Advertisement

Soft Nanohybrid Materials Consisting of Polymer–Clay Networks

  • Kazutoshi HaraguchiEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 267)

Abstract

New types of soft nanohybrid materials with novel organic–inorganic network structures, such as nanocomposite gels (NC gels: hydrogel), soft nanocomposites (M-NCs: solid), and their derivatives (MD-NC gels, Zw-NC gels, Pt-NC gels, and P/C-NC microspheres) are described. All soft nanohybrid materials including NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay nanoplatelets in aqueous systems and were obtained in various forms and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoplatelets function as multifunctional crosslinking agents to form new types of network structures. The NC gels exhibited extraordinary optical, mechanical, and swelling–deswelling properties, in addition to a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micropatterning, self-healing, etc. The M-NCs also exhibited dramatic improvements in optical and mechanical properties; the latter include ultrahigh reversible extensibility and well-defined yielding behavior, despite their high clay contents. Thus, the serious disadvantages (intractability, mechanical fragility, optical turbidity, poor processing ability, low stimulus sensitivity, etc.) associated with conventional, chemically crosslinked polymeric materials were overcome in the soft nanohybrid materials because of their unique organic–inorganic network structures. Furthermore, several soft nanohybrids with advanced characteristics were developed based on the technologies of NC gel and M-NC syntheses, e.g., new stimuli-responsive NC gels (MD-NC gels), zwitterionic NC gels (Zw-NC gels), platinum nanoparticle-incorporated NC gels (Pt-NC gels), and aqueous dispersions of polymer–clay NC (P/C-NC) microspheres.

Keywords

Clay Hydrogel Nanocomposite Organic–inorganic network Stimuli sensitivity 

Notes

Acknowledgements

I thank collaborators, Dr. HJ Li, Mr. T Takehisa, Dr. T Takada, Dr. K Murata, Dr. D Varade and other colleagues in my laboratory. I also thank Prof. M Shibayama (University of Tokyo), Prof. M Zhu and Prof G Li, (Donghua University), and Prof. GC Eastmond (Liverpool University) for collaboration and fruitful discussions. The works introduced in this review paper were carried out in Kawamura Institute of Chemical Research (Chiba, Japan) and supported by DIC Co. (Tokyo, Japan). I acknowledge the financial support provided by the Ministry of Education, Science, Sports and Culture, Japan (Grant-in-Aid for Scientific Research: 26600050, 23350117, 20350109, 16550181), and by the New Energy and Industrial Technology Development Organization (NEDO), Japan (Project 2006–2008).

References

  1. 1.
    Kopecek J (2009) J Polym Sci A Polym Chem 47:5929Google Scholar
  2. 2.
    Bin IA, Seki T, Takeoka Y (2010) Polym J 42:839Google Scholar
  3. 3.
    Messing R, Schmidt AM (2011) Polym Chem 2:18Google Scholar
  4. 4.
    Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY (2013) Nat Commun 4:3226Google Scholar
  5. 5.
    Richtering W, Saunders BR (2014) Soft Mater 10:3695Google Scholar
  6. 6.
    Okano T, Bae YH, Jacobs H, Kim SW (1990) J Control Release 11:255Google Scholar
  7. 7.
    Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Nature 378:472Google Scholar
  8. 8.
    Cai W, Anderson EC, Gupta RB (2001) Ind Eng Chem Res 40:2283Google Scholar
  9. 9.
    Matsumoto A, Yoshida R, Kataoka K (2004) Biomacromolecules 5:1038Google Scholar
  10. 10.
    Yamato M, Okano T (2004) Mater Today 7:42Google Scholar
  11. 11.
    Matsukuma D, Yamamoto K, Aoyagi T (2006) Langmuir 22:5911Google Scholar
  12. 12.
    Kretlow JD, Hacker MC, Klouda L, Ma BB, Mikos AG (2010) Biomacromolecules 11:797–805Google Scholar
  13. 13.
    Heskins M, Guillet JE (1968) J Macromol Sci A2:1441Google Scholar
  14. 14.
    Cho EC, Lee J, Cho K (2003) Macromolecules 36:9929Google Scholar
  15. 15.
    Matsuo ES, Tanaka T (1988) J Chem Phys 89:1695Google Scholar
  16. 16.
    Annaka M, Motokawa K, Sasaki S, Nakahira T, Kawasaki H, Maeda H, Amo Y, Tominaga Y (2000) J Chem Phys 113:5980Google Scholar
  17. 17.
    Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23:283Google Scholar
  18. 18.
    Takigawa T, Araki H, Takahashi K, Masuda T (2000) J Chem Phys 113:7640Google Scholar
  19. 19.
    Haraguchi K, Takehisa T (2002) Adv Mater 14:1120Google Scholar
  20. 20.
    Haraguchi K, Takehisa T, Fan S (2002) Macromolecules 35:10162Google Scholar
  21. 21.
    Haraguchi K (2007) Macromol Symp 256:120Google Scholar
  22. 22.
    Xu Y, Li G, Haraguchi K (2010) Macromol Chem Phys 211:977Google Scholar
  23. 23.
    Giannelis EP (1996) Adv Mater 8:29Google Scholar
  24. 24.
    Mark JE (2003) Macromol Symp 201:77Google Scholar
  25. 25.
    Okada K, Usuki A (2006) Macromol Mater Eng 291:1449Google Scholar
  26. 26.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179Google Scholar
  27. 27.
    Convertino A, Tamborra M, Striccoli M, Leo G, Agostiano A, Curri ML (2011) Thin Solid Films 519:3931.Google Scholar
  28. 28.
    Haraguchi K, Li HJ (2005) Angew Chem Int Ed 44:6500Google Scholar
  29. 29.
    Haraguchi K (2007) Curr Opin Solid State Mater Sci 11:47–54Google Scholar
  30. 30.
    Fukasawa M, Sakai T, Chung UI, Haraguchi K (2010) Macromolecules 43:4370Google Scholar
  31. 31.
    Haraguchi K, Ebato M, Takehisa T (2006) Adv Mater 18:2250Google Scholar
  32. 32.
    Editor’s Choice (2006) Science 314:19Google Scholar
  33. 33.
    Haraguchi K, Masatoshi S, Kotobuki N, Murata K (2011) J Biomater Sci Polym Ed 22:2389Google Scholar
  34. 34.
    Tanaka Y, Gong JP, Osada Y (2005) Prog Polym Sci 30:1Google Scholar
  35. 35.
    Johnson JA, Turro NJ, Koberstein JT, Mark JE (2010) Prog Polym Sci 35:332–337Google Scholar
  36. 36.
    Okumura Y, Ito K (2001) Adv Mater 13:485Google Scholar
  37. 37.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155Google Scholar
  38. 38.
    Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Macromolecules 41:5379Google Scholar
  39. 39.
    Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliot E (2005) Macromolecules 38:3482Google Scholar
  40. 40.
    Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Macromolecules 36:5732Google Scholar
  41. 41.
    Haraguchi K, Li HJ (2006) Macromolecules 39:1898Google Scholar
  42. 42.
    Rosta L, von Gunten HR (1990) J Colloid Interface Sci 134:397Google Scholar
  43. 43.
    Haraguchi K, Li H-J (2004) J Network Polym Jpn 25:2Google Scholar
  44. 44.
    Zhu M, Liu Y, Sun B, Zhang W, Liu X, Yu H, Zhang Y, Kuckling D, Adler HJP (2006) Macromol Rapid Commun 27:1023Google Scholar
  45. 45.
    Xiong L, Hu X, Liu X, Tong Z (2008) Polymer 49:5064Google Scholar
  46. 46.
    Li P, Kim NH, Siddaramaiah, Lee JH (2009) Compos B Eng 40:275Google Scholar
  47. 47.
    Haraguchi K, Song L (2007) Macromolecules 40:5526Google Scholar
  48. 48.
    Haraguchi K, Takada T (2010) Macromolecules 43:4294Google Scholar
  49. 49.
    Song L, Zhu M, Chen Y, Haraguchi K (2008) Polym J 40:800Google Scholar
  50. 50.
    Shibayama M, Suda J, Karino T, Okabe S, Takehisa T, Haraguchi K (2004) Macromolecules 37:9606Google Scholar
  51. 51.
    Miyazaki S, Karino T, Endo H, Haraguchi K, Shibayama M (2006) Macromolecules 39:8112Google Scholar
  52. 52.
    Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Macromolecules 40:4287Google Scholar
  53. 53.
    Nie J, Du B, Oppermann W (2006) J Phys Chem B 110:11167Google Scholar
  54. 54.
    Haraguchi K, Li HJ (2009) J Polym Sci B Polym Phys 47:2328Google Scholar
  55. 55.
    Haraguchi K, Xu Y, Li G (2010) Macromol Rapid Commun 31:718Google Scholar
  56. 56.
    Haraguchi K, Xu Y (2012) Colloid Polym Sci 290:1627Google Scholar
  57. 57.
    Nishida T, Endo H, Osaka N, Li HJ, Haraguchi K, Shibayama M (2009) Phys Rev E 80:030801RGoogle Scholar
  58. 58.
    Nishida T, Obayashi A, Haraguchi K, Shibayama M (2012) Polymer 53:4533Google Scholar
  59. 59.
    Tobolsky AV, Carlson DW, Indictor N (1961) J Polym Sci 54:175Google Scholar
  60. 60.
    Flory PJ, Rehner JJR (1943) J Chem Phys 11:521Google Scholar
  61. 61.
    Baker JP, Hong LH, Blanch HW, Prausnitz JM (1994) Macromolecules 27:1446Google Scholar
  62. 62.
    Haraguchi K, Li H-J, Song L, Murata K (2007) Macromolecules 40:6973Google Scholar
  63. 63.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, Chapter 9Google Scholar
  64. 64.
    Gordon M, Ross-Murphy SB (1975) Pure Appl Chem 43:1Google Scholar
  65. 65.
    Stauffer DJ (1976) Chem Soc Faraday Trans II 72:1354Google Scholar
  66. 66.
    de Gennes PG (1979) Scaling concept in polymer physics. Cornell University Press, Ithaca, Chapter 5Google Scholar
  67. 67.
    Haraguchi K (2011) Colloid Polym Sci 289:455Google Scholar
  68. 68.
    Dijkstra M, Hansen JP, Madden PA (1995) Phys Rev Lett 75:2236Google Scholar
  69. 69.
    Liu Y, Zhu M, Liu X, Zhang W, Sun B, Chen Y, Adler HJP (2006) Polymer 47:1Google Scholar
  70. 70.
    Xiang Y, Peng Z, Chen D (2006) Eur Polym J 42:2125Google Scholar
  71. 71.
    Mu J, Zheng S (2007) J Colloid Interface Sci 307:377Google Scholar
  72. 72.
    Hibino T (2010) Appl Clay Sci 50:282Google Scholar
  73. 73.
    Chen T, Cao Z, Guo X, Nie J, Xu J, Fan Z, Du B (2011) Polymer 52:172Google Scholar
  74. 74.
    Jiang G, Liu C, Liu X, Chen Q, Zhang G, Yang M, Liu F (2010) Polymer 51:1507Google Scholar
  75. 75.
    Zhou C, Wu Q (2011) Colloids Surf B 84:155Google Scholar
  76. 76.
    Zhou C, Wu Q, Yue Y, Zhang Q (2011) J Colloid Interface Sci 353:116Google Scholar
  77. 77.
    Smith TL, Stedry PJ (1960) J Appl Phys 31:1892Google Scholar
  78. 78.
    Haraguchi K, Li H-J, Ren H, Zhu M (2010) Macromolecules 43:9848Google Scholar
  79. 79.
    Zhang X, Zhuo R (2001) Langmuir 17:12Google Scholar
  80. 80.
    Okajima T, Harada I, Nishio K, Hirotsu S (2000) Jpn J Appl Phys 39:L875Google Scholar
  81. 81.
    Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Nature 374:240Google Scholar
  82. 82.
    Tanaka T, Fillmore DJ (1979) J Chem Phys 70:1214Google Scholar
  83. 83.
    Song L, Zhu M, Chen Y, Haraguchi K (2008) Macromol Chem Phys 209:1564Google Scholar
  84. 84.
    Xu K, Wang J, Xiang S, Chen Q, Zhang W, Wang P (2007) Appl Clay Sci 38:139Google Scholar
  85. 85.
    Mujumdar SK, Siegel RA (2008) J Polym Sci A Polym Chem 46:6630Google Scholar
  86. 86.
    Janovak L, Varga J, Kemeny L, Dekany I (2009) Appl Clay Sci 43:260Google Scholar
  87. 87.
    Xiong L, Zhu M, Hu X, Liu X, Tong Z (2009) Macromolecules 42:3811Google Scholar
  88. 88.
    Hu X, Xiong L, Wang T, Lin Z, Liu X, Tong Z (2009) Polymer 50:1933Google Scholar
  89. 89.
    Xu S, Zhang S, Yang J (2008) Mater Lett 62:3999Google Scholar
  90. 90.
    Zhu M, Xiong L, Wang T, Liu X, Wang C, Tong Z (2010) React Funct Polym 70:267Google Scholar
  91. 91.
    Ma J, Xu Y, Fan B, Liang B (2007) Eur Polym J 43:2221Google Scholar
  92. 92.
    Can V, Abdurrahmanoglu S, Okay O (2007) Polymer 48:5016Google Scholar
  93. 93.
    Ren HY, Zhu M, Haraguchi K (2011) Macromolecules 44:8516Google Scholar
  94. 94.
    Urayama K (2007) Macromolecules 40:2277Google Scholar
  95. 95.
    Yokoyama F, Achife EC, Matsuoka M, Shimamura K, Yamashita Y, Monobe K (1991) Polymer 32:2911Google Scholar
  96. 96.
    Stellwagen J, Stellwagen NC (1989) Nucleic Acids Res 17:1537Google Scholar
  97. 97.
    Murata K, Haraguchi K (2007) J Mater Chem 17:3385Google Scholar
  98. 98.
    Haraguchi K, Takada T (2005) Macromol Chem Phys 206:1530Google Scholar
  99. 99.
    Zhang J, Pelton R, Deng Y (1995) Langmuir 11:2301Google Scholar
  100. 100.
    Teare DOH, Barwick DC, Schofield WCE, Garrod RP, Beeby A, Badyal JPS (2005) J Phys Chem B 109:22407Google Scholar
  101. 101.
    Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Angew Chem Int Ed 43:357Google Scholar
  102. 102.
    Haraguchi K, Li HJ, Okumura N (2007) Macromolecules 40:2299Google Scholar
  103. 103.
    Haraguchi K, Li HJ, Song L (2008) J Colloid Interface Sci 326:41Google Scholar
  104. 104.
    Haraguchi K (2007) Research highlights. Nature 446:350Google Scholar
  105. 105.
    Haraguchi K, Li HJ (2010) Macromol Symp 291:159Google Scholar
  106. 106.
    Takizawa T, Mori Y, Yoshizato K (1990) Biotechnology 8:854Google Scholar
  107. 107.
    Akiyama Y, Kikuchi A, Yamato M, Okano T (2004) Langmuir 20:5506Google Scholar
  108. 108.
    Haraguchi K, Takehisa T, Ebato M (2006) Biomacromolecules 7:3267Google Scholar
  109. 109.
    Wang T, Liu D, Lian C, Zheng S, Liu X, Wang C, Tong Z (2011) React Funct Polym 71:447Google Scholar
  110. 110.
    Haraguchi K, Matsuda M (2005) Chem Mater 17:931Google Scholar
  111. 111.
    Haraguchi K, Taniguchi S, Takehisa T (2005) Chem Phys Chem 6:238Google Scholar
  112. 112.
    Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley, WeinheimGoogle Scholar
  113. 113.
    Bergman SD, Wudl F (2008) J Mater Chem 18:41Google Scholar
  114. 114.
    Hager MD, Greil P, Leyens C, Van der Zwaag S, Schuber US (2010) Adv Mater 22:5424Google Scholar
  115. 115.
    Brochu ABW, Craig SL, Reichert WM (2010) J Biomedical Mater Res A 96A:492Google Scholar
  116. 116.
    Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) Science 295:1698Google Scholar
  117. 117.
    Liu YL, Chen YW (2007) Macromol Chem Phys 208:224Google Scholar
  118. 118.
    Scott TF, Schneider AD, Cook WD, Bowman CN (2005) Science 308:1615Google Scholar
  119. 119.
    Higaki Y, Otsuka H, Takahara A (2006) Macromolecules 39:2121Google Scholar
  120. 120.
    Oku T, Furusho Y, Takata T (2004) Angew Chem Int Ed 43:966Google Scholar
  121. 121.
    Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT (2001) Composites A 32:1767Google Scholar
  122. 122.
    Coillot D, Mear FO, Podor R, Montagne L (2010) Adv Funct Mater 20:4371Google Scholar
  123. 123.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794Google Scholar
  124. 124.
    Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Nature 451:977Google Scholar
  125. 125.
    Ghosh B, Urban MW (2009) Science 323:1458Google Scholar
  126. 126.
    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) Nature 463:339Google Scholar
  127. 127.
    Haraguchi K, Uyama K, Tanimoto H (2011) Macromol Rapid Commun 32:1253Google Scholar
  128. 128.
    Haraguchi K, Murata K, Takehisa T (2012) Macromolecules 45:385Google Scholar
  129. 129.
    Haraguchi K, Murata K, Taheisa T (2013) Macromol Symp 329:150Google Scholar
  130. 130.
    Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K (2006) Nat Med 12:459Google Scholar
  131. 131.
    Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Osteoarthr Cartil 15:226Google Scholar
  132. 132.
    Kotobuki N, Murata K, Haraguchi K (2013) J Biomed Mater Res A 101:537Google Scholar
  133. 133.
    Lowe AB, McCormick CL (2002) Chem Rev 102:4177Google Scholar
  134. 134.
    Kudaibergenov S, Jaeger W, Laschewsky A (2006) Adv Polym Sci 201:175Google Scholar
  135. 135.
    Kimura M, Takai M, Ishihara K (2007) J Biomed Mater Res A 80:45Google Scholar
  136. 136.
    Carr LR, Zhou Y, Krause JE, Xue H, Jiang S (2011) Biomaterials 32:6893Google Scholar
  137. 137.
    Seuring J, Agarwal S (2012) Macromol Rapid Commun 33:1898Google Scholar
  138. 138.
    Shih YJ, Chang Y (2010) Langmuir 26:17286Google Scholar
  139. 139.
    Ning J, Kutoba K, Li G, Haraguchi K (2013) React Funct Polym 73:969Google Scholar
  140. 140.
    Ning J, Li G, Haraguchi K (2013) Macromolecules 46:5317Google Scholar
  141. 141.
    Ning J, Li G, Haraguchi K (2014) Macromol Chem Phys 215:235Google Scholar
  142. 142.
    Haraguchi K, Takada T (2014) Macromol Chem Phys 215:295Google Scholar
  143. 143.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493Google Scholar
  144. 144.
    Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) ACS Nano 7:3540Google Scholar
  145. 145.
    Bedenbaugh JE, Kim S, Sasmaz E, Lauterbach J (2013) ACS Comb Sci 15:491Google Scholar
  146. 146.
    Tian M, Wu G, Chen A (2012) ACS Catal 2:425Google Scholar
  147. 147.
    Adhikari B, Biswas A, Banerjee A (2012) ACS Appl Mater Interfaces 4:5472Google Scholar
  148. 148.
    Zhang L, Zheng S, Kang DE, Shin JY, Suh H, Kim I (2013) RSC Adv 3:4692Google Scholar
  149. 149.
    Haraguchi K, Varade D (2014) Polymer 55:2496Google Scholar
  150. 150.
    Varade D, Haraguchi K (2013) Langmuir 29:1977Google Scholar
  151. 151.
    Idemura S, Haraguchi K (2000) US Patent P6,063,862Google Scholar
  152. 152.
    Goda H, Higashino T (2003) US Patent P6,525,160Google Scholar
  153. 153.
    Tanaka M, Motomura T, Ishii N, Shimura K, Onishi M, Mochizuki A, Hatakeyama T (2000) Polym Int 49:1709Google Scholar
  154. 154.
    Saito N, Motoyama S, Sawamoto J (2000) Artif Organs 24:547Google Scholar
  155. 155.
    Baykut D, Bernet F, Wehrle J, Weichelt K, Schwartz P, Zerkowski HR (2001) Eur J Med Res 6:29Google Scholar
  156. 156.
    Tanaka M, Mochizuki A, Ishii N, Motomura T, Hatakeyama T (2002) Biomacromolecules 3:36Google Scholar
  157. 157.
    Urayama K, Kohjiya S (1998) Eur Phys J B-2:75Google Scholar
  158. 158.
    Haraguchi K, Kubota K, Takada T, Mahara S (2014) Biomacromolecules 15(6):1992–2003 doi: 10.1021/bm401914c
  159. 159.
    Varade D, Abe H, Yamauchi Y, Haraguchi K (2013) ACS Appl Mater Interfaces 5:11613Google Scholar
  160. 160.
    Varade D, Haraguchi K (2013) Phys Chem Chem Phys 15:16477Google Scholar
  161. 161.
    Varade D, Haraguchi K (2012) Soft Matter 8:3743Google Scholar
  162. 162.
    Varade D, Haraguchi K (2012) J Mater Chem 22:17649Google Scholar
  163. 163.
    Varade D, Haraguchi K (2014) Chem Commun 50:3014Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Applied Molecular Chemistry, College of Industrial TechnologyNihon UniversityNarashinoJapan

Personalised recommendations