Advertisement

Shape Memory Polymer–Inorganic Hybrid Nanocomposites

  • Radu Reit
  • Benjamin Lund
  • Walter VoitEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 267)

Abstract

Shape memory polymers (SMPs) have been the focus of much research over the last few decades. From the novelty of temporarily fixing a three-dimensional shape from a planar polymer sheet, to the uses that SMPs are seeing today as softening biomedical implants and self-deploying hinges, this class of smart materials has successfully been used to tackle a variety of biological, electrical, and mechanical problems. However, the properties of these networks are limited by the organic nature of the SMPs. To enhance their properties, researchers across the globe have looked into imparting the desirable properties of inorganic composite materials to these polymer networks. As the field of shape memory polymer composites began to grow, researchers quantified the unique enhancements that came at varying filler loading levels as a result of controlled material interface interactions. Specifically, the incorporation of nanofillers of various shapes and sizes leads to increased internal interfacial area relative to micro- and macrocomposites at identical loading fractions and imparts interesting mechanical, optical, electrical, thermal, and magnetic properties to these emerging nanocomposites. This new class of material, referred to in this review as shape memory polymer–inorganic nanocomposites (SMPINCs), allows a host of new interactions between the smart polymer and its surrounding environment as a result of the ability to control the internal environment of the polymer network and nanofiller. In this work, the reader is introduced to both the methods of preparing these composites and the effects the fillers have on the biological, electromagnetic, and mechanical properties of the resulting composite.

Keywords

Inorganic nanocomposite Shape memory polymer Smart composite Stimuli-responsive material 

Abbreviations

AuCd

Gold-cadmium alloy

BMP

Bone morphogenetic protein

BNNT

Boron nitride nanotube

CNT

Carbon nanotube

DMA

Dynamic mechanical analysis

DSC

Differential scanning calorimetry

Fe2O3

Iron(III) oxide

Fe3O4

Iron(II,III) oxide

HA

Hydroxyapatite

LSPR

Localized surface plasmon resonance

MMT

Montmorillonite

MWCNT

Multiwalled carbon nanotube

Na-MMT

Sodium montmorillonite

PCL

Poly(ε-caprolactone)

PDLLA

Poly(d,l-lactide)

PEG

Poly(ethylene glycol)

PEMA

Poly(ethyl methacrylate)

PEO

Poly(ethylene oxide)

PLA

Poly(lactic acid)

PMMA

Poly(methyl methacrylate)

POSS

Polyhedral oligomeric silsesquioxane

SiC

Silicon carbide

SMP

Shape memory polymer

SMPC

Shape memory polymer composite

SMPINC

Shape memory polymer–inorganic nanocomposite

Td

Degradation temperature

Tg

Glass transition temperature

TiO2

Titanium dioxide

Tm

Melting temperature

References

  1. 1.
    Huang W et al (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20(17):3367–3381Google Scholar
  2. 2.
    Liu C, Qin H, Mather P (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543–1558Google Scholar
  3. 3.
    Lu H, Huang W, Yao Y (2013) Review of chemo-responsive shape change/memory polymers. Pigment Resin Technol 42(4):237–246Google Scholar
  4. 4.
    Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Res 39:445–471Google Scholar
  5. 5.
    Behl M, Zotzmann J, Lendlein A (2010) Shape-memory polymers and shape-changing polymers. In: Lendlein A (ed) Shape-memory polymers. Advances in Polymer Science, vol 226. Springer, Berlin, pp 1–40Google Scholar
  6. 6.
    Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221Google Scholar
  7. 7.
    Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000Google Scholar
  8. 8.
    Santhosh Kumar K, Biju R, Reghunadhan Nair C (2013) Progress in shape memory epoxy resins. React Funct Polym 73(2):421–430Google Scholar
  9. 9.
    Anis A et al (2013) Developments in shape memory polymeric materials. Polym Plast Technol Eng 52(15):1574–1589Google Scholar
  10. 10.
    Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661–1672Google Scholar
  11. 11.
    Leng J, Lan X, Du S (2010) Shape-memory polymer composites. In: Leng J, Du S (eds) Shape-memory polymers and multifunctional composites. CRC, Boca Raton, p 203Google Scholar
  12. 12.
    Leng J et al (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135Google Scholar
  13. 13.
    Madbouly SA, Lendlein A (2010) Shape-memory polymer composites. In: Lendlein A (ed) Shape-memory polymers. Advances in Polymer Science, vol 226. Springer, Berlin, pp 41–95Google Scholar
  14. 14.
    Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269Google Scholar
  15. 15.
    Wei Z, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: part I shape-memory materials. J Mater Sci 33(15):3743–3762Google Scholar
  16. 16.
    Zhang L, Brostowitz NR, Cavicchi KA, Weiss RA (2014) Perspective: ionomer research and applications. Macromol React Eng 8:81–99Google Scholar
  17. 17.
    Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39(1):199–234Google Scholar
  18. 18.
    Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38(8):1121–1162Google Scholar
  19. 19.
    Park D-H et al (2013) Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 38(10):1442–1486Google Scholar
  20. 20.
    Kango S et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261Google Scholar
  21. 21.
    Miaudet P et al (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296Google Scholar
  22. 22.
    Lu H et al (2010) Mechanical and shape‐memory behavior of shape‐memory polymer composites with hybrid fillers. Polymer Int 59(6):766–771Google Scholar
  23. 23.
    Nji J, Li G (2010) A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. Smart Mater Struct 19(3):035007Google Scholar
  24. 24.
    Nji J, Li G (2010) A biomimic shape memory polymer based self-healing particulate composite. Polymer 51(25):6021–6029Google Scholar
  25. 25.
    Kohlmeyer RR, Lor M, Chen J (2012) Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano Lett 12(6):2757–2762Google Scholar
  26. 26.
    Tridech C et al (2013) High performance composites with active stiffness control. ACS Appl Mater Interfaces 5(18):9111–9119Google Scholar
  27. 27.
    Fonseca M et al (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111Google Scholar
  28. 28.
    Li H et al (2013) The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos B Eng 44(1):508–516Google Scholar
  29. 29.
    Ratna D, Jagtap SB, Abraham T (2013) Nanocomposites of poly(ethylene oxide) and multiwall carbon nanotube prepared using an organic salt‐assisted dispersion technique. Polymer Eng Sci 53(3):555–563Google Scholar
  30. 30.
    Yang J-P et al (2012) Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone). Compos B Eng 43(1):22–26Google Scholar
  31. 31.
    Kausar A, Hussain ST (2013) Effect of modified filler surfaces and filler tethered polymer chains on morphology and physical properties of poly(azo-pyridylurethane)/multi-walled carbon nanotube nanocomposites. J Plast Film Sheeting 30: 181–204. doi: 10.1177/8756087913493633
  32. 32.
    Jiang L et al (2014) Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. Compos Sci Technol 91:98–103Google Scholar
  33. 33.
    Yoonessi M et al (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9):7644–7655Google Scholar
  34. 34.
    Choi JT et al (2012) Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater Struct 21(7):075017Google Scholar
  35. 35.
    Liang J et al (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8:1590Google Scholar
  36. 36.
    Iyengar PK et al (2013) Polymethyl methacrylate nanofiber-reinforced epoxy composite for shape-memory applications. High Perform Polymer 25(8):1000–1006Google Scholar
  37. 37.
    Lu H, Huang WM, Leng J (2014) Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos B Eng 62:1–4Google Scholar
  38. 38.
    Lu H, Lei M, Leng J (2014) Significantly improving electro‐activated shape recovery performance of shape memory nanocomposite by self‐assembled carbon nanofiber and hexagonal boron nitride. J Appl Polym Sci 131:40506Google Scholar
  39. 39.
    Hollaway L (2011) Thermoplastic–carbon fiber composites could aid solar-based power generation: possible support system for solar power satellites. J Compos Construct 15(2):239–247Google Scholar
  40. 40.
    Wu T, O’Kelly K, Chen B (2014) Poly (vinyl alcohol) particle-reinforced elastomer composites with water-active shape-memory effects. Eur Polym J 53:230–237Google Scholar
  41. 41.
    Yang B et al (2005) Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer. Scr Mater 53(1):105–107Google Scholar
  42. 42.
    Dorigato A et al (2013) Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. Express Polym Lett 7(8):673Google Scholar
  43. 43.
    Garle A et al (2012) Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4(2):645–657Google Scholar
  44. 44.
    Chang L, Read T (1951) Behavior of the elastic properties of AuCd. Trans Met Soc AIME 189:47Google Scholar
  45. 45.
    Sillion B (2002) Shape memory polymers. Actual Chim 3:182–188Google Scholar
  46. 46.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63Google Scholar
  47. 47.
    Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(varepsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98(3):842–847Google Scholar
  48. 48.
    Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676Google Scholar
  49. 49.
    Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034Google Scholar
  50. 50.
    Voit W, Ware T, Gall K (2011) Shape memory polymers and process for preparing. WO Patent 2,011,049,879Google Scholar
  51. 51.
    Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers—a multifunctional system. Pharm Res 27(4):527–529Google Scholar
  52. 52.
    Yakacki CM et al (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14):2255–2263Google Scholar
  53. 53.
    Gall K et al (2005) Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A 73A(3):339–348Google Scholar
  54. 54.
    Sharp AA et al (2006) Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng 3(4):L23Google Scholar
  55. 55.
    Ware T et al (2012) Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol Mater Eng 297Google Scholar
  56. 56.
    Baer G et al (2007) Shape-memory behavior of thermally stimulated polyurethane for medical applications. J Appl Polym Sci 103(6):3882–3892Google Scholar
  57. 57.
    Small IVW et al (2010) Biomedical applications of thermally activated shape memory polymers. J Mater Chem 20(17):3356–3366Google Scholar
  58. 58.
    Gall K et al (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126Google Scholar
  59. 59.
    Gall K et al (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85(2):290–292Google Scholar
  60. 60.
    Liu Y et al (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36(10):929–940Google Scholar
  61. 61.
    Cho JW, Lee SH (2004) Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. Eur Polym J 40:1343–1348Google Scholar
  62. 62.
    Koerner H et al (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115–120Google Scholar
  63. 63.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734Google Scholar
  64. 64.
    Vaia RA et al (1997) Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly(ethylene oxide) intercalated in montmorillonite. J Polym Sci B 35(1):59–67Google Scholar
  65. 65.
    Arzberger SC et al (2005) Elastic memory composites (EMC) for deployable industrial and commercial applications. In: White EV (ed) Proceedings of the SPIE 5762: Smart structures and materials 2005:Industrial and commercial applications of smart structures technologies. International Society for Optics and Photonics, Bellingham. doi: 10.1117/12.600583
  66. 66.
    Ohki T et al (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A Appl Sci Manuf 35(9):1065–1073Google Scholar
  67. 67.
    Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172Google Scholar
  68. 68.
    Schulz MJ, Kelkar AD, Sundaresan MJ (eds) (2004) Nanoengineering of structural, functional and smart materials, CRC, Boca RatonGoogle Scholar
  69. 69.
    Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Smithers Rapra Technology, Shawbury, UKGoogle Scholar
  70. 70.
    Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13):3790–3800Google Scholar
  71. 71.
    Razzaq MY, Frormann L (2007) Thermomechanical studies of aluminum nitride filled shape memory polymer composites. Polym Compos 28(3):287–293Google Scholar
  72. 72.
    Rezanejad S, Kokabi M (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J 43(7):2856–2865Google Scholar
  73. 73.
    Kim MS, Jun JK, Jeong HM (2008) Shape memory and physical properties of poly(ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos Sci Technol 68(7):1919–1926Google Scholar
  74. 74.
    Ratna D (2011) Processing and characterization of poly(ethylene oxide)/clay nanocomposites. J Polymer Eng 31(4):323–327Google Scholar
  75. 75.
    Ali ES, Zubir SA, Ahmad S (2012) Clay reinforced hyperbranched polyurethane nanocomposites based on palm oil polyol as shape memory materials. Adv Mater Res 548:115–118Google Scholar
  76. 76.
    Cuevas J et al (2012) Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater Struct 21(3):035004Google Scholar
  77. 77.
    George G (2012) Self-healing supramolecular polymer nanocomposites. PhD thesis, Deakin University, MelbourneGoogle Scholar
  78. 78.
    Greil P (2012) Generic principles of crack-healing ceramics. J Adv Ceram 1(4):249–267Google Scholar
  79. 79.
    Han Y et al (2012) Zinc ion uniquely induced triple shape memory effect of dipole–dipole reinforced ultra‐high strength hydrogels. Macromol Rapid Commun 33(3):225–231Google Scholar
  80. 80.
    Gao F (ed) (2012) Advances in polymer nanocomposites: types and applications. Woodhead, CambridgeGoogle Scholar
  81. 81.
    Martin DJ, Osman AF, Andriani Y, Edwards GA (2012) Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In: Gao F (ed) Advances in polymer nanocomposites: types and applications. Woodhead, Cambridge, pp 321–350Google Scholar
  82. 82.
    LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1):11–29Google Scholar
  83. 83.
    Padmanabhan K (2001) Mechanical properties of nanostructured materials. Mater Sci Eng A 304:200–205Google Scholar
  84. 84.
    James Korley LT et al (2006) Preferential association of segment blocks in polyurethane nanocomposites. Macromolecules 39(20):7030–7036Google Scholar
  85. 85.
    Edwards GA (2007) Optimisation of organically modified layered silicate based nanofillers for thermoplastic polyurethanes. PhD thesis. University of Queensland, BrisbaneGoogle Scholar
  86. 86.
    Quadrini F, Santo L, Squeo EA (2012) Solid-state foaming of nano–clay-filled thermoset foams with shape memory properties. Polym Plast Technol Eng 51(6):560–567Google Scholar
  87. 87.
    Tan H et al (2012) Effect of clay modification on the morphological, mechanical, and thermal properties of epoxy/polypropylene/montmorillonite shape memory materials. In: Proceedings of the SPIE 8409: Third international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics, Bellingham. doi: 10.1117/12.923306
  88. 88.
    Tarablsi B et al (2012) Maghemite intercalated montmorillonite as new nanofillers for photopolymers. Nanomaterials 2(4):413–427Google Scholar
  89. 89.
    Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2013) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485Google Scholar
  90. 90.
    Zhang D, Petersen KM, Grunlan MA (2012) Inorganic–organic shape memory polymer (SMP) foams with highly tunable properties. ACS Appl Mater Interfaces 5(1):186–191Google Scholar
  91. 91.
    Zhang M, Rong M (2012) Design and synthesis of self-healing polymers. Sci China Chem 55(5):648–676Google Scholar
  92. 92.
    Basit A et al (2013) Thermally activated composite with two-way and multi-shape memory effects. Materials 6(9):4031–4045Google Scholar
  93. 93.
    Jumahat A et al (2013) Fracture toughness of nanomodified-epoxy systems. Appl Mech Mater 393:206–211Google Scholar
  94. 94.
    Senses E, Akcora P (2013) An interface-driven stiffening mechanism in polymer nanocomposites. Macromolecules 46(5):1868–1874Google Scholar
  95. 95.
    Xu B et al (2013) Nanocomposite hydrogels with high strength cross-linked by titania. RSC Adv 3(20):7233–7236Google Scholar
  96. 96.
    Kang JH et al (2014) Enhanced adhesive strength between shape memory polymer nanocomposite and titanium alloy. Compos Sci Technol 96:23Google Scholar
  97. 97.
    Stribeck N et al (2014) Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle X-ray scattering. Sci Tech Adv Mater 15(1):015004Google Scholar
  98. 98.
    Kazakevic̆iūtė-Makovska R, Steeb H (2013) Hierarchical architecture and modeling of bio-inspired mechanically adaptive polymer nanocomposites. In: Altenbach H, Forest S, Krivtsov A (eds) Generalized continua as models for materials. Advanced structured materials, vol 22. Springer, Berlin, pp 199–215Google Scholar
  99. 99.
    Zheng X et al (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27(24):4288–4295Google Scholar
  100. 100.
    Du K, Gan Z (2014) Shape memory behavior of HA-g-PDLLA nanocomposites prepared via in-situ polymerization. J Mater Chem B 2:3340Google Scholar
  101. 101.
    Liu X et al (2014) Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 15:1019Google Scholar
  102. 102.
    Pielichowska K, Blazewicz S (2010) Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration. In: Abe A, Dusek K, Kobayashi S (eds) Biopolymers. Springer, Berlin, pp 97–207Google Scholar
  103. 103.
    Guo W et al (2012) Stronger and faster degradable biobased poly(propylene sebacate) as shape memory polymer by incorporating boehmite nanoplatelets. ACS Appl Mater Interfaces 4(8):4006–4014Google Scholar
  104. 104.
    Zheng X et al (2008) Effect of In vitro degradation of poly(d, l-lactide)/β-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater 86B(1):170–180Google Scholar
  105. 105.
    Yu X et al (2009) Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J Phys Chem C 113(41):17630–17635Google Scholar
  106. 106.
    Saralegi A et al (2013) Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 14(12):4475–4482Google Scholar
  107. 107.
    Coativy G et al (2013) Shape memory starch–clay bionanocomposites. Carbohydr Polym. doi: 10.1016/j.carbpol.2013.12.024
  108. 108.
    Lahiri D et al (2010) Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6(9):3524–3533Google Scholar
  109. 109.
    Kalita H, Karak N (2013) Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials. Polym Bull 70(11):2953–2965Google Scholar
  110. 110.
    Das B et al (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8(3):035003Google Scholar
  111. 111.
    Kalita H, Karak N (2013) Bio‐based hyperbranched polyurethane/Fe3O4 nanocomposites as shape memory materials. Polymer Adv Technol 24(9):819–823Google Scholar
  112. 112.
    Lu X-L et al (2013) Preparation and shape memory properties of TiO2/PLCL biodegradable polymer nanocomposites. Trans Nonferr Metal Soc China 23(1):120–127Google Scholar
  113. 113.
    Seyedjamali H, Pirisedigh A (2014) L-cysteine-induced fabrication of spherical titania nanoparticles within poly(ether-imide) matrix. Amino Acids 46:1321-1331Google Scholar
  114. 114.
    Wang W, Liu Y, Leng J (2013) Influence of the ultraviolet irradiation on the properties of TiO2-polystyrene shape memory nanocomposites. In: Proceedings of the SPIE 8793: Fourth international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics, Bellingham. doi: 10.1117/12.2027860
  115. 115.
    Rodriguez JN et al (2012) Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms. Ann Biomed Eng 40(4):883–897Google Scholar
  116. 116.
    Bothe M et al (2012) Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter 8(4):965–972Google Scholar
  117. 117.
    Ishida K et al (2012) Soft bacterial polyester‐based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci B 50(6):387–393Google Scholar
  118. 118.
    Xu J, Shi W, Pang W (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47(1):457–465Google Scholar
  119. 119.
    Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2012) Stress-induced bimodal ordering in POSS/PCL biodegradable shape memory nanocomposites. MRS Proc 1450:3–23. doi: 10.1557/opl.2012.1327
  120. 120.
    Buckley PR et al (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53(10):2075–2083Google Scholar
  121. 121.
    Weigel T, Mohr R, Lendlein A (2009) Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating. Smart Mater Struct 18(2):025011Google Scholar
  122. 122.
    Mohr R et al (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103(10):3540–3545Google Scholar
  123. 123.
    Razzaq MY et al (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444(1):227–235Google Scholar
  124. 124.
    Yakacki CM et al (2009) Shape‐memory polymer networks with Fe3O4 nanoparticles for remote activation. J Appl Polym Sci 112(5):3166–3176Google Scholar
  125. 125.
    Nguyen T et al (2011) Characterisation of mechanical properties of magnetite‐polymer composite films. Strain 47(s1):e467–e473Google Scholar
  126. 126.
    Mosleh Y et al (2014) TPU/PCL/nanomagnetite ternary shape memory composites: studies on their thermal, dynamic-mechanical, rheological and electrical properties. Iranian Polym J 23(2):137–145Google Scholar
  127. 127.
    Yang D et al (2012) Electromagnetic activation of a shape memory copolymer matrix incorporating ferromagnetic nanoparticles. Polym Int 61(1):38–42Google Scholar
  128. 128.
    Puig J et al (2012) Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: magnetic hyperthermia and shape memory. J Phys Chem C 116(24):13421–13428Google Scholar
  129. 129.
    Xiao Z et al (2013) Shape matters: a gold nanoparticle enabled shape memory polymer triggered by laser irradiation. Part Part Syst Char 30(4):338–345Google Scholar
  130. 130.
    Haberl JM et al (2014) Light‐controlled actuation, transduction, and modulation of magnetic strength in polymer nanocomposites. Adv Funct Mater 24:3179Google Scholar
  131. 131.
    Xu B et al (2012) Electro-responsive polystyrene shape memory polymer nanocomposites. Nanosci Nanotechnol Lett 4(8):814–820Google Scholar
  132. 132.
    Matteo C et al (2012) Current and future nanotech applications in the oil industry. Am J Appl Sci 9(6):784Google Scholar
  133. 133.
    Mofarah SS, Moghaddam S (2013) Application of smart polymers in fabrics. J Am Sci 9(4s):282Google Scholar
  134. 134.
    Akhras G (2012) Smart and nano systems – applications for NDE and perspectives. In: Proceedings of the 4th international CANDU in-service inspection workshop and NDT in Canada 2012 conference. e-J Nondestruct Test 17(09):13118Google Scholar
  135. 135.
    Carrell J et al (2013) Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation. Environ Sci Technol 47(22):13053–13059Google Scholar
  136. 136.
    Holdren JP (2011) Materials genome initiative for global competitiveness. Executive Office of the President, National Science and Technology Council, Washington, p 18Google Scholar
  137. 137.
    Hachmann J et al (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251Google Scholar
  138. 138.
    Hawkins AM, Puleo DA, Hilt JZ (2012) Magnetic nanocomposites for remote controlled responsive therapy and in vivo tracking. In: Bhattacharyya D, Schäfer T, Wickramasinghe SR, Daunert S (eds) Responsive membranes and materials. Wiley, Chichester, p 211Google Scholar
  139. 139.
    Jung YC, Goo NS, Cho JW (2004) Electrically conducting shape memory polymer composites for electroactive actuator. In: Bar-Chen Y (ed) Proceedings of the SPIE 5385: Smart structures and materials 2004: Electroactive polymer actuators and devices. International Society for Optics and Photonics, Bellingham. doi:  10.1117/12.540228
  140. 140.
    Kim SH et al (2013) Conductive functional biscrolled polymer and carbon nanotube yarns. RSC Adv 3(46):24028–24033Google Scholar
  141. 141.
    Perets YS et al (2014) The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites. J Mater Sci 49(5):2098–2105Google Scholar
  142. 142.
    Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci 107(17):7652–7657Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of BioengineeringThe University of Texas at DallasRichardsonUSA
  2. 2.Department of ChemistryThe University of Texas at DallasRichardsonUSA
  3. 3.Department of Materials Science and EngineeringThe University of Texas at DallasRichardsonUSA
  4. 4.Department of Mechanical EngineeringThe University of Texas at DallasRichardsonUSA

Personalised recommendations