Skip to main content

Polymer Degradation Under Microwave Irradiation

  • Chapter
  • First Online:
Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

Development of advanced, environmentally friendly and energy-saving techniques for the chemical recycling of polymers is of paramount importance in the polymer industry. Understanding polymer degradation is the scientific key behind this technological challenge. Recent research on the application of microwave irradiation to polymer degradation is presented in this review. Results have shown the potential advantage of microwaves for complete polymer degradation in a significantly reduced time scale compared with conventional heating. The benefits of using microwave irradiation in the degradation of polyesters [e.g. poly(ethylene terephthalate) and polycarbonate], polyurethanes, polyamides, poly[alkyl (meth)acrylates], polystyrene and other polymers is presented. Moreover, the effect of microwave heating on the pyrolysis of commodity polymers such as polyethylene, is also discussed. Finally, the double role of materials used traditionally as solvents, reagents or catalysts, but now also as microwave absorbers in polymer degradation is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIBN:

2,2′-Azobisisobutyronitrile

DEG:

Diethylene glycol

DSC:

Differential scanning calorimetry

EG:

Ethylene glycol

HDPE:

High-density polyethylene

LDPE:

Low-density polyethylene

MW:

Microwave

PBMA:

Poly(butyl methacrylate)

PC:

Polycarbonate

PEG:

Poly(ethylene glycol)

PEMA:

Poly(ethyl methacrylate)

PET:

Poly(ethylene terephthalate)

PG:

Propylene glycol

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PS:

Polystyrene

PTC:

Phase transfer catalyst

TGA:

Thermogravimetric analysis

TOMAB:

Trioctyl methyl ammonium bromide

TPA:

Terephthalic acid

References

  1. Bogdal D, Prociak A (2007) Recycling of plastics. In: Microwave enhanced polymer chemistry and technology. Wiley-Blackwell, Richmond

    Chapter  Google Scholar 

  2. Achilias DS (2012) Material recycling-trends and perspectives. InTech Open Access, Croatia

    Book  Google Scholar 

  3. Fernandez Y, Arenillas A, Menendez JA (2011) Microwave heating applied to pyrolysis. In: Grundas S (ed) Advances in induction and microwave heating of mineral and organic materials. InTech, Croatia

    Google Scholar 

  4. Bogdal D, Penczek P, Pielichowski J, Prociak A (2003) Microwave assisted synthesis, crosslinking and processing of polymeric materials. Adv Polym Sci 163:193–263

    CAS  Google Scholar 

  5. Hoogenboom R, Schubert US (2009) Microwave-assisted organic and polymer chemistry. Aust J Chem 62(3):181–183

    Article  CAS  Google Scholar 

  6. Hoogenboom R, Wilms TFA, Erdmenger T, Schubert US (2009) Microwave-assisted chemistry: a closer look at heating efficiency. Aust J Chem 62(3):236–243

    Article  CAS  Google Scholar 

  7. Karayannidis GP, Achilias DS (2007) Chemical recycling of PET. Macromol Mater Eng 292:128–146

    Article  CAS  Google Scholar 

  8. Krzan A (1998) Microwave irradiation as an energy source in PET solvolysis. J Appl Polym Sci 69:1115–1118

    Article  CAS  Google Scholar 

  9. Krzan A (1999) PET glycolysis under microwave irradiation. Polym Adv Technol 10:603–606

    Article  CAS  Google Scholar 

  10. Ikenaga K, Oyama H (2006) Accelerated chemical degradation of PET by microwave basic catalysis. Polym Prepr 55:2469–2470

    Google Scholar 

  11. Liu L, Zhang D, An L, Zhang H, Tian Y (2005) Hydrolytic depolymerization of PET under microwave irradiation. J Appl Polym Sci 95:719–723

    Article  CAS  Google Scholar 

  12. Li K, Song X, Zhang D (2008) Depolymerization of PET with catalyst under microwave irradiation. J Appl Polym Sci 109:1298–1301

    Article  CAS  Google Scholar 

  13. Li K, Song X, Zhang D (2008) Molecular weight evaluation of depolymerized PET using intrinsic viscosity. J Appl Polym Sci 109:1294–1297

    Article  CAS  Google Scholar 

  14. Song X, Zhang S, Zhang D (2010) Catalysis investigation of PET depolymerization under metal oxides by microwave irradiation. J Appl Polym Sci 117:3155–3159

    CAS  Google Scholar 

  15. Ge Y, Han C, Zhang D (2011) Study of PET depolymerization catalysed by metal oxide with different acidity/basicity under microwave irradiation. Adv Mater Res 233–235:1076–1079

    Article  Google Scholar 

  16. Ma Y, Tang Q, Zhang D (2011) Catalysis investigation of PET depolymerization by super acid SO4 2−/γ-Al2O3 under microwave irradiation. Adv Mater Res 233–235:1073–1075

    Article  Google Scholar 

  17. Yan H, Ma Y, Zhang W, Zhang D (2012) Catalytic effects of super acid SO4 2−/γ-Al2O3 to PET depolymerization under microwave irradiation. Adv Mater Res 550–553:280–283

    Article  Google Scholar 

  18. Geng L, Han C, Zhang D (2011) Catalysis investigation of PET depolymerization by ZnSrO2 under microwave irradiation. Adv Mater Res 239–242:3194–3197

    Article  Google Scholar 

  19. Zuo M, Zhang W, Feng Q, Han C, Zhang D (2012) Preparation of ZnO.SrO and its catalysis to PET depolymerization under microwave irradiation. Adv Mater Res 557–559:135–138

    Article  Google Scholar 

  20. Tang Q, Ma Y, Zhang D (2011) Effects of temperature on catalytic hydrolysis of PET by zinc sulphate under microwave irradiation. Adv Mater Res 233–235:1628–1631

    Article  Google Scholar 

  21. Zhang W, Shi X, Zhang X, Han C, Zhang D (2012) PET depolymerization catalysed by sulphates under microwave irradiation. Adv Mater Res 550–553:792–797

    Article  Google Scholar 

  22. Nikje MMA, Nazari F (2006) Microwave-assisted depolymerization of PET at atmospheric pressure. Adv Polym Technol 25:242–246

    Article  Google Scholar 

  23. Nikje MMA, Nazari F (2009) Simple and convenient method of chemical recycling of PET by using microwave radiation. Polimery/Polymers 54:635–638

    Google Scholar 

  24. Pingale ND, Shukla SR (2008) Microwave assisted ecofriendly recycling of PET bottle waste. Eur Polym J 44:4151–4156

    Article  CAS  Google Scholar 

  25. Pingale ND, Shukla SR (2009) Microwave-assisted aminolytic depolymerization of PET waste. Eur Polym J 45:2695–2700

    Article  CAS  Google Scholar 

  26. Parab YS, Pingale ND, Shukla SR (2012) Aminolytic depolymerization of poly(ethylene terephthalate) bottle waste by conventional and microwave irradiation heating. J Appl Polym Sci 125:1103–1107

    Article  CAS  Google Scholar 

  27. Shah RV, Shukla SR (2012) Effective aminolytic depolymerization of poly(ethylene terephthalate) waste and synthesis of bisoxazoline thereform. J Appl Polym Sci 125:3666–3675

    Article  CAS  Google Scholar 

  28. Shah RV, Borude VS, Shukla SR (2013) Recycling of PET waste using 3-amino-1-propanol by conventional or microwave irradiation and synthesis of bis-oxazin thereform. J Appl Polym Sci 127:323–328

    Article  CAS  Google Scholar 

  29. Siddiqui MN, Achilias DS, Redhwi HH, Bikiaris DN, Katsogiannis K-AG, Karayannidis GP (2010) Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng 295:575–584

    Article  CAS  Google Scholar 

  30. Achilias DS, Redhwi HH, Siddiqui MN, Nikolaidis AK, Bikiaris DN, Karayannidis GP (2010) Glycolytic depolymerization of PET waste in a microwave reactor. J Appl Polym Sci 118:3066–3073

    Article  CAS  Google Scholar 

  31. Achilias DS, Tsintzou GP, Nikolaidis AK, Bikiaris DN, Karayannidis GP (2011) Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor. Polym Int 60:500–506

    Article  CAS  Google Scholar 

  32. Siddiqui MN, Achilias DS, Redhwi HH (2012) Recycling of poly(ethylene terephthalate) waste through methanolic pyrolysis in a microwave reactor. J Anal Appl Pyrol 98:214–220

    Article  CAS  Google Scholar 

  33. Khalaf HI, Hasan OA (2012) Effect of quaternary ammonium salt as a phase transfer catalyst for the microwave depolymerization of poly(ethylene terephthalate) waste bottles. Chem Eng J 192:45–48

    Article  CAS  Google Scholar 

  34. Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, Matthews

    Google Scholar 

  35. Chen F, Wang G, Shi C, Zhang Y, Zhang L, Li W, Yang F (2013) Kinetics of glycolysis of poly(ethylene terephthalate) under microwave irradiation. J Appl Polym Sci 127:2809–2815

    Article  CAS  Google Scholar 

  36. Chaudhary S, Surekha P, Kumar D, Rajagopal C, Roy PK (2013) Microwave assisted glycolysis of poly(ethylene terephthalate) for preparation of polyester polyols. J Appl Polym Sci 129:2779–2788

    Article  Google Scholar 

  37. Zhang S, Song X, Zhang D, Tian Y (2011) Kinetics of the hydrolytic depolymerization of poly(ethylene terephthalate) under microwave irradiation. Polym J 43:811–815

    Article  CAS  Google Scholar 

  38. Cho JY, Hong C-J, Choi H-M (2013) Microwave-assisted glycolysis for PET with highly hydrophilic surface. Ind Eng Chem Res 52:2309–2315

    Article  CAS  Google Scholar 

  39. Shafique U, Zaman W, Anwar J, Munawar MA, Salman M, Dar A, Rehman R, Ashraf U, Ahmad S (2011) A rapid economical and eco-friendly method to recycle terephthalic acid from waste poly(ethylene terephthalate) bottles. Int J Polym Mater Polym Biomat 60:1147–1151

    Article  CAS  Google Scholar 

  40. Liu Z, Liu R, Wang Y, Fan X, Tao C (2011) Microwave-assisted degradation of waste PET at atmospheric pressure using silicon carbide as power modulator. In: Proceedings of the international conference on remote sensing, environment and transportation engineering, RSETE 2011, pp 3276–3280

    Google Scholar 

  41. Biedermann-Brem S, Grob K (2009) Release of bisphenol-A from polycarbonate baby bottles: water hardness as the most relevant factor. Eur Food Res Technol 228:679–684

    Article  CAS  Google Scholar 

  42. Tsintzou GP, Antonakou EV, Achilias DS (2012) Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation. J Hazard Mater 241–242:137–145

    Article  Google Scholar 

  43. Kim D, Kim BK, Cho Y, Han M, Kim BS (2009) Kinetics of polycarbonate glycolysis in ethylene glycol. Ind Eng Chem Res 48:685–691

    Article  CAS  Google Scholar 

  44. Nikje MMA (2011) Glycolysis of polycarbonate wastes with microwave irradiation. Polimery/Polymers 56:381–384

    CAS  Google Scholar 

  45. Nikje MMA, Nikrah M (2007) Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. J Macromol Sci Part A Pure Appl Chem 44:613–617

    Article  Google Scholar 

  46. Nikje MMA, Nikrah M, Haghshenas M (2007) Microwave assisted “split phase” glycolysis of polyurethane flexible foam wastes. Polym Bullet 59:91–104

    Article  Google Scholar 

  47. Nikje MMA, Nikrah M (2007) Microwave assisted glycolysis of polyurethane cold cure foam wastes from automotive seats in “split phase” condition. Polym-Plast Technol Eng 46:409–415

    Article  Google Scholar 

  48. Nikje MMA, Mohammadi FHA (2010) Polyurethane foam wastes recycling under microwave irradiation. Polym-Plast Technol Eng 49:818–821

    Article  CAS  Google Scholar 

  49. Nikje MMA, Nikrah M, Mohammadi FHA (2008) Microwave-assisted polyurethane bond cleavage via hydroglycolysis process at atmospheric pressure. J Cellular Plastics 44:367–380

    Article  CAS  Google Scholar 

  50. Nikje MMA (2012) Polyurethane foams produced from components received in microwave assisted recycling of PUR waste and starch liquefaction. Polimery/Polymers 57:11–17

    CAS  Google Scholar 

  51. Klun U, Krzan A (2000) Rapid microwave induced depolymerization of polyamide-6. Polymer 41:4361–4365

    Article  CAS  Google Scholar 

  52. Klun U, Krzan A (2002) Degradation of polyamide-6 by using metal salts as catalyst. Polym Adv Technol 13:817–822

    Article  CAS  Google Scholar 

  53. Achilias DS (2007) Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer. Eur Polym J 43:2564–2575

    Article  CAS  Google Scholar 

  54. Lin C-C, Guo G-L, Tsai T-L (2009) A bi-order kinetic model for poly(methyl methacrylate) decomposition in HNO3 using microwave irradiation. AIChE J 55:2150–2158

    Article  CAS  Google Scholar 

  55. Tsai T-L, Lin C-C, Guo G-L, Chu T-C (2008) Chemical kinetics of poly(methyl methacrylate) decomposition assessed by a microwave-assisted digestion system. Ind Eng Chem Res 47:2554–2560

    Article  CAS  Google Scholar 

  56. Tsai T-L, Lin C-C, Guo G-L, Chu T-C (2008) Effect of microwave-assisted digestion on decomposition behaviour of poly(methyl methacrylate). Mater Chem Phys 108:382–390

    Article  CAS  Google Scholar 

  57. Marimuthu A, Madras G (2008) Continuous distribution kinetics for microwave-assisted oxidative degradation of poly(alkyl methacrylates). AIChE J 54:2164–2173

    Article  CAS  Google Scholar 

  58. Marimuthu A, Madras G (2008) Effect of oxidizers on microwave-assisted oxidative degradation of poly(alkyl acrylates). Ind Eng Chem Res 47:7538–7544

    Article  CAS  Google Scholar 

  59. Sivalingam G, Agarwal N, Madras G (2003) AIChE J 49:1821

    Article  CAS  Google Scholar 

  60. Petrova N, Evtushenko A, Chikhacheva I, Zubov V, Kubrakova I (2005) Russ J Appl Chem 78:1158

    Article  CAS  Google Scholar 

  61. Alekseeva N, Evtushenko A, Chikhacheva I, Zubov V, Kubrakova I (2005) Mendeleev Commun 14:170

    Article  Google Scholar 

  62. Bernal A, Kuritka I, Kasparkova V, Saha P (2013) The effect of microwave irradiation on poly(vinyl alcohol) dissolved in ethylene glycol. J Appl Polym Sci 128:175–180

    Article  CAS  Google Scholar 

  63. Vijayalakshmi SP, Chakraborty J, Madras G (2005) Thermal and microwave-assisted oxidative degradation of poly(ethylene oxide). J Appl Polym Sci 96:2090–2096

    Article  CAS  Google Scholar 

  64. Ghaffar A, Verschuren PG, Geenevasen JAJ, Handels T, Berard J, Plum B, Dias AA, Schoenmakers PJ, van der Wal SJ (2011) Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: structure elucidation, separation and quantification of degradation products. J Chrom A 1218:449–458

    Article  CAS  Google Scholar 

  65. Moriwaki S, Machina M, Matsumoto H, Kuga M, Ogura T (2006) J Anal Appl Pyrolysis 76:238

    Article  CAS  Google Scholar 

  66. Moriwaki S, Machina M, Matsumoto H, Otsubo Y, Aikawa M, Ogura T (2006) Appl Therm Eng 26:745

    Article  CAS  Google Scholar 

  67. Ito M, Ushida K, Nakao N, Kikuchi N, Nozaki R, Asai K, Washio M (2006) Polym Degrad Stab 91:1694

    Article  CAS  Google Scholar 

  68. Pistor V, Scuracchio CH, Oliveira PJ, Fiorio R, Zattera AJ (2011) Devulcanization of ethylene-propylene-diene polymer residues by microwave-influence of the presence of paraffinic oil. Polym Eng Sci 51:697–703

    Article  CAS  Google Scholar 

  69. Achilias DS (2009) Chemical recycling of waste plastics by pyrolysis: effect of polymer type on products distribution, chapter 14. In: Donahue WS, Brandt JC (eds) Pyrolysis: types, processes, and industrial sources and products. Nova Science, New York, pp 359–402

    Google Scholar 

  70. Holland KM (1995) Apparatus for waste pyrolysis. US Patent 5,387,321 A

    Google Scholar 

  71. Holland KM (1994) Process of destructive distillation of organic material. US Patent 5,330,623A

    Google Scholar 

  72. Ludlow-Palafox C, Chase HA (2001) Microwave induced pyrolysis of plastic wastes. Ind Eng Chem Res 40:4749–4756

    Article  CAS  Google Scholar 

  73. Hussain Z, Khan KM, Perveen S, Hussain K, Voelter W (2012) The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Proc Technol 94:145–150

    Article  CAS  Google Scholar 

  74. Hussain Z, Khan KM, Basheer N, Hussain K (2011) Co-liquefaction of Makarwal coal and waste polystyrene by microwave-metal interaction pyrolysis in copper coil reactor. J Anal Appl Pyrol 90:53–55

    Article  CAS  Google Scholar 

  75. Achilias DS, Kanellopoulou I, Megalokonomos P, Antonakou E, Lappas AA (2007) Chemical recycling of polystyrene by pyrolysis: potential use of the liquid product for the reproduction of polymer. Macromol Mater Eng 292:923–934

    Article  CAS  Google Scholar 

  76. Russell AD, Antreou EI, Lam SS, Ludlow-Palafox C, Chase HA (2012) Microwave-assisted pyrolysis of HDPE using an activated carbon bed. RSC Adv 2:6756–6760

    Article  CAS  Google Scholar 

  77. Andersson M, Wedel MK, Forsgren C, Christeen J (2012) Microwave assisted pyrolysis of residual fractions of waste electrical and electronic equipment. Miner Eng 29:105–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris S. Achilias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Achilias, D.S. (2014). Polymer Degradation Under Microwave Irradiation. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2014_292

Download citation

Publish with us

Policies and ethics