Advertisement

Frontiers in Nanofabrication via Self-Assembly of Hybrid Materials into Low Dimensional Nanostructures

  • Amir FahmiEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 267)

Abstract

Nanofabrication via self-assembled hybrid building blocks into well-defined structures is a powerful tool for engineering functional materials with designed properties. This review demonstrates different concepts for fabrication of one-dimensional (1D) nanostructures based on hybrid materials via directed self-assembly. The concepts describe how different types of self-assembled organic phases drive the unidirectional assembly of the inorganic moieties. The organic matrices are used to control the size and size distribution of the generated inorganic nanoparticles. Formation of the 1D structures is dependent on many parameters, such as nature of chemical composition of the hybrid organic–inorganic materials, the pH of the wet chemistry medium and the types of interactions at the interface that drive the structure formation. The collective properties of the designed 1D structures are induced by means of the degree of anisotropy and the alignment of different types of inorganic nanoparticles within the organic matrices. This cost-effective approach could potentially be extended to fabricate varieties of hybrid low dimensional nanostructures possessing unique collective electronic and optical properties, leading to a wide range of applications such as catalysis, bionanotechnology, nanoelectronics, photonics and optoelectronics.

Keywords

Hybrid nanofibres In-situ fabrication Nanofabrication Nanoparticles Self-assembly 

References

  1. 1.
    Fahmi A, Pietsch T, Mandoza C (2009) Mater Today 12:44CrossRefGoogle Scholar
  2. 2.
    Schatz G (2010) J Phys Chem Lett 1:2980–2981. doi: 10.1021/jz101284n
  3. 3.
    Kalekar AM, Sharma KKK, Lehoux A, Audonnet F, Remita H, Saha A, Sharma GK (2013) Langmuir 29(36):11431–11439Google Scholar
  4. 4.
    Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757–1760CrossRefGoogle Scholar
  5. 5.
    Willner I, Willner B (2010) Nano Lett 10(10):3805–3815CrossRefGoogle Scholar
  6. 6.
    Wang H, Wang D, Peng Z, Tang W, Li N, Liu F (2013) Chem Commun 49:5568–5570Google Scholar
  7. 7.
    Ma Z, Chen W, Schuster GB (2012) Chem Mater 24(20):3916–3922CrossRefGoogle Scholar
  8. 8.
    Wang Y, Mirkin CA, Park S (2009) ACS Nano 3(5):1049–1056CrossRefGoogle Scholar
  9. 9.
    Wirth GF, Hähnel G, Csáki A, Jahr N, Stranik O, Paa W, Fritzsche W (2011) Nano Lett 11(4):1505–1511CrossRefGoogle Scholar
  10. 10.
    Kaur P, Maeda Y, Mutter AC, Matsunaga T, Xu Y, Matsui H (2010) Angew Chem Int Ed 49(45):8375–8378CrossRefGoogle Scholar
  11. 11.
    Ling S, Lin C, Adamcik J, Wang S, Shao Z, Chen X, Mezzenga R (2014) ACS Macro Lett 3(2):146–152CrossRefGoogle Scholar
  12. 12.
    Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Nanotoxicology 4(1):120–137CrossRefGoogle Scholar
  13. 13.
    Xu J, Teslaa T, Wu T-H, Chiou P, Teitell MA, Weiss S (2012) Nano Lett 12(11):5669–5672CrossRefGoogle Scholar
  14. 14.
    Khan AA, Fox EK, Górzny ML, Nikulina E, Brougham DF, Wege C (2013) Langmuir 29(7):2094–2098CrossRefGoogle Scholar
  15. 15.
    Lee JH, Domaille DW, Cha JN (2012) ACS Nano 6(6):5621–5626CrossRefGoogle Scholar
  16. 16.
    Xu F, Fahmi A, Zhao Y, XiaY ZY (2012) Nanoscale 4:7031CrossRefGoogle Scholar
  17. 17.
    Mann S (2009) Nat Mater 8:781–792CrossRefGoogle Scholar
  18. 18.
    Cozzoli PD, Fanizza E, Curri ML, Laubc D, Agostiano A (2005) Chem Commun 2005:942–944Google Scholar
  19. 19.
    Sudeep PK, Emrick T (2009) ACS Nano 3(10):2870–2875CrossRefGoogle Scholar
  20. 20.
    Lin S, Li M, Dujardin E, Girard C, Mann S (2005) Adv Mater 17:2553–2559CrossRefGoogle Scholar
  21. 21.
    Gröschel AH, Walther A, Löbling TI, Schacher FH, Schmalz H, Müller AHE (2013) Nature 503:247–251Google Scholar
  22. 22.
    Cademartiri L, Ozin GA (2009) Concepts of nanochemistry. Wiley-VCH, WeinheimGoogle Scholar
  23. 23.
    Whitesides GM, Grzybowski B (2002) Science 295:2418CrossRefGoogle Scholar
  24. 24.
    Ozin GA, Hou K, Lotsch BV, Cademartiri L, Puzzo DP, Scotognella F, Ghadimi A, Thomson J (2009) Mater Today 12(5):12–23CrossRefGoogle Scholar
  25. 25.
    Kang Y, Erickson KJ, Taton TA (2005) J Am Chem Soc 127:13800–13801CrossRefGoogle Scholar
  26. 26.
    Li Z, Sai H, Warren SC, Kamperman M, Arora H, Gruner SM, Wiesner U (2009) Chem Mater 21(23):5578–5584CrossRefGoogle Scholar
  27. 27.
    Pietsch T, Gindy N, Fahmi A (2008) Polymer 49(4):914–921CrossRefGoogle Scholar
  28. 28.
    Wang H, Patil AJ, Liu K, Petrov S, Mann S, Winnik MA et al (2009) Adv Mater 21:1805–1808CrossRefGoogle Scholar
  29. 29.
    Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562CrossRefGoogle Scholar
  30. 30.
    Gottlieb D, Morin SA, Jin S, Raines RT (2008) J Mater Chem 18:3865–3870CrossRefGoogle Scholar
  31. 31.
    Niemeyer CM (2003) Angew Chem Int Ed 42(47):5796–5800CrossRefGoogle Scholar
  32. 32.
    Selvan ST, Thatt T, Tan Y, Yi DK, Jana NR (2010) Langmuir 26(14):11631–11641CrossRefGoogle Scholar
  33. 33.
    Hoffmann C, Mazari E, Gosse C, Bonnemay L, Hostachy S, Gautier J, Gueroui Z (2013) ACS Nano 7(11):9647–9654CrossRefGoogle Scholar
  34. 34.
    Fahmi A, Pietsch T, Bryszewska M, Rodríguez-Cabello JC, Chyla AK, Arias FJ, Rodrigo MA, Gindy N (2010) Adv Funct Mater 20:1011CrossRefGoogle Scholar
  35. 35.
    Vanrella RH, Rinco´na AC, Alonsob M, Rebotob V, Molina-Martineza IT, Rodr RC, Cabelloc G (2005) J Control Release 102:113–122CrossRefGoogle Scholar
  36. 36.
    Nath N, Hyun J, Ma H, Chilkoti A (2004) Surf Sci 570:98–110CrossRefGoogle Scholar
  37. 37.
    Aili D, Enander K, Baltzer L, Liedberg B (2007) Biochem Soc Trans 35:532–534CrossRefGoogle Scholar
  38. 38.
    Lee BC, Zuckermann RN (2010) Chem Commun 46:1634–1636CrossRefGoogle Scholar
  39. 39.
    Palmer LC, Stupp SI (2008) Acc Chem Res 41(12):1674–1684CrossRefGoogle Scholar
  40. 40.
    Khan S, Sur S, Dankers PYW, da Silva RMP, Boekhoven J, Poor TA, Stupp SI (2014) Bioconjug Chem 25(4):707–717CrossRefGoogle Scholar
  41. 41.
    Aida T, Meijer EW, Stupp SI (2012) Science 335(6070):813–817CrossRefGoogle Scholar
  42. 42.
    Reguera J, Fahmi A, Moriarty P, Girotti A, Rodriguez-Cabello JC (2004) J Am Chem Soc 126:13212–13213CrossRefGoogle Scholar
  43. 43.
    Kumar S, Aswal VK, Callow P (2014) Langmuir 30(6):1588–1598CrossRefGoogle Scholar
  44. 44.
    Hartgerink JD, Beniash E, Stupp SI (2005) Science 294(5547):1684–1688CrossRefGoogle Scholar
  45. 45.
    Spanier JE et al (2006) Nano Lett 6:735–739CrossRefGoogle Scholar
  46. 46.
    Li M, Johnson S, Guo H, Dujardin E, Mann S (2011) Adv Funct Mater 21(5):851–859CrossRefGoogle Scholar
  47. 47.
    Walter MV, Cheval N, Liszka O, Malkoch M, Fahmi A (2012) Langmuir 28(14):5947–5955CrossRefGoogle Scholar
  48. 48.
    Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1(4):207–211CrossRefGoogle Scholar
  49. 49.
    Zhou X, Dayeh SA, Wang D, Yu ET (2007) Appl Phys Lett 90:233118CrossRefGoogle Scholar
  50. 50.
    Lau CY, Duan H, Wang F, He CB, Low HY, Yang JKW (2011) Langmuir 27(7):3355–3360CrossRefGoogle Scholar
  51. 51.
    Pissuwan D, Niidome T, Cortie MB (2011) J Control Release 149(1):65–71CrossRefGoogle Scholar
  52. 52.
    Cohen-Karni T, Jeong KJ, Tsui JH, Reznor G, Mustata M, Wanunu M, Graham A, Marks C, Bell DC, Langer R, Kohane DS (2012) Nano Lett 12(10):5403–5406CrossRefGoogle Scholar
  53. 53.
    Dhandayuthapani B, Mallampati R, Sriramulu D, Dsouza RF, Valiyaveettil S (2014) ACS Sustain Chem Eng 2(4):1014–1021CrossRefGoogle Scholar
  54. 54.
    Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  55. 55.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 1994(7):801–802CrossRefGoogle Scholar
  56. 56.
    Stoeva S, Zaikovski V, Prasad BLV, Stoimenov P, Sorensen C, Klabunde K (2005) Langmuir 21:10280–10283CrossRefGoogle Scholar
  57. 57.
    Chen S, Murray RW (1998) Langmuir 15(3):682–689CrossRefGoogle Scholar
  58. 58.
    Fung ZH, K-H HJ, Chan CT, Wang D (2008) J Phys Chem C 112(43):16830–16839CrossRefGoogle Scholar
  59. 59.
    Llusar M, Sanchez C (2008) Chem Mater 20:782–820CrossRefGoogle Scholar
  60. 60.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) ACS Nano 4(7):3591–3605CrossRefGoogle Scholar
  61. 61.
    Lee J, Zhou H, Lee J (2011) J Mater Chem 21(42):16935–16942CrossRefGoogle Scholar
  62. 62.
    DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, Uzun O, Wunsch BH, Stellacci F (2007) Science 315:358–361CrossRefGoogle Scholar
  63. 63.
    Zhang H, Wang D (2008) Angew Chem Int Ed 47(21):3984–3987CrossRefGoogle Scholar
  64. 64.
    Kudelski A (2003) Langmuir 19(9):3805–3813CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty Technology and BionicsRhein-Waal University of Applied SciencesKleveGermany

Personalised recommendations