Skip to main content

Frontiers in Nanofabrication via Self-Assembly of Hybrid Materials into Low Dimensional Nanostructures

  • Chapter
  • First Online:
Organic-Inorganic Hybrid Nanomaterials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 267))

Abstract

Nanofabrication via self-assembled hybrid building blocks into well-defined structures is a powerful tool for engineering functional materials with designed properties. This review demonstrates different concepts for fabrication of one-dimensional (1D) nanostructures based on hybrid materials via directed self-assembly. The concepts describe how different types of self-assembled organic phases drive the unidirectional assembly of the inorganic moieties. The organic matrices are used to control the size and size distribution of the generated inorganic nanoparticles. Formation of the 1D structures is dependent on many parameters, such as nature of chemical composition of the hybrid organic–inorganic materials, the pH of the wet chemistry medium and the types of interactions at the interface that drive the structure formation. The collective properties of the designed 1D structures are induced by means of the degree of anisotropy and the alignment of different types of inorganic nanoparticles within the organic matrices. This cost-effective approach could potentially be extended to fabricate varieties of hybrid low dimensional nanostructures possessing unique collective electronic and optical properties, leading to a wide range of applications such as catalysis, bionanotechnology, nanoelectronics, photonics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahmi A, Pietsch T, Mandoza C (2009) Mater Today 12:44

    Article  CAS  Google Scholar 

  2. Schatz G (2010) J Phys Chem Lett 1:2980–2981. doi:10.1021/jz101284n

  3. Kalekar AM, Sharma KKK, Lehoux A, Audonnet F, Remita H, Saha A, Sharma GK (2013) Langmuir 29(36):11431–11439

    Google Scholar 

  4. Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757–1760

    Article  CAS  Google Scholar 

  5. Willner I, Willner B (2010) Nano Lett 10(10):3805–3815

    Article  CAS  Google Scholar 

  6. Wang H, Wang D, Peng Z, Tang W, Li N, Liu F (2013) Chem Commun 49:5568–5570

    Google Scholar 

  7. Ma Z, Chen W, Schuster GB (2012) Chem Mater 24(20):3916–3922

    Article  CAS  Google Scholar 

  8. Wang Y, Mirkin CA, Park S (2009) ACS Nano 3(5):1049–1056

    Article  CAS  Google Scholar 

  9. Wirth GF, Hähnel G, Csáki A, Jahr N, Stranik O, Paa W, Fritzsche W (2011) Nano Lett 11(4):1505–1511

    Article  CAS  Google Scholar 

  10. Kaur P, Maeda Y, Mutter AC, Matsunaga T, Xu Y, Matsui H (2010) Angew Chem Int Ed 49(45):8375–8378

    Article  CAS  Google Scholar 

  11. Ling S, Lin C, Adamcik J, Wang S, Shao Z, Chen X, Mezzenga R (2014) ACS Macro Lett 3(2):146–152

    Article  CAS  Google Scholar 

  12. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Nanotoxicology 4(1):120–137

    Article  CAS  Google Scholar 

  13. Xu J, Teslaa T, Wu T-H, Chiou P, Teitell MA, Weiss S (2012) Nano Lett 12(11):5669–5672

    Article  CAS  Google Scholar 

  14. Khan AA, Fox EK, Górzny ML, Nikulina E, Brougham DF, Wege C (2013) Langmuir 29(7):2094–2098

    Article  CAS  Google Scholar 

  15. Lee JH, Domaille DW, Cha JN (2012) ACS Nano 6(6):5621–5626

    Article  CAS  Google Scholar 

  16. Xu F, Fahmi A, Zhao Y, XiaY ZY (2012) Nanoscale 4:7031

    Article  CAS  Google Scholar 

  17. Mann S (2009) Nat Mater 8:781–792

    Article  CAS  Google Scholar 

  18. Cozzoli PD, Fanizza E, Curri ML, Laubc D, Agostiano A (2005) Chem Commun 2005:942–944

    Google Scholar 

  19. Sudeep PK, Emrick T (2009) ACS Nano 3(10):2870–2875

    Article  CAS  Google Scholar 

  20. Lin S, Li M, Dujardin E, Girard C, Mann S (2005) Adv Mater 17:2553–2559

    Article  CAS  Google Scholar 

  21. Gröschel AH, Walther A, Löbling TI, Schacher FH, Schmalz H, Müller AHE (2013) Nature 503:247–251

    Google Scholar 

  22. Cademartiri L, Ozin GA (2009) Concepts of nanochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  23. Whitesides GM, Grzybowski B (2002) Science 295:2418

    Article  CAS  Google Scholar 

  24. Ozin GA, Hou K, Lotsch BV, Cademartiri L, Puzzo DP, Scotognella F, Ghadimi A, Thomson J (2009) Mater Today 12(5):12–23

    Article  CAS  Google Scholar 

  25. Kang Y, Erickson KJ, Taton TA (2005) J Am Chem Soc 127:13800–13801

    Article  CAS  Google Scholar 

  26. Li Z, Sai H, Warren SC, Kamperman M, Arora H, Gruner SM, Wiesner U (2009) Chem Mater 21(23):5578–5584

    Article  CAS  Google Scholar 

  27. Pietsch T, Gindy N, Fahmi A (2008) Polymer 49(4):914–921

    Article  CAS  Google Scholar 

  28. Wang H, Patil AJ, Liu K, Petrov S, Mann S, Winnik MA et al (2009) Adv Mater 21:1805–1808

    Article  CAS  Google Scholar 

  29. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  30. Gottlieb D, Morin SA, Jin S, Raines RT (2008) J Mater Chem 18:3865–3870

    Article  CAS  Google Scholar 

  31. Niemeyer CM (2003) Angew Chem Int Ed 42(47):5796–5800

    Article  CAS  Google Scholar 

  32. Selvan ST, Thatt T, Tan Y, Yi DK, Jana NR (2010) Langmuir 26(14):11631–11641

    Article  CAS  Google Scholar 

  33. Hoffmann C, Mazari E, Gosse C, Bonnemay L, Hostachy S, Gautier J, Gueroui Z (2013) ACS Nano 7(11):9647–9654

    Article  CAS  Google Scholar 

  34. Fahmi A, Pietsch T, Bryszewska M, Rodríguez-Cabello JC, Chyla AK, Arias FJ, Rodrigo MA, Gindy N (2010) Adv Funct Mater 20:1011

    Article  CAS  Google Scholar 

  35. Vanrella RH, Rinco´na AC, Alonsob M, Rebotob V, Molina-Martineza IT, Rodr RC, Cabelloc G (2005) J Control Release 102:113–122

    Article  Google Scholar 

  36. Nath N, Hyun J, Ma H, Chilkoti A (2004) Surf Sci 570:98–110

    Article  CAS  Google Scholar 

  37. Aili D, Enander K, Baltzer L, Liedberg B (2007) Biochem Soc Trans 35:532–534

    Article  CAS  Google Scholar 

  38. Lee BC, Zuckermann RN (2010) Chem Commun 46:1634–1636

    Article  CAS  Google Scholar 

  39. Palmer LC, Stupp SI (2008) Acc Chem Res 41(12):1674–1684

    Article  CAS  Google Scholar 

  40. Khan S, Sur S, Dankers PYW, da Silva RMP, Boekhoven J, Poor TA, Stupp SI (2014) Bioconjug Chem 25(4):707–717

    Article  CAS  Google Scholar 

  41. Aida T, Meijer EW, Stupp SI (2012) Science 335(6070):813–817

    Article  CAS  Google Scholar 

  42. Reguera J, Fahmi A, Moriarty P, Girotti A, Rodriguez-Cabello JC (2004) J Am Chem Soc 126:13212–13213

    Article  CAS  Google Scholar 

  43. Kumar S, Aswal VK, Callow P (2014) Langmuir 30(6):1588–1598

    Article  CAS  Google Scholar 

  44. Hartgerink JD, Beniash E, Stupp SI (2005) Science 294(5547):1684–1688

    Article  Google Scholar 

  45. Spanier JE et al (2006) Nano Lett 6:735–739

    Article  CAS  Google Scholar 

  46. Li M, Johnson S, Guo H, Dujardin E, Mann S (2011) Adv Funct Mater 21(5):851–859

    Article  CAS  Google Scholar 

  47. Walter MV, Cheval N, Liszka O, Malkoch M, Fahmi A (2012) Langmuir 28(14):5947–5955

    Article  CAS  Google Scholar 

  48. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1(4):207–211

    Article  CAS  Google Scholar 

  49. Zhou X, Dayeh SA, Wang D, Yu ET (2007) Appl Phys Lett 90:233118

    Article  Google Scholar 

  50. Lau CY, Duan H, Wang F, He CB, Low HY, Yang JKW (2011) Langmuir 27(7):3355–3360

    Article  CAS  Google Scholar 

  51. Pissuwan D, Niidome T, Cortie MB (2011) J Control Release 149(1):65–71

    Article  CAS  Google Scholar 

  52. Cohen-Karni T, Jeong KJ, Tsui JH, Reznor G, Mustata M, Wanunu M, Graham A, Marks C, Bell DC, Langer R, Kohane DS (2012) Nano Lett 12(10):5403–5406

    Article  CAS  Google Scholar 

  53. Dhandayuthapani B, Mallampati R, Sriramulu D, Dsouza RF, Valiyaveettil S (2014) ACS Sustain Chem Eng 2(4):1014–1021

    Article  CAS  Google Scholar 

  54. Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  55. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 1994(7):801–802

    Article  Google Scholar 

  56. Stoeva S, Zaikovski V, Prasad BLV, Stoimenov P, Sorensen C, Klabunde K (2005) Langmuir 21:10280–10283

    Article  CAS  Google Scholar 

  57. Chen S, Murray RW (1998) Langmuir 15(3):682–689

    Article  Google Scholar 

  58. Fung ZH, K-H HJ, Chan CT, Wang D (2008) J Phys Chem C 112(43):16830–16839

    Article  Google Scholar 

  59. Llusar M, Sanchez C (2008) Chem Mater 20:782–820

    Article  CAS  Google Scholar 

  60. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) ACS Nano 4(7):3591–3605

    Article  CAS  Google Scholar 

  61. Lee J, Zhou H, Lee J (2011) J Mater Chem 21(42):16935–16942

    Article  CAS  Google Scholar 

  62. DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, Uzun O, Wunsch BH, Stellacci F (2007) Science 315:358–361

    Article  CAS  Google Scholar 

  63. Zhang H, Wang D (2008) Angew Chem Int Ed 47(21):3984–3987

    Article  CAS  Google Scholar 

  64. Kudelski A (2003) Langmuir 19(9):3805–3813

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Fahmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fahmi, A. (2014). Frontiers in Nanofabrication via Self-Assembly of Hybrid Materials into Low Dimensional Nanostructures. In: Kalia, S., Haldorai, Y. (eds) Organic-Inorganic Hybrid Nanomaterials. Advances in Polymer Science, vol 267. Springer, Cham. https://doi.org/10.1007/12_2014_291

Download citation

Publish with us

Policies and ethics