Micic OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozic A, Giessen JH, Fluegel B, Mohs G, Peyghambarian N (1995) J Phys Chem 99:7754Google Scholar
  116. 116.
    Salata OV, Dobson PJ, Hull PJ, Hutchison JL (1994) Appl Phys Lett 65:189Google Scholar
  117. 117.
    Sercel PC, Saunders WA, Atwater HA, Vahala KJ, Flagan RC (1992) Appl Phys Lett 61:696Google Scholar
  118. 118.
    Kher SS, Wells RL (1994) Chem Mater 6:2056Google Scholar
  119. 119.
    Olshavsky MA, Goldstein AN, Alivisatos APJ (1990) Am Chem Soc 112:9438Google Scholar
  120. 120.
    Trindade T, O’Brien P (1996) Adv Mater 8:161Google Scholar
  121. 121.
    Trindade T, O’Brien P, Zhang X (1997) Chem Mater 9:523Google Scholar
  122. 122.
    Yu S, Wu Y, Yang J, Han Z, Xie Y, Qian Y, Liu X (1998) Chem Mater 10:2309Google Scholar
  123. 123.
    Mansur HS (2010) Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:113Google Scholar
  124. 124.
    Brus L (1983) J Chem Phys 79:5566Google Scholar
  125. 125.
    Gaponik N, Rogach AL (2010) Phys Chem Chem Phys 12:8685Google Scholar
  126. 126.
    Bailey RE, Smith AM, Nie S (2004) Physica E 25:1Google Scholar
  127. 127.
    Madler L, Stark WJ, Pratsinisa SE (2002) J Appl Phys 92:6537Google Scholar
  128. 128.
    Simmons BA, Li S, John VT, McPherson GL, Bose A, Zhou W, He J (2002) Nano Lett 2:263Google Scholar
  129. 129.
    Cirillo M, Aubert T, Gomes R, Van Deun R, Emplit P, Biermann A, Lange H, Thomsen C, Brainis E, Hens Z (2014) Chem Mater 26:1154Google Scholar
  130. 130.
    Greenberg MR, Smolyakov GA, Jiang Y-B, Boyle TJ, Osinski M (2006) Synthesis and characterization of in-containing colloidal quantum dots. In: Proceedings of SPIE 6096, Colloidal quantum dots for biomedical applications, 60960D. doi: 10.1117/12.663315Google Scholar
  131. 131.
    Du Y, Zhou X, Liu Y, Wang X (2012) J Nanosci Nanotechnol 12:8487Google Scholar
  132. 132.
    Forleo A, Francioso L, Capone S, Siciliano P, Lommens P, Hens Z (2010) Sensors Actuators B Chem 146:111Google Scholar
  133. 133.
    Vrik HS, Sharma P (2010) J Nano Res 10:69Google Scholar
  134. 134.
    Yu WW (2008) Expert Opin Biol Ther 8:1571Google Scholar
  135. 135.
    Ribeiro RT, Dias JMM, Pereira GA, Freitas DV, Monteiro M, Cabral Filho PE, Raele RA, Fontes A, Navarro M, Santos BS (2013) Green Chem 15:1061Google Scholar
  136. 136.
    Nordell KJ, Boatman EM, Lisensky GC (2005) J Chem Educ 82:1697Google Scholar
  137. 137.
    Sai LM, Kong XY (2011) Nanoscale Res Lett 6(1):399Google Scholar
  138. 138.
    Efros AL, Fiz ALF (1982) Tekh Poluprovodn 16:1209Google Scholar
  139. 139.
    Brus LE (1984) J Chem Phys 80:4403Google Scholar
  140. 140.
    Henglein A (1989) Chem Rev 89:1861Google Scholar
  141. 141.
    Khairutdinov RF (1998) Russ Chem Rev 67:109Google Scholar
  142. 142.
    Li H (2008) Synthesis and characterization of aqueous quantum dots for biomedical applications. Doctoral thesis, Drexel UniversityGoogle Scholar
  143. 143.
    Rogach AL, Talapin DV, Weller H (2004) Semiconductor nanoparticles. In: Caruso F (ed) Colloids and colloids assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley, New York, pp 52–95Google Scholar
  144. 144.
    Ramos LE, Degoli E, Cantele G, Ossicini S, Ninno D, Furthmuller J, Bechstedt F (2007) J Phys Condens Matter 19:466211(1)Google Scholar
  145. 145.
    Furdyna JK, Samarth N (1987) J Appl Phys 61:3526Google Scholar
  146. 146.
    Garcia MA, Merino JM, Pinel EF, Quesada A, de la Venta J, Ruíz González ML, Castro GR, Crespo P, Llopis J, González-Calbet JM, Hernando A (2007) Nano Lett 7:1489Google Scholar
  147. 147.
    Sivasubramanian V, Arora AK, Premila M, Sundar CS, Sastry VS (2006) Phys E 31:93Google Scholar
  148. 148.
    Son DI, No YS, Kim SY, Oh DH, Kim WT, Kim TW (2009) J Korean Phys Soc 55:1973Google Scholar
  149. 149.
    Hamizi NA, Johan MR (2012) Int J Electrochem Sci 7:8458Google Scholar
  150. 150.
    Chan WCW, Nie S (1998) Science 281:2016Google Scholar
  151. 151.
    Gao X, Nie S (2003) Trends Biotechnol 21:371Google Scholar
  152. 152.
    Bruchez M, Moronne JM, Gin P, Weiss S, Alivisatos AP (2013) Science 281:2013Google Scholar
  153. 153.
    Zaban A, Micic OI, Gregg BA, Nozik AJ (1998) Langmuir 14:3153Google Scholar
  154. 154.
    Plass R, Pelet S, Krueger J, Graetzel M, Bach U (2002) J Phys Chem B 106:7578Google Scholar
  155. 155.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425Google Scholar
  156. 156.
    Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Appl Phys Lett 66:1316Google Scholar
  157. 157.
    Coe S, Woo WK, Bawendi MG, Bulovic V (2002) Nature 420:800Google Scholar
  158. 158.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chthelkanova AY, Treger DM (2001) Science 294:1488Google Scholar
  159. 159.
    Awschalom DD, Flatte ME, Samarth N (2002) Sci Am 286:66Google Scholar
  160. 160.
    Engel HA, Recher P, Loss D (2001) Solid State Commun 119:229Google Scholar
  161. 161.
    Ferrand D, Wasiela A, Tatarenko S, Cibert J, Richter G, Grabs P, Schmidt G, Molenkamp LW, Diet T (2001) Solid State Commun 119:237Google Scholar
  162. 162.
    Ip K, Frazier RM, Heo YW, Norton DP, Abernathy CR, Pearton SJ (2003) J Vac Sci Technol B 21:1476Google Scholar
  163. 163.
    Liu C, Yun F, Morkoc H (2005) J Mat Sci Mater Electron 16:555Google Scholar
  164. 164.
    Polyakov AY, Govorkov AV, Smirnov NB, Pashkova NV, Pearton SJ, Overberg ME, Abernathy CR, Norton DP, Zavada JM, Wilson RG (2003) Solid-State Electron 47:1523Google Scholar
  165. 165.
    Roberts BK, Pakhomov AB, Shutthanandas VS, Krishnan KM (2005) J Appl Phys 97(1):10D310Google Scholar
  166. 166.
    Adesina AA (2004) Catal Surv Asia 8:265Google Scholar
  167. 167.
    Chakrabarti S, Dutta BK (2004) J Hazard Mater B 112:269Google Scholar
  168. 168.
    Chitose N, Ueta S, Yamamoto TA (2003) Chemosphere 50:1007Google Scholar
  169. 169.
    Yang H, Zhang K, Shi R, Li X, Dong X, Yu Y (2006) J Alloys Compd 413:302Google Scholar
  170. 170.
    Dou B, Chen H (2011) Desalination 269:260Google Scholar
  171. 171.
    Daneshvar N, Salari D, Khataee AR (2004) J Photochem Photobiol A Chem 162:317Google Scholar
  172. 172.
    Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Mater Lett 91:170Google Scholar
  173. 173.
    Devipriya SP, Yesodharan S (2010) J Environ Biol 31:247Google Scholar
  174. 174.
    Mahdavi S, Jalali M, Afkhami A (2012) J Nanoparticle Res 14:846(1)Google Scholar
  175. 175.
    Kansal SK, Ali AH, Kapoor S (2010) Desalination 259:147Google Scholar
  176. 176.
    Santana-Aranda MA, Morán-Pineda M, Hernández J, Castillo S (2005) Superficies y Vacío 18(1):46-49Google Scholar
  177. 177.
    Pardeshi SK, Patil AB (2008) Sol Energy 82:700Google Scholar
  178. 178.
    Benhebal H, Chaib M, Salmon T, Greens J, Leonard A, Lambert SD, Crine M, Heinrichs B (2013) Alexandria Eng J 52:517Google Scholar
  179. 179.
    Sharma S, Ameta R, Malkani RK, Ameta SC (2011) Maced J Chem Chem Eng 30:229Google Scholar
  180. 180.
    Pathania D, Sarita S, Rathore BS (2011) Chalcogenide Lett 8:396Google Scholar
  181. 181.
    Pathania D, Sarita, Singh P, Pathania S (2014) Desalin Water Treat 52:3497-3503Google Scholar
  182. 182.
    Loryuenyong V, Jarunsak N, Chuangchai T, Buasri A (2014) Adv Mater Sci Eng 2014:348427(1)Google Scholar
  183. 183.
    Singh N, Singh SP, Gupta V, Yadav HK, Ahuja T, Tripathy SS, Rashmi (2013) Environ Progr Sustain Energy 32:1023–1029Google Scholar
  184. 184.
    Chopra L, Major S, Pandya DK, Rastogi RS, Vankar VD (1983) Thin Solid Films 1021:1Google Scholar
  185. 185.
    Nirmal M et al (1996) Nature 383:802Google Scholar
  186. 186.
    Wierer J, David A, Megens M (2009) Nat Photonics 3:163Google Scholar
  187. 187.
    Jin Y, Li Q, Zhu Z (2012) Opt Express 20:15818Google Scholar
  188. 188.
    Zhang H, Zhu J, Jin G (2013) Opt Express 21:13492Google Scholar
  189. 189.
    Fu X, Zhang B, Zhang GY (2011) Opt Express 19:1104Google Scholar
  190. 190.
    Chan C-H, Lee CC, Chen C-C (2007) Appl Phys Lett 90:242106Google Scholar
  191. 191.
    Cho C-Y, Kang S-E, Kim KS (2010) Appl Phys Lett 96:18110Google Scholar
  192. 192.
    Zhou W, Min G, Song Z (2010) Nanotechnology 21:205304Google Scholar
  193. 193.
    Chiu CH, Yu P, Chang CH (2009) Opt Express 23(17):21250Google Scholar
  194. 194.
    Yoon K-M, Yang K-Y, Byeon K-J (2010) Solid-State Electron 54:484Google Scholar
  195. 195.
    Tsai C-F, Su Y-K, Lin C-L (2009) IEEE Photon Technol Lett 21:996Google Scholar
  196. 196.
    Kim KS, Kim S-M, Jeong H (2010) Adv Funct Mater 20:1076Google Scholar
  197. 197.
    Jin Y, Li Q, Li G, Chen M, Liu J, Zou Y, Jiang K, Fan S (2014) Nanoscale Res Lett 9:7(1)Google Scholar
  198. 198.
    Neshataeva E, Kummell T, Ebbers A, Bacher G (2008) Elect Lett 44:1485Google Scholar
  199. 199.
    Schlamp MC, Peng X, Alivisatos AP (1997) J Appl Phys 82:5837Google Scholar
  200. 200.
    Matioussi H, Radzilowski LH, Dabbousi BO, Thomas EL, Bawendi MG, Rubner MF (1998) J Appl Phys 83:7965Google Scholar
  201. 201.
    Colvin VL, Schlamp MC, Allvi-Satos AP (1994) Nature 370:354Google Scholar
  202. 202.
    Gaponik NP, Talapin DV, Ro-Gach A (1999) Phys Chem Chem Phys 1:1787Google Scholar
  203. 203.
    Shockley W, Queisser HJ (1961) J Appl Phys 32:510Google Scholar
  204. 204.
    Barnham KW, Duggan G (1990) J Appl Phys 67:3490Google Scholar
  205. 205.
    Dimroth F (2006) Phys Stat Sol (C) 3:373Google Scholar
  206. 206.
    Ó'regan B, Grätzel M (1991) Nature 353:737Google Scholar
  207. 207.
    Hotchandani S, Kamat PV (1992) J Phys Chem 96:6834Google Scholar
  208. 208.
    Vogel R, Hoyer P, Weller H (1994) Phys Chem 98:3183Google Scholar
  209. 209.
    Vogel R, Poh K, Weller H (1990) Chem Phys Lett 174:241Google Scholar
  210. 210.
    Bruchez MP, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013Google Scholar
  211. 211.
    Omair NAA, Reda SM, Hajri FML (2014) Adv Nanopart 3:31Google Scholar
  212. 212.
    Lee S, Cho I-S, Lee JH, Kim DH, Kim DW, Kim JY, Shin H, Lee JK, Jung OHS, Park N-G, Kim K, Ko MJ, Hong KS (2010) Chem Mater 22:1958Google Scholar
  213. 213.
    Zhang L, Zhao J, Zheng J, Li L, Zhua Z (2011) Sensors Actuators B 158:144Google Scholar
  214. 214.
    Qi L, Gao X (2008) Expert Opin Drug Deliv 5:263Google Scholar
  215. 215.
    Pandurangan DK, Mounika KS (2012) Int J Pharm Pharm Sci 4:24–31Google Scholar
  216. 216.
    Zrazhevskiyn P, Gao X (2009) Nano Today 4:414Google Scholar
  217. 217.
    Vengala P, Dasari A, Yeruva N (2012) Int J Pharm Technol 4:2055Google Scholar
  218. 218.
    Mukherjee S, Das U (2011) Int J Pharm Sci Rev Res 7:59Google Scholar
  219. 219.
    Mishra P, Vyas G, Harsoliya MS, Pathan JK, Raghuvanshi D, Sharma P et al (2011) Int J Pharm Pharm Sci Res 1:42Google Scholar
  220. 220.
    Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Nanotechnology 19:295103(1)Google Scholar
  221. 221.
    Zhang A-I, Sun YP (2004) World J Gastroenterol 10:3191Google Scholar
  222. 222.
    Cervera BEH, Azcorra SAG, Gattorno GR, López T, Islas EQ, Oskam G (2009) Sci Adv Mater 1:63Google Scholar
  223. 223.
    Zhang Y, Wang T-H (2012) Theranostics 2:631Google Scholar
  224. 224.
    Baba K, Nishida K (2012) Theranostics 2:655Google Scholar
  225. 225.
    Clift MJD, Stone V (2012) Theranostics 2:668Google Scholar
  226. 226.
    Yong K-T, Wang Y, Roy I et al (2012) Theranostics 2:681Google Scholar
  227. 227.
    Balazs AC, Emrick T, Russell TP (2006) Science 314:1107Google Scholar
  228. 228.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425Google Scholar
  229. 229.
    Godovsky DY (2000) Biopolymers/Pva Hydrogels/Anionic Polymerisation Nanocomposites 153:163–205Google Scholar
  230. 230.
    Li S, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nano Rev 1:5214(1)Google Scholar
  231. 231.
    Hong JI, Cho KS, Chung CI, Schadler LS, Siegel RW (2002) J Mater Res 17:940Google Scholar
  232. 232.
    Ma CCM, Chen YJ, Kuan HC (2006) J Appl Polym Sci 100:508Google Scholar
  233. 233.
    Wong M, Tsuji R, Nutt S, Sue H-J (2010) Soft Matter 6:4482Google Scholar
  234. 234.
    Zohrevand A, Ajji A, Mighri F (2013) Polym Eng Sci 54:874Google Scholar
  235. 235.
    Ou B, Li D, Liu Q, Zhou Z, Xiao Q (2012) Polym Plast Technol 51:849Google Scholar
  236. 236.
    Mohan S, Oluwafemi OS, Songca SP, Osibote OA, George SC, Kalarikkal N, Thomas S (2014) New J Chem 38:155Google Scholar
  237. 237.
    Wacharawichanant S, Thongbunyoung N, Churdchoo P, Sookjai T (2010) Sci J UBU 1:21Google Scholar
  238. 238.
    Miyauchi M, Li Y, Shimizu H (2008) Environ Sci Technol 42:4551Google Scholar
  239. 239.
    Tuan VM, Jeong DW, Yoon HJ, Kang SY, Giang NV, Hoang T, Thinh TI, Kim MY (2014) Int J Polym Sci 2014:758351(1)Google Scholar
  240. 240.
    Redhwi HH, Siddiqui MN, Andrady AL, Hussain S (2013) J Nanomater 2013:654716(1)Google Scholar
  241. 241.
    Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P (2011) Biomacromolecules 12:1762Google Scholar
  242. 242.
    Guan C, Lu CL, Cheng YR, Song SY, Yang BA (2009) J Mater Chem 19:617Google Scholar
  243. 243.
    Cheng Y, Lu C, Lin Z, Liu Y, Guan C, Lu H, Yang B (2008) J Mater Chem 18:4062Google Scholar
  244. 244.
    Dzunuzovic E, Jeremic K, Nedeljkovic JM (2007) Eur Polym J 43:3719Google Scholar
  245. 245.
    Evora VMF, Shukla A (2003) Mater Sci Eng A 361:358Google Scholar
  246. 246.
    Kaleel SHA, Bahuleyan BK, Masihullah J, Al-Harthi M (2011) J Nanomater 2011:964353(1)Google Scholar
  247. 247.
    Zapata PA, Palza H, Delgado K, Rabagliati FM (2012) J Polym Sci Part A: Polym Chem 50:4055Google Scholar
  248. 248.
    Sharma D, Kaith BS, Rajput J (2014) Sci World J 2014:904513(1)Google Scholar
  249. 249.
    Liu P, Su Z (2006) J Macromol Sci Part B: Phys 45:131Google Scholar
  250. 250.
    Xu M, Zhang J, Wang S, Guo X, Xia H, Wang Y, Zhang S, Huang W, Wu S (2010) Sensors Actuators B Chem 146:8Google Scholar
  251. 251.
    Yang Y, Zhou Y, Ge J, Yang X (2012) Mater Res Bull 47:2264Google Scholar
  252. 252.
    Bai S, Zhang K, Sun J, Zhang D, Luo R, Li D, Liu C (2014) Sensors Actuators B Chem 197:142Google Scholar
  253. 253.
    O’Brien P, Cummins SS, Darcy D, Dearden A, Masala O, Pickett NL, Ryleya S, Sutherland AJ (2003) Chem Commun 2003:2532Google Scholar
  254. 254.
    Skaff H, Ilker MF, Coughlin EB, Emrick T (2002) J Am Chem Soc 124:5729Google Scholar
  255. 255.
    Guo W, Li JJ, Wang A, Peng X (2003) J Am Chem Soc 125:3901Google Scholar
  256. 256.
    Lee J, Sundar VC, Heine JR, Bawendi MG, Jensen KF (2000) Adv Mater 12:1102Google Scholar
  257. 257.
    Landfester K (2001) Macromol Rapid Commun 22:896Google Scholar
  258. 258.
    Esteves ACC, Bombalski L, Trindade T, Matyjaszewski K, Barros-Timmons A (2007) Small 3:1230Google Scholar
  259. 259.
    Jakubowski W, Matyjaszewski K (2005) Macromolecules 38:4139Google Scholar
  260. 260.
    Min K, Gao H, Matyjaszewski K (2005) J Am Chem Soc 127:3825Google Scholar
  261. 261.
    Joumaa N, Lansalot M, ThJretz A, Elaissari A, Sukhanova A, Artemyev M, Nabiev I, Cohen JHM (2006) Langmuir 22:1810Google Scholar
  262. 262.
    Vassiltsova OV, Jayez DA, Zhao Z, Carpenter MA, Petrukhina MA (2010) J Nanosci Nanotechnol 10:1635Google Scholar
  263. 263.
    Liu SH, Qian XF, Yuan JY, Yin J, He R, Zhu ZK (2003) Mater Res Bull 38:1359Google Scholar
  264. 264.
    Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Mavinakuli P, Karki AM, Young DP, Guo Z (2010) J Phys Chem C 114:16335Google Scholar
  265. 265.
    Althues H, Palkoits R, Rumplecker A, Simon P, Sigle W, Bredol M, Kynast U, Kaskel S (2006) Chem Mater 18:1068Google Scholar
  266. 266.
    Kondawar S, Mahore R, Dahegaonkar A, Sikha A (2011) Adv Appl Sci Res 2:401Google Scholar
  267. 267.
    Anzlovar A, Kogej K, Orel ZC, Zigon M (2011) eXpress Polym Lett 5:604Google Scholar
  268. 268.
    Uygun A, Turkoglu O, Sen S, Ersoy E, Yavuz AG, Batir GG (2009) Curr Appl Phys 9:866Google Scholar
  269. 269.
    Hashimoto M, Takadama H, Mizuno M, Kokubo T (2006) Mater Res Bull 41:515Google Scholar
  270. 270.
    Camargo P, Satyanarayana K, Wypych F (2009) Mater Res 12:1Google Scholar
  271. 271.
    Emamifar A, Kadivar M, Shahedi M, Solaimanianzad S (2011) Food Control 22:408Google Scholar
  272. 272.
    Kondawar SB, Patil PT, Agrawal SP (2014) Adv Mater Lett 5:389Google Scholar
  273. 273.
    Potyrailo RA, Leach AM, Cheryl MS (2012) Comb Sci 14:170Google Scholar
  274. 274.
    Potyrailo RA, Leach AM (2006) Appl Phys Lett 88:134110(1)Google Scholar
  275. 275.
    Xu M, Zhang J, Wang S, Guo X, Xia H, Wang Y, Zhang S, Huang W, Wu S (2010) Sensors Actuators B Chem 146:8Google Scholar
  276. 276.
    Zhao Z, Arrandale M, Vassiltsova OV, Petrukhina MA, Carpenter MA (2009) Sensors Actuators B Chem 141:26Google Scholar
  277. 277.
    Zhang ZY, Xu YD, Ma YY, Qiu LL, Wang Y, Kong JL, Xiong HM (2013) Angew Chem Int Ed 52:4127Google Scholar
  278. 278.
    Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Langmuir 23:12445Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sarita Kango
    • 1
  • Susheel Kalia
    • 2
    Email author
  • Pankaj Thakur
    • 3
    • 4
  • Bandna Kumari
    • 2
  • Deepak Pathania
    • 4
  1. 1.Department of Physics and Materials ScienceJaypee University of Information TechnologyWaknaghat, SolanIndia
  2. 2.Department of ChemistryBahra UniversityWaknaghat (Shimla Hills), SolanIndia
  3. 3.Center for Advanced Biomaterials for Health Care(Istituto Italiano Di Tecnologia)NaplesItaly
  4. 4.Department of ChemistryShoolini UniversitySolanIndia

Personalised recommendations