Dispersion of Inorganic Nanoparticles in Polymer Matrices: Challenges and Solutions

  • R. Y. HongEmail author
  • Q. Chen
Part of the Advances in Polymer Science book series (POLYMER, volume 267)


Recently, nanoparticles with remarkable physical and chemical properties have attracted intense attention. Many techniques have been developed to synthesize nanoparticles. The introduction of nanoparticles into organic polymers offers an effective way to improve properties such as electrical conductivity, mechanical properties, thermal stability, flame retardancy, and resistance to chemical reagents. The properties of polymer composites depend on the nanoparticles that are incorporated, including their size, shape, concentration, and interactions with the polymer matrix. However, the lack of compatibility between inorganic particles and polymer matrix limits the applications of nanoparticles in composites. As a result of incompatibility, the dispersion of synthesized inorganic nanoparticles in polymer matrices is very difficult, and particles with specific surface area and volume effects can form aggregates. Therefore, it is necessary to modify the particles to overcome their tendency to aggregate and improve their dispersion in polymer matrices. Two ways are used to modify the surface of inorganic particles: modification of the surface by chemical treatment and the grafting of functional polymeric molecules to the hydroxyl groups existing on the particles. By surface modification of nanoparticles the dispersion of inorganic nanoparticles in organic solvents and polymer matrices is improved.


Nanoparticles Organic–inorganic nanocomposites Surface modification 





Antimony-doped tin oxide


Atom transfer radical polymerization


Bisphenol-A dicyanate [2,2-bis (4-cyanatophenyl) isopropylidene]




Ba x Sr1−x TiO3


Barium strontium titanyl oxalate [Ba1−x Sr x TiO(C2O4)2-4H2O]


Carbon black


Cyanate ester


Carbon nanofiber


Carbon nanotube


Hexadecyltrimethyl-ammonium bromide


Dibutyl phthalate


Differential scanning calorimetry


Ethylene-propylene-diene rubber




Fourier transform infrared spectroscopy


Glycidyl methacrylate


Hydroxylated BaTiO3


Hyperbranched aromatic polyamide


Isopropyl tris(N-amino-ethyl aminoethyl)titanate


Isotactic polypropylene


3-Aminopropyl triethoxysilane




Maleic anhydride


Magnetic fluid


Methyl methacrylate




Magnetorheological fluid


Multiwalled carbon nanotube


Nylon 6






Poly(lactic acid)


Poly(methyl methacrylate)




Poly(propylene-graft-maleic anhydride) copolymer


Polyphenylene sulfide






Poly(vinylidene fluoride)


Poly(vinylidene fluoride-co-hexafluoropropylene)




Scanning electron microscopy


Single-walled carbon nanotube


Tributyl phosphate


Transmission electron microscopy






Glass transition temperature


X-ray powder diffraction


Zinc ferrite



The project was supported by the National Natural Science Foundation of China (NSFC, No. 21246002), the National Basic Research Program of China (973 Program, No. 2009CB219904), the National Post-doctoral Science Foundation (No. 20090451176), the Jiangsu Provincial Key Laboratory of Environmental Materials and Engineering at Yangzhou University (No. K11025), the Technology Innovation Foundation of MOST (No. 11C26223204581), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of Jiangsu Province (No. BK2011328), and the Minjiang Scholarship of Fujian Province


  1. 1.
    Huang ZM, Zhang YZ, Kotaki M et al (2003) Compos Sci Technol 63:2223Google Scholar
  2. 2.
    Thakur VK, Thakur MK (2014) Carbohydr Polym 109:102Google Scholar
  3. 3.
    Kalia S, Boufi S, Celli A et al (2014) Colloid Polym Sci 292:5Google Scholar
  4. 4.
    Kalia S, Kaith BS, Inderjeet K (eds) (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, HeidelbergGoogle Scholar
  5. 5.
    Babu B, Aswani T, Rao GT et al (2014) J Magn Magn Mater 355:76Google Scholar
  6. 6.
    Umadevi M, Parimaladevi R, Sangari M (2014) Spectrochim Acta A 120:365Google Scholar
  7. 7.
    Nogas-Cwikiel E, Suchanicz J (2013) Arch Metall Mater 58:1397Google Scholar
  8. 8.
    Choi D, Wang D, Bae IT et al (2010) Nano Lett 10:2799Google Scholar
  9. 9.
    Hsiang HI, Chang YL, Fang JS et al (2011) J Alloys Compd 509:7632Google Scholar
  10. 10.
    Chang CY, Huang CY, Wu YC et al (2010) J Alloys Compd 95:108Google Scholar
  11. 11.
    Siddiqui MA, Chandel VS, Azam A (2012) Appl Surf Sci 258:7354Google Scholar
  12. 12.
    Lee JH, Kim YJ (2008) Mater Sci Eng B 146:99Google Scholar
  13. 13.
    Li D, Sasaki Y, Kageyama M et al (2005) J Power Sources 148:85Google Scholar
  14. 14.
    Tan ETH, Ho GW, Wong ASW et al (2008) Nanotechnology 19:1Google Scholar
  15. 15.
    Yoon KH, Cho YS, Lee DH et al (1993) J Am Ceram Soc 76:1373Google Scholar
  16. 16.
    Wang X, Gao L, Zhou F et al (2004) J Cryst Growth 265:220Google Scholar
  17. 17.
    Yang Z, Chang Y, Li H (2005) Mater Res Bull 40:2110Google Scholar
  18. 18.
    Nie J, Xu G, Yang Y, Cheng C (2009) Mater Chem Phys 115:400Google Scholar
  19. 19.
    Chiu CC, Li CC, Desu SB (1991) J Am Ceram Soc 74:38Google Scholar
  20. 20.
    Reddy MV, Subba Rao GV, Chowdari BVR (2007) J Chem Phys C 111:11712Google Scholar
  21. 21.
    Kan Y, Jin X, Wang P et al (2003) Mater Res Bull 38:567Google Scholar
  22. 22.
    Thirumal M, Jain P, Ganguli AK (2001) Mater Chem Phys 70:7Google Scholar
  23. 23.
    Ohshima E, Ogino H, Niikura I et al (2004) J Cryst Growth 260:166Google Scholar
  24. 24.
    Tam KH, Cheung CK, Leung YH et al (2006) J Chem Phys C 110:20865Google Scholar
  25. 25.
    Kolen’ko YV, Churagulov BR, Kunst M et al (2004) Appl Catal B 54:51Google Scholar
  26. 26.
    Liu J, Ye X, Wang H et al (2003) Ceram Int 29:629Google Scholar
  27. 27.
    Kajiyoshi K, Ishizawa N, Yoshimura M (1991) J Am Ceram Soc 74:369Google Scholar
  28. 28.
    Xu H, Gao L, Guo J (2002) J Eur Ceram Soc 22:1163Google Scholar
  29. 29.
    Ishizawa N, Banno H, Hayashi M et al (1990) Jpn J Appl Phys 29:2467Google Scholar
  30. 30.
    Hu Y, Gu H, Sun X et al (2006) Appl Phys Lett 88:193210Google Scholar
  31. 31.
    Antonelli DM, Ying J (1995) Angew Chem Int Ed 34:2014Google Scholar
  32. 32.
    Lee JH, Ko KH, Park BO (2003) J Cryst Growth 247:119Google Scholar
  33. 33.
    Wang W, Serp P, Kalck P et al (2005) J Mol Catal A 235:194Google Scholar
  34. 34.
    Gu F, Wang SF, Lü MK et al (2004) J Chem Phys C 108:8119Google Scholar
  35. 35.
    Tahar RBH, Ban T, Ohya Y et al (1997) Appl Phys Lett 82:865Google Scholar
  36. 36.
    Ahmed MA, El-Katori EE, Gharni ZH (2013) J Alloys Compd 553:19Google Scholar
  37. 37.
    Kotobuki M, Koishi M (2014) Ceram Int 40:5043Google Scholar
  38. 38.
    Ding Y, Jiang Y, Xu F et al (2010) Electrochem Commun 12:10Google Scholar
  39. 39.
    Petcharoen K, Sirivat A (2012) Mater Sci Eng B 177:421Google Scholar
  40. 40.
    Muthukumaran S, Gopalakrishnan R (2012) Opt Mater 34:1946Google Scholar
  41. 41.
    Kripal R, Gupta AK, Srivastava RK et al (2011) Spectrochim Acta A 79:1605Google Scholar
  42. 42.
    Senthilkumar V, Senthil K, Vickraman P (2012) Mater Res Bull 47:1051Google Scholar
  43. 43.
    Kumar AP, Kumar BP, Kumar ABV et al (2013) Appl Surf Sci 265:500Google Scholar
  44. 44.
    Zhang M, Sheng G, Fu J et al (2005) Mater Lett 59:3641Google Scholar
  45. 45.
    Mahmoodi NM (2011) Desalination 279:332Google Scholar
  46. 46.
    Kripal R, Gupta AK, Mishra SK (2010) Spectrochim Acta A 76:52Google Scholar
  47. 47.
    Yang MR, Ke WH, Wu SH (2005) J Power Sources 146:539Google Scholar
  48. 48.
    Lin JM, Chen YC, Lin CP (2013) J Nanomater 2013:1Google Scholar
  49. 49.
    Dai ZR, Pan ZW, Wang ZL (2003) Adv Funct Mater 13:9Google Scholar
  50. 50.
    Chen Y, Li J, Dai J (2001) Chem Phys Lett 344:450Google Scholar
  51. 51.
    Cantalini C, Wlodarski W, Li Y et al (2000) Sens Actuators B 64:182Google Scholar
  52. 52.
    Kuai P, Liu C, Huo P (2009) Catal Lett 129:493Google Scholar
  53. 53.
    Yu B, Liu C (2012) Plasma Chem Plasma Process 32:201Google Scholar
  54. 54.
    Lin Y, Tang Z, Zhang Z et al (2000) J Am Ceram Soc 83:2869Google Scholar
  55. 55.
    Reina A, Jia X, Ho J et al (2009) Nano Lett 9:30Google Scholar
  56. 56.
    Chhowalla M, Teo KBK, Ducati C et al (2001) J Appl Phys 90:5308Google Scholar
  57. 57.
    Xia Y, Mokaya R (2004) Adv Mater 16:1553Google Scholar
  58. 58.
    Kumar M, Ando Y (2010) J Nanosci Nanotechnol 10:3739Google Scholar
  59. 59.
    Mattevi C, Kim H, Chhowalla M (2011) J Chem Phys 21:3324Google Scholar
  60. 60.
    Kim D, Yun I, Kim H (2010) Curr Appl Phys 10:5459Google Scholar
  61. 61.
    Sun L, He J, Kong H et al (2011) Sol Energ Mater Sol Cell 95:290Google Scholar
  62. 62.
    Vinodkumar R, Lethy KJ, Beena D et al (2010) Sol Energ Mater Sol Cell 94:68Google Scholar
  63. 63.
    Bdikin IK, Gracio J, Ayouchi R et al (2010) Nanotechnology 21:1Google Scholar
  64. 64.
    Gaur A, Singh P, Choudhary N et al (2011) Physica B 406:1877Google Scholar
  65. 65.
    Orlianges JC, Champeaux C, Dutheil P et al (2011) Thin Solid Films 519:7611Google Scholar
  66. 66.
    Scullin ML, Ravichandran J, Yu C et al (2010) Acta Mater 58:457Google Scholar
  67. 67.
    Hakoda T, Yamamoto S, Kawaguchi K et al (2010) Appl Surf Sci 257:1556Google Scholar
  68. 68.
    Cho HJ, Lee SU, Hong B et al (2010) Thin Solid Films 518:2941Google Scholar
  69. 69.
    Nam E, Kang YH, Jung D et al (2010) Thin Solid Films 518:6245Google Scholar
  70. 70.
    Wang X, Zeng X, Huang D et al (2013) J Mater Sci 23:1580Google Scholar
  71. 71.
    Sarakinos K, Alami J, Konstantinidis S (2010) Surf Coat Technol 204:1661Google Scholar
  72. 72.
    You ZZ, Hua GJ (2012) J Alloys Compd 530:11Google Scholar
  73. 73.
    Wu L, Chen YC, Chen LJ et al (1999) Jpn J Appl Phys 138:5612Google Scholar
  74. 74.
    Shao S, Zhang J, Zhang Z et al (2008) J Phys D 41:1Google Scholar
  75. 75.
    Zhou H, Chen X, Fang L et al (2010) J Mater Sci 21:939Google Scholar
  76. 76.
    Li Y, Wang J, Liao R et al (2010) J Alloys Compd 496:282Google Scholar
  77. 77.
    Tawichai N, Sittiyot W, Eitssayeam S et al (2012) Ceram Int 38S:S121Google Scholar
  78. 78.
    Chen K, Zhang X (2010) Ceram Int 36:1523Google Scholar
  79. 79.
    Mao C, Wang G, Dong X et al (2007) Mater Chem Phys 106:164Google Scholar
  80. 80.
    Li HL, Du ZN, Wang GL et al (2010) Mater Lett 64:431Google Scholar
  81. 81.
    Fuentes S, Chávez E, Padilla-Campos L et al (2013) Ceram Int 39:8823Google Scholar
  82. 82.
    Chen CF, Reagor DW, Russell SJ et al (2011) J Am Ceram Soc 94:3727Google Scholar
  83. 83.
    Maensiri S, Nuansing W, Klinkaewnarong J et al (2006) J Colloid Interface Sci 297:578Google Scholar
  84. 84.
    Razak KA, Asadov A, Gao W (2007) Ceram Int 33:1495Google Scholar
  85. 85.
    Deshpande SB, Khollam YB (2005) Mater Lett 59:293Google Scholar
  86. 86.
    Khollam YB, Deshpande SB, Potdar HS et al (2005) Mater Charact 54:63Google Scholar
  87. 87.
    Zuo XH, Deng XY, Chen Y et al (2010) Mater Lett 64:1150Google Scholar
  88. 88.
    Pan ZW, Dai ZR, Xu L et al (2001) J Phys Chem 105:2507Google Scholar
  89. 89.
    Choi S, Lee MS, Park DW (2014) Curr Appl Phys 14:433Google Scholar
  90. 90.
    Neamţu BV, Marinca TF, Chicinaş I et al (2014) J Alloys Compd 600:1–7Google Scholar
  91. 91.
    Chaturvedi V, Ananthapadmanabhan PV, Chakravarthy Y et al (2014) Ceram Int 40:8273Google Scholar
  92. 92.
    Yuming W, Junjie H, Yanwei S (2013) Rare Metal Mater Eng 42:1810Google Scholar
  93. 93.
    Iijima S (1991) Nature 354:56Google Scholar
  94. 94.
    Anazawa K, Shimotani K, Manabe C et al (2002) Appl Phys Lett 81:739Google Scholar
  95. 95.
    Imasaka K, Kanatake Y, Ohshiro Y et al (2006) Thin Solid Films 506–507:250Google Scholar
  96. 96.
    Cui S, Scharff P, Siegmund C et al (2004) Carbon 42:931Google Scholar
  97. 97.
    Jong Lee S, Koo Baik H, Yoo J et al (2002) Diamond Relat Mater 11:914Google Scholar
  98. 98.
    Zhao S, Hong R, Luo Z et al (2011) J Nanomater 2011:6Google Scholar
  99. 99.
    Baba K, Hatada R, Flege S et al (2011) Adv Mater Sci Eng 2012:1Google Scholar
  100. 100.
    Liew PJ, Yan J, Kuriyagawa T (2013) J Mater Process Technol 213:1076Google Scholar
  101. 101.
    Borgohain R, Yang J, Selegue JP et al (2014) Carbon 66:272Google Scholar
  102. 102.
    Liu XY, Hong RY, Feng WG et al (2014) Powder Technol 256:158Google Scholar
  103. 103.
    Mattevi C, Kim H, Chhowalla M (2011) J Mater Chem 21:3324Google Scholar
  104. 104.
    Vinod Kumar R, Lethy KJ, Beena D et al (2010) Sol Energ Mater Sol Cell 94:68Google Scholar
  105. 105.
    Yu X, Shen Z (2011) Vacuum 85:1026Google Scholar
  106. 106.
    Kango S, Kalia S, Celli A et al (2013) Prog Polym Sci 38:1232Google Scholar
  107. 107.
    Dang ZM, Xu HP, Wang HY (2007) Appl Phys Lett 90:012901Google Scholar
  108. 108.
    Ma Z, Wang JH, Zhang XY (2008) J Appl Polym Sci 107:1000Google Scholar
  109. 109.
    Wang HL (2005) Polymer 46:6243Google Scholar
  110. 110.
    Bose S, Mahanwar PA (2006) J Appl Polym Sci 99:266Google Scholar
  111. 111.
    Hong RY, Li JH, Chen LL et al (2009) Powder Technol 189:426Google Scholar
  112. 112.
    Hong RY, Qian JZ, Cao JX (2006) Powder Technol 163:160Google Scholar
  113. 113.
    Zdyrko B, Luzinov I (2011) Macromol Rapid Commun 32:859Google Scholar
  114. 114.
    Qin S, Qin D, Ford WT et al (2004) Macromolecules 37:752Google Scholar
  115. 115.
    Xie L, Huang X, Yang K et al (2014) J Mater Chem A 2:5244Google Scholar
  116. 116.
    Baier M, Görgen M, Ehlbeck J et al (2014) Innovat Food Sci Emerg Technol 22:147Google Scholar
  117. 117.
    Ehlbeck J, Schnabel U, Polak M et al (2011) J Phys D 44:1Google Scholar
  118. 118.
    Okpalugo TIT, Papakonstantinou P, Murphy H et al (2005) Carbon 43:153Google Scholar
  119. 119.
    Yoon OJ, Lee HJ, Jang YM et al (2011) Appl Surf Sci 257:8535Google Scholar
  120. 120.
    Leroux F, Campagne C, Perwuelz A et al (2008) Appl Surf Sci 254:3902Google Scholar
  121. 121.
    Takada T, Nakahara M, Kumagai H et al (1996) Carbon 34:1087Google Scholar
  122. 122.
    Park JM, Matienzo LJ, Spencer DF (1991) J Adhes Sci Technol 5:153Google Scholar
  123. 123.
    Morent R, De Geyter N, Desmet T et al (2011) Plasma Process Polym 8:171Google Scholar
  124. 124.
    Yin CY, Aroua MK, Daud WMAW (2007) Se Purif Technol 52:403Google Scholar
  125. 125.
    Tashima D, Sakamoto A, Taniguchi M et al (2008) Vacuum 83:695Google Scholar
  126. 126.
    Xu T, Yang J, Liu J et al (2007) Appl Surf Sci 253:8945Google Scholar
  127. 127.
    López-Manchado MA, Herrero B, Arroyo M (2004) Polym Int 53:1766Google Scholar
  128. 128.
    Chae DW, Kim BC (2005) Polym Adv Technol 16:846Google Scholar
  129. 129.
    Wu TM, Wu CY (2006) Polym Degrad Stab 91:2198Google Scholar
  130. 130.
    Shen JW, Chen XM, Huang WY (2003) J Appl Polym Sci 88:1864Google Scholar
  131. 131.
    Thomas P, Varughese KT, Dwarakanath K et al (2010) Compos Sci Technol 70:539Google Scholar
  132. 132.
    Yang W, Yu S, Sun R et al (2011) Acta Mater 59:5593Google Scholar
  133. 133.
    Chanmal CV, Jog JP (2008) Express Polym Lett 2:294Google Scholar
  134. 134.
    Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon 42:965Google Scholar
  135. 135.
    Villmow T, Kretzschmar B, Pötschke P (2010) Compos Sci Technol 70:2045Google Scholar
  136. 136.
    Spitalsky Z, Tasis D, Papagelis K et al (2010) Prog Polym Sci 35:357Google Scholar
  137. 137.
    Haggenmueller R, Gommans HH, Rinzler AG et al (2000) Chem Phys Lett 330:219Google Scholar
  138. 138.
    Bikiaris DN, Vassiliou A, Pavlidou E et al (2005) Eur Polym J 41:1965Google Scholar
  139. 139.
    Hu T, Juuti J, Jantunen H (2009) J Eur Ceram Soc 27:2923Google Scholar
  140. 140.
    Li K, Wang H, Xiang F et al (2009) Appl Phys Lett 95:202904Google Scholar
  141. 141.
    Chao F, Liang G (2009) J Mater Sci 20:560Google Scholar
  142. 142.
    Wu H, Gu A, Liang G et al (2011) J Mater Chem 21:14838Google Scholar
  143. 143.
    Sui G, Jana S, Zhong WH et al (2008) Acta Mater 56:2381Google Scholar
  144. 144.
    Potts JR, Lee SH, Alam TM et al (2011) Carbon 49:2615Google Scholar
  145. 145.
    Xu Z, Gao C (2010) Macromolecules 43:6716Google Scholar
  146. 146.
    Cava RJ (2001) J Mater Chem 11:54Google Scholar
  147. 147.
    Balazs AC, Emrick T, Russell TP (2006) Science 314:1107Google Scholar
  148. 148.
    Luo B, Wang X, Wang Y et al (2014) J Mater Chem 2:510Google Scholar
  149. 149.
    Yu K, Niu Y, Zhou Y et al (2013) J Am Ceram Soc 96:2519Google Scholar
  150. 150.
    Wang FJ, Li W, Xue MS et al (2011) Compos B 42:87Google Scholar
  151. 151.
    Xie L, Huang X, Huang Y et al (2013) J Phys Chem C 117:22525Google Scholar
  152. 152.
    Yu K, Niu Y, Xiang F et al (2003) Appl Phys Lett 114:174107Google Scholar
  153. 153.
    Zhou T, Zha JW, Hou Y et al (2011) ACS Appl Mater Interfaces 3:2184Google Scholar
  154. 154.
    Tang H, Sodano HA (2013) Nano Lett 13:1373Google Scholar
  155. 155.
    Sonoda K, Juuti J, Moriya Y et al (2010) Compos Struct 92:1052Google Scholar
  156. 156.
    Vékás L (2008) Adv Sci Technol 54:127Google Scholar
  157. 157.
    Hong RY (2009) Nanoparticles and magnetic fluid: preparation and application. Chem. Ind. Press, ChinaGoogle Scholar
  158. 158.
    Liu XY, Zheng SW, Hong RY et al (2014) Colloids Surf A 443:425Google Scholar
  159. 159.
    Kordonsky WI (1993) J Magn Magn Mater 122:395Google Scholar
  160. 160.
    Hong RY, Li JH, Zheng SW et al (2009) J Alloys Compd 480:947Google Scholar
  161. 161.
    Hong R, Pan T, Qian J et al (2006) Chem Eng J 119:71Google Scholar
  162. 162.
    Xu Y, Liang YT, Jiang LJ et al (2011) J Nanomater 1:1Google Scholar
  163. 163.
    Zhou ZH, Xue JM, Chan HSO et al (2002) Mater Chem Phys 75:181Google Scholar
  164. 164.
    Lu HF, Hong RY, Wang LS et al (2012) Mater Lett 68:237Google Scholar
  165. 165.
    Luo Z, Cai X, Hong RY et al (2012) Chem Eng J 187:357Google Scholar
  166. 166.
    Luo Z, Cai X, Hong RY et al (2013) J Appl Polym Sci 1:4756Google Scholar
  167. 167.
    Yuan JJ, Hong RY, Wang YQ, Feng WG (2014) Chem Eng J 253:107–120Google Scholar
  168. 168.
    Wang F, Hong RY, Feng WG et al (2014) Mater Lett 125:48Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemical EngineeringFuzhou UniversityFuzhouChina
  2. 2.College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu ProvinceSoochow University, SIPSuzhouChina

Personalised recommendations