Advertisement

Fabrication of Metal Oxide–Polymer Hybrid Nanocomposites

  • Yuvaraj HaldoraiEmail author
  • Jae-Jin Shim
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 267)

Abstract

The synthesis of polymer/metal oxide hybrid nanocomposites has attracted increasing attention because of their potential applications. The advances in polymer science have provided the ability to prepare a wide range of materials with controllable mechanical, thermal, and electroactive properties. As part of this renewed interest in nanocomposites, many researchers have begun seeking new strategies for engineering nanocomposite materials that combine the desirable properties of nanoparticles (NPs) with those of polymers. Previous research has revealed a number of key challenges in producing nanocomposites with the desired behavior. The greatest hindrance to the large-scale production and commercialization of nanocomposites is the lack of cost-effective methods for controlling the dispersion of NPs in their polymeric hosts. Nanoscale particles typically aggregate, which negates any benefit associated with their small dimensions. The particles must be integrated in such a way that isolated, well-dispersed primary NPs are found inside the matrix. Processing techniques are needed that are effective on the nanoscale yet applicable to macroscopic processing. Synthetic strategies for nanocomposites with high homogeneity are a challenge. Several attempts have been made to synthesize nanocomposites and they can be classified under two major categories: ex-situ and in-situ processes. This review discusses both ex-situ and in-situ methods with appropriate examples.

Keywords

Applications Metal oxide Nanocomposites Polymers Properties 

Notes

Acknowledgement

This study was supported by DG Economic Circle Leading Industry R&D Program of the Ministry of Knowledge and Economy (MOKE) (R0001657)

References

  1. 1.
    Mukheerjee M, Datta A, Chakravorty D (1994) Appl Phys Lett 64:1159Google Scholar
  2. 2.
    Chen TK, Tien YI, Wei KH (2000) Polymer 41:1345Google Scholar
  3. 3.
    Zhu ZK, Yin J, Cao F, Shang XY, Lu QH (2000) Adv Mater 12:1055Google Scholar
  4. 4.
    Ramos J, Millan A, Palacio F (2000) Polymer 41:8461Google Scholar
  5. 5.
    Sanchez C, De GJ, Soler-Illia AA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061Google Scholar
  6. 6.
    Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, WeinheimGoogle Scholar
  7. 7.
    Gómez-Romero P, Sanchez C (2004) Functional hybrid materials, 6th edn. Wiley, WeinheimGoogle Scholar
  8. 8.
    Kickelbick G (2007) Hybrid materials: synthesis, characterization, and applications, 1st edn. Wiley, WeinheimGoogle Scholar
  9. 9.
    Nielsen LE, Landel RF (1993) Mechanical properties of polymers and composites, 1st edn. CRC, New YorkGoogle Scholar
  10. 10.
    Rothon RN (2007) Fillers and their surface modifiers for polymer applications. Plastics Informations Direct, BristolGoogle Scholar
  11. 11.
    Hornsby PR (2001) Int Mater Rev 46:199Google Scholar
  12. 12.
    Liu Y, Yang R, Yu J, Wang K (2002) Polym Compos 23:28Google Scholar
  13. 13.
    Domingo C, Loste E, Fraile J (2006) J Supercrit Fluids 37:72Google Scholar
  14. 14.
    Zhou Y, Cooper K, Li Y, Li Z (2009) Use of coupling agents to improve the interface in absorbable polymer composites. US Patent 20,090,149,873Google Scholar
  15. 15.
    Wernett PC (2009) Surface treated inorganic particle additive for increasing the toughness of polymers. WO Patent 2,009,077,860Google Scholar
  16. 16.
    Rong MZ, Zhang MQ, Ruan WH (2006) Mater Sci Tech 22:787Google Scholar
  17. 17.
    Masala O, Seshadri R (2004) Annu Rev Mater Res 34:41Google Scholar
  18. 18.
    Chu SY, Yan TM, Chen SL (2000) Ceram Int 26:733Google Scholar
  19. 19.
    Westin G, Ekstrand A, Nygren M, Sterlund RO, Merkelbach P (1994) J Mater Chem 4:615Google Scholar
  20. 20.
    Tokumoto MS, Briois V, Santilli CV (2003) J Sol-Gel Sci Techol 26:547Google Scholar
  21. 21.
    Kim JH, Choi WC, Kim HY, Kang Y, Park YK (2005) Powder Technol 153:166Google Scholar
  22. 22.
    Damonte LC, Zelis LAM, Soucase BM, Fenollosa MAH (2004) Powder Technol 148:15Google Scholar
  23. 23.
    Kahn ML, Monge M (2005) Adv Funct Mater 15:458Google Scholar
  24. 24.
    Komarneni S, Bruno M, Mariani E (2000) Mater Res Bull 35:1843Google Scholar
  25. 25.
    Zhao XY, Zheng BC, Li CZ, Gu HC (1998) Powder Technol 100:20Google Scholar
  26. 26.
    Dai ZR, Pan ZW, Wang ZL (2003) Adv Funct Mater 13:9Google Scholar
  27. 27.
    Padmavathy N, Vijayaraghavan R (2008) Sci Technol Adv Mater 9:035004/1Google Scholar
  28. 28.
    Pillai SC, Kelly JM, McCormack DE, Ramesh R (2004) J Mater Chem 14:1572Google Scholar
  29. 29.
    Ao WQ, Li JQ, Yang HM, Zeng XR, Ma XC (2006) Powder Technol 168:148Google Scholar
  30. 30.
    Ismail AA, El-Midany A, Abdel-Aal EA, El-Shall H (2005) Mater Lett 59:1924Google Scholar
  31. 31.
    Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) J Am Chem Soc 127:5608Google Scholar
  32. 32.
    Baskoutas S, Giabouranis P, Yannopoulos SN, Dracopoulos V, Toth L, Chrissanthopoulos A, Bouropoulos N (2007) Thin Solid Films 515:8461Google Scholar
  33. 33.
    Kundu TK, Kark N, Barik P, Saha S (2011) Int J Soft Comput Eng 1:19Google Scholar
  34. 34.
    Dakhlaoui A, Jendoubi M, Smiri LS, Kanaev A, Jouini N (2009) J Cryst Growth 311:3989Google Scholar
  35. 35.
    Drath BE, Martin S, Mogens C, Brummerstedt IB (2012) Particle size effects on the thermal conductivity of ZnO. AIP Conf Proc 1449:335–338Google Scholar
  36. 36.
    Singh AK (2010) Adv Powder Technol 21:609Google Scholar
  37. 37.
    Carrey J, Kahn ML, Sanchez S, Chaudret B, Respaud M (2007) Eur Phys J Appl Phys 40:71Google Scholar
  38. 38.
    Garcia MA, Merino JM, Pinel EF, Quesada A, de la Venta J, Gonzalez MLR et al (2007) Nano Lett 7:1489Google Scholar
  39. 39.
    Ton-That C, Philips MR, Foley M, Moody SJ, Stampfl APJ (2008) Appl Phys Lett 92:261916/1Google Scholar
  40. 40.
    Chopra L, Major S, Pandya DK, Rastogi RS, Vankar VD (1983) Thin Solid Films 1021:1Google Scholar
  41. 41.
    Jiang P, Zhou JJ, Fang HF, Wang CY, Wang ZL, Xie SS (2007) Adv Funct Mater 17:1303Google Scholar
  42. 42.
    Chakrabarti S, Dutta BK (2004) J Hazard Mater 112:269Google Scholar
  43. 43.
    Chen C, Liu J, Liu P, Yu B (2011) Adv Chem Eng Sci 1:9Google Scholar
  44. 44.
    Tan TK, Khiew PS, Chiu WS, Radiman S, Abd-Shukor R, Huang NM et al (2011) World Acad Sci Eng Tech 79:791–796Google Scholar
  45. 45.
    Zhou J, Xu N, Wang ZL (2006) Adv Mater 18:2432Google Scholar
  46. 46.
    Jones N, Ray B, Ranjit KT, Manna AC (2008) FEMS Microbiol Lett 279:71Google Scholar
  47. 47.
    Jin T, Sun D, Su Y, Zhang H, Sue HJ (2009) J Food Sci 74:46Google Scholar
  48. 48.
    Ugur SS, Sariisik M, Aktas AH, Ucar MC, Erden E (2010) Nanoscale Res Lett 5:1204Google Scholar
  49. 49.
    Li J, Guo D, Wang X, Wang H, Jiang H, Chen B (2010) Nanoscale Res Lett 5:1063Google Scholar
  50. 50.
    Jitputti J, Rattanavoravipa T, Chuangchote S, Pavasupree S, Suzuki Y, Yoshikawa S (2009) Catal Commun 10:378Google Scholar
  51. 51.
    Mizukoshi Y, Makise Y, Shuto THJ, Tominaga A, Shironita S, Tanabe S (2007) Ultrason Sonochem 14:387Google Scholar
  52. 52.
    Zhang Y, Zheng H, Liu G, Battaglia V (2009) Electrochim Acta 54:4079Google Scholar
  53. 53.
    Li XL, Peng Q, Yi JX, Wang X, Li Y (2006) Chem Eur J 12:2383Google Scholar
  54. 54.
    Zhang DB, Qi LM, Cheng HM, Ming JMA (2003) Chin Chem Lett 14:100Google Scholar
  55. 55.
    Anwar NS, Kassim A, Lim HN, Zakarya SA, Huang NM (2010) Sains Malays 39:261Google Scholar
  56. 56.
    Rahim S, Radiman S, Hamzah A (2012) Sains Malays 41:219Google Scholar
  57. 57.
    Yang H, Zhang K, Shi R, Li X, Dong X, Yu Y (2006) J Alloys Compd 413:302Google Scholar
  58. 58.
    Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) J Phys Chem C 112:14595Google Scholar
  59. 59.
    Teleki A, Pratsinis SE, Kalyanasundaram K, Gouma PI (2006) Sensor Actuator B 119:683Google Scholar
  60. 60.
    Parala H, Devi A, Bhakta R, Fischer RA (2002) J Mater Chem 12:1625Google Scholar
  61. 61.
    Chen X, Mao SS (2007) Chem Rev 107:2891Google Scholar
  62. 62.
    Zhao Y, Li C, Liu X, Gu F, Jiang H, Shao W, Zhang L, He Y (2007) Mater Lett 61:79Google Scholar
  63. 63.
    Barnard AS, Erdin S, Lin Y, Zapol P, Halley JW (2006) Phys Rev B 73:205405/1Google Scholar
  64. 64.
    Auvinen S, Alatalo M, Haario H, Jalava JP, Lamminmaki RJ (2011) J Phys Chem C 115:8484Google Scholar
  65. 65.
    Hoang VV, Zung H, Trong NHB (2007) Eur Phys J D 44:515Google Scholar
  66. 66.
    Shao W, Nabb D, Renevier N, Sherrington I, Fu Y, Luo J (2012) J Electrochem Soc 159:671–676Google Scholar
  67. 67.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33Google Scholar
  68. 68.
    Lee KM, Hu CW, Chen HW, Ho KC (2008) Sol Energ Mater Sol Cells 92:1628Google Scholar
  69. 69.
    Mohammadi MR, Fray DJ, Cordero-Cabrera MC (2007) Sensor Actuator B 124:74Google Scholar
  70. 70.
    Wang YQ, Zhang HM, Wang RH (2007) Colloids Surf B 65:190Google Scholar
  71. 71.
    Adesina AA (2004) Catal Surv Asia 8:265Google Scholar
  72. 72.
    Chitose N, Ueta S, Yamamoto TA (2003) Chemosphere 50:1007Google Scholar
  73. 73.
    Kabra K, Chaudhary R, Sawhney RL (2004) Ind Eng Chem Res 43:7683Google Scholar
  74. 74.
    Kuhn KP, Cahberny IF, Massholder K, Stickler M, Benz VW, Sonntag HG, Erdinger L (2003) Chemosphere 53:71Google Scholar
  75. 75.
    Choi JY, Kim KH, Choy KC, Oh KT, Kim KN (2007) J Biomed Mater Res B: Appl Biomater 80:353Google Scholar
  76. 76.
    Jolivet JP, Chaneac C, Tronc E (2004) Chem Commun 2004(5):481Google Scholar
  77. 77.
    Wan SR, Huang JS, Yan HS, Liu KL (2006) J Mater Chem 16:298Google Scholar
  78. 78.
    Zhou ZH, Wang J, Liu X, Chan HSO (2001) J Mater Chem 11:1704Google Scholar
  79. 79.
    Albornoz C, Jacobo SE (2006) J Magn Magn Mater 305:12Google Scholar
  80. 80.
    Hou YL, Yu JF, Gao S (2003) J Mater Chem 13:1983Google Scholar
  81. 81.
    Pascal C, Pascal JL, Favier F, Payen C (1999) Chem Mater 11:141Google Scholar
  82. 82.
    Franzel L, Bertino MF, Huba ZJ, Carpenter EE (2012) Appl Surf Sci 261:332Google Scholar
  83. 83.
    Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Mater Sci Eng A 286:101Google Scholar
  84. 84.
    Sun S, Zeng H (2002) J Am Chem Soc 124:8204Google Scholar
  85. 85.
    Wu W, He Q, Jiang C (2008) Nanoscale Res Lett 3:397Google Scholar
  86. 86.
    Bandyopadhyay M, Bhattacharya J (2006) J Phys Condens Matter 18:11309Google Scholar
  87. 87.
    Akbarzadeh A, Samiei M, Davaran S (2012) Nanoscale Res Lett 7:144Google Scholar
  88. 88.
    Martchenko I, Dietsch H, Moitzi C, Schurtenberger P (2011) J Phys Chem B 115:14838Google Scholar
  89. 89.
    Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez- Carreno T, Morales MP, Serna CJ (2009) J Phys D 42:224002/1Google Scholar
  90. 90.
    Chan DCF, Kirpotin DB, Bunn PA (1993) J Magn Magn Mater 122:374Google Scholar
  91. 91.
    Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) J Colloid Interface Sci 212:474Google Scholar
  92. 92.
    Chertok B, Moffat BA, David AE, Yu F, Berqemann C, Ross BD et al (2008) Biomaterials 29:487Google Scholar
  93. 93.
    Khodabakhshi A, Amin MM, Mozaffari M (2011) Iran J Environ Health Sci Eng 8:189Google Scholar
  94. 94.
    Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Int J Nanomedicine 5:277Google Scholar
  95. 95.
    Sambandam A, Lee GJ, Wu J (2012) Ultrason Sonochem 19:682Google Scholar
  96. 96.
    Darezereshki E, Bakhtiari F (2011) J Min Metal Sect B 47:73Google Scholar
  97. 97.
    Borgohain K, Singh J, Rao M, Shripathi T (2000) Phys Rev B 61:11093Google Scholar
  98. 98.
    El-Trass A, ElShamy H, El-Mehasseb I, El-Kemary M (2012) Appl Surf Sci 258:2997Google Scholar
  99. 99.
    Kumar RV, Mastai Y, Diamant Y, Gedanken A (2000) Chem Mater 12:2301Google Scholar
  100. 100.
    Lim Y, Choi J, Hanrath T (2012) J Nanomater 2012:4Google Scholar
  101. 101.
    Yuan G, Jiang H, Lin C, Liao S (2007) J Cryst Growth 303:400Google Scholar
  102. 102.
    Poizot P, Hung C, Nikiforov M, Bohannan E, Switzer J (2003) Electrochem Solid State Lett 6:C21Google Scholar
  103. 103.
    Son D, You C, Ki T (2009) Appl Surf Sci 255:8794Google Scholar
  104. 104.
    Wang H, Xu J, Zhu J, Chen H (2002) J Cryst Growth 244:88Google Scholar
  105. 105.
    Kida T, Oka T, Nagano M, Ishiwata Y, Zheng X (2007) J Am Ceram Soc 90:107Google Scholar
  106. 106.
    Saito G, Hosokai S, Tsubota M, Akiyama T (2011) J Appl Phys 110:023302Google Scholar
  107. 107.
    Hong JI, Schadler LS, Siegel RW (2003) Appl Phys Lett 82:1956Google Scholar
  108. 108.
    Hong JI, Winberg P, Schadler LS, Siegel RW (2005) Mater Lett 59:473Google Scholar
  109. 109.
    Dang ZM, Fan LZ, Zhao SJ, Nan CW (2003) Mater Res Bull 38:499Google Scholar
  110. 110.
    Tjong SC, Liang GD (2006) Mater Chem Phys 100:1Google Scholar
  111. 111.
    Tjong SC, Liang GD, Bao SP (2006) J Appl Polym Sci 102:1436Google Scholar
  112. 112.
    Wong M, Tsuji R, Nutt S, Su S-J (2010) Soft Matter 6:4482Google Scholar
  113. 113.
    Zhao H, Li RKY (2006) Polymer 47:3207Google Scholar
  114. 114.
    Miyauchi M, Li Y, Shimizu H (2008) Environ Sci Technol 42:4551Google Scholar
  115. 115.
    Ou B, Li D, Liu Y (2009) Compos Sci Technol 69:421Google Scholar
  116. 116.
    Li G-J, Fan S-R, Wang K, Ren X-L, Mu X-W (2010) Iran Polym J 19:115Google Scholar
  117. 117.
    Chiu C-W, Lin C-A, Hong PD (2011) J Polym Res 18:367Google Scholar
  118. 118.
    Knör N, Walter R, Haupert F (2011) J Thermoplast Compos Mater 24:185Google Scholar
  119. 119.
    Zohrevand A, Ajji A, Mighri F (2014) Polym Eng Sci 54:874Google Scholar
  120. 120.
    Kong I, Ahmad SH, Abdullah MH, Yusoff AN (2009) The effect of temperature on magnetic behavior of magnetite nanoparticles and its nanocomposites. AIP Conf Proc 1136:830–834Google Scholar
  121. 121.
    Chung Y-C, Choi JW, Choi MW, Chun BC (2012) J Thermoplast Compos Mater 25:283Google Scholar
  122. 122.
    Vunain E, Mishra AK, Krause RW (2013) J Inorg Organomet Polym 23:293Google Scholar
  123. 123.
    Chae DW, Kim BC (2005) Polym Adv Technol 16:846Google Scholar
  124. 124.
    Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J (2009) Prog Org Coat 64:504Google Scholar
  125. 125.
    Seo J, Jeon G, Jang ES, Khan SB, Han H (2011) J Appl Polym Sci 122:1101Google Scholar
  126. 126.
    Hejazi I, Hajalizadeh B, Seyfi J, Sadeghi GMM, Jafari S-H, Khonakdar HA (2014) Appl Surf Sci 293:116Google Scholar
  127. 127.
    Song M, Pan C, Li J, Wang X, Gu Z (2006) Electroanalysis 18:1995Google Scholar
  128. 128.
    Song M, Pan C, Chen C, Li J, Wang X, Gu Z (2008) Appl Surf Sci 255:610Google Scholar
  129. 129.
    Nakayama N, Hayashi T (2007) Polym Degrad Stab 92:1255Google Scholar
  130. 130.
    Buzarovska A (2013) Polym Plast Technol 52:280Google Scholar
  131. 131.
    Mallakpour S, Barati A (2011) Prog Org Coat 71:391Google Scholar
  132. 132.
    Yang TI, Brown RNC, Kempel LC, Kofinas P (2008) J Magn Magn Mater 320:2714Google Scholar
  133. 133.
    Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Biosens Bioelectron 24:676Google Scholar
  134. 134.
    Pisanello F, Paolis RD, Lorenzo D, Nitti S, Monti G, Fragouli D, Athanassiou A, Manna L, Tarricone L, Vittorio MD, Martiradonna L (2013) Microelectron Eng 111:46Google Scholar
  135. 135.
    Hench LL, West JK (1990) Chem Rev 90:33Google Scholar
  136. 136.
    Kickelbick G (2003) Prog Polym Sci 28:83Google Scholar
  137. 137.
    Hsiue GH, Kuo WJ, Jeng RJ (2000) Polymer 41:2813Google Scholar
  138. 138.
    Song KY, Crivello JV, Ghoshal R (2001) Chem Mater 13:1932Google Scholar
  139. 139.
    Lu C, Yang B (2009) J Mater Chem 19:2884Google Scholar
  140. 140.
    Wu CS (2004) J Appl Polym Sci 92:1749Google Scholar
  141. 141.
    Du T, Song H, Ilegbusi OJ (2007) Mater Sci Eng C 27:414Google Scholar
  142. 142.
    Gao H, Yorifuji D, Wakita J, Jiang Z-H, Ando S (2010) Polymer 51:3173Google Scholar
  143. 143.
    Hu Q, Marand E (1999) Polymer 40:4833Google Scholar
  144. 144.
    Wang SX, Wang M, Zhang LD (1999) J Mater Sci Lett 18:2009Google Scholar
  145. 145.
    Liu Y, Lee JY (2003) J Appl Polym Sci 89:2815Google Scholar
  146. 146.
    Yang BD, Yoon KH (2004) Synth Met 142:21Google Scholar
  147. 147.
    Chiang PC, Whang WT (2003) Polymer 44:2249Google Scholar
  148. 148.
    Chiang PC, Whang WT, Tsai MH, Wu SC (2004) Thin Solid Films 359:447Google Scholar
  149. 149.
    Chen WC, Lee SJ, Liu JL (1999) J Mater Chem 9:2999Google Scholar
  150. 150.
    Lee LH, Chen WC (2001) Chem Mater 13:1137Google Scholar
  151. 151.
    Wang B, Wilkes GL, McGrath JE (1991) Macromolecules 24:3449Google Scholar
  152. 152.
    Lu C, Cui Z, Guan C, Guan J, Yang B, Shen J (2003) Macromol Mater Eng 288:717Google Scholar
  153. 153.
    Rao Y, Chen S (2008) Macromolecules 41:4838Google Scholar
  154. 154.
    Yoshida M, Lal M, Deepark-Kumar N, Prasad PN (1997) J Mater Sci 32:4047Google Scholar
  155. 155.
    Ziolo RF, Giannelis EP, Weinstein BA, Ohoro MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Science 257:219Google Scholar
  156. 156.
    Cao Z, Jiang WQ, Ye XZ, Gong XL (2008) J Magn Magn Mater 320:1499Google Scholar
  157. 157.
    Zhang L, Li F, Chen Y, Wang X (2011) J Lumin 131:1701Google Scholar
  158. 158.
    Park SS, Bernet N, Roche DLS, Hahn HT (2003) J Compos Mater 37:465Google Scholar
  159. 159.
    Evora VMF, Shukla A (2003) Mater Sci Eng A 361:358Google Scholar
  160. 160.
    Althues H, Simon P, Philipp F, Kaskel S (2006) J Nanosci Nanotechnol 6:409Google Scholar
  161. 161.
    Anzlovar A, Orel ZC, Zigon M (2010) Eur Polym J 46:1216Google Scholar
  162. 162.
    Li S, Toprak MS, Jo YS, Dobson J, Kim DK, Muhammed M (2007) Adv Mater 19:4347Google Scholar
  163. 163.
    Wang ZG, Zu XT, Xiang X (2006) J Mater Sci 41:1973Google Scholar
  164. 164.
    Bourgeat-Lami E (2002) J Nanosci Nanotechnol 2:1Google Scholar
  165. 165.
    Liu P, Su Z (2006) J Macromol Sci B Phys 45:131Google Scholar
  166. 166.
    Dzunuzovic E, Jeremic K, Nedeljkovic JM (2007) Eur Polym J 43:3719Google Scholar
  167. 167.
    Demir MM, Castignolles P, Akbey U, Wegner G (2007) Macromolecules 40:4190Google Scholar
  168. 168.
    Demir MM, Koynov K, Akbey U, Bubeck C, Park I, Lieberwirth I, Wegner G (2007) Macromolecules 40:1089Google Scholar
  169. 169.
    Li S, Qin J, Fornara A, Toprak M, Muhammed M, Kim DK (2009) Nanotechnology 20:6Google Scholar
  170. 170.
    Guo Z, Lei K, Li Y, Ng HW, Prikhodko S, Hahn HT (2008) Compos Sci Tech 68:1513Google Scholar
  171. 171.
    Inkyo M, Tokunaga Y, Tahara T, Iwaki T, Iskandar F, Hogan CJ, Okuyama K (2008) Ind Eng Chem Res 47:2597Google Scholar
  172. 172.
    Zou H, Wu S, Shen J (2008) Chem Rev 108:3893Google Scholar
  173. 173.
    Ai Z, Sun G, Zhou Q, Xie C (2006) J Appl Polym Sci 102:1466Google Scholar
  174. 174.
    Daniel JC, Schuppiser JL, Tricot M (1982) Magnetic polymer latex and preparation process. US Patent 4,358,388Google Scholar
  175. 175.
    Charmot D, Vidil C (1994) Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology. US Patent 5,356,713Google Scholar
  176. 176.
    Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Langmuir 15:1945Google Scholar
  177. 177.
    Wormuth K (2001) J Colloid Interface Sci 241:366Google Scholar
  178. 178.
    Mazrouaal A, Badawi A, Mansour N, Fathy M, Elsabee M (2013) J Nano Electron Phys 5:04063Google Scholar
  179. 179.
    Petchthanasombat C, Tiensing T, Sunintaboon P (2012) J Colloid Interface Sci 369:52–57Google Scholar
  180. 180.
    Erdem B, Sudol ED, Dimonie VL, El-Asser MS (2000) J Polym Sci A Polym Chem 38:4419Google Scholar
  181. 181.
    Erdem B, Sudol ED, Dimonie VL, El-Asser MS (2000) J Polym Sci A Polym Chem 38:4431Google Scholar
  182. 182.
    Erdem B, Sudol ED, Dimonie VL, El-Asser MS (2000) J Polym Sci A Polym Chem 38:4441Google Scholar
  183. 183.
    Zhang M, Gao G, Li CQ, Liu F (2004) Langmuir 20:1420Google Scholar
  184. 184.
    Wu Y, Zhang Y, Xu J, Chen M, Wu L (2010) J Colloid Interface Sci 343:18Google Scholar
  185. 185.
    Ramírez LP, Landfester K (2003) Macromol Chem Phys 204:22Google Scholar
  186. 186.
    Luo Y-D, Dai C-A, Chiu W-Y (2008) J Polym Sci A Polym Chem 46:1014Google Scholar
  187. 187.
    Tang E, Dong S (2009) Colloid Polym Sci 287:1025Google Scholar
  188. 188.
    Teo BM, Chen F, Hatton TA, Grieser F, Ashokkumar M (2009) Langmuir 25:2593Google Scholar
  189. 189.
    Xu ZZ, Wang CC, Yang WL, Deng YH, Fu SK (2004) J Magn Magn Mater 277:136Google Scholar
  190. 190.
    Chen Y, Qian Z, Zhang Z (2008) Colloids Surf A 312:209Google Scholar
  191. 191.
    Lin C, Chiu W, Don T (2006) J Appl Polym Sci 100:3987Google Scholar
  192. 192.
    Yang S, Liu H, Zhang Z (2008) J Polym Sci A Polym Chem 46:3900Google Scholar
  193. 193.
    Flesch C, Delaite C, Dumas P, Bourgeat-Lami E, Duguet E (2004) J Polym Sci A Polym Chem 42:6011Google Scholar
  194. 194.
    Takafuji M, Ide S, Ihara H, Xu Z (2004) Chem Mater 16:1977Google Scholar
  195. 195.
    Tang E, Cheng G, Ma X, Pang X, Zhao Q (2006) Appl Surf Sci 252:5227Google Scholar
  196. 196.
    Wang X, Song X, Lin M, Wang H, Zhao Y, Zhong W, Du Q (2007) Polymer 48:5834Google Scholar
  197. 197.
    Sidorenko A, Minko S, Gafijchuk G, Voronov S (1999) Macromolecules 32:4539Google Scholar
  198. 198.
    Shirai Y, Kawatsura K, Tsubokawa N (1999) Prog Org Coat 36:217Google Scholar
  199. 199.
    Tang E, Cheng G, Ma X (2006) Powder Technol 161:209Google Scholar
  200. 200.
    Fan X, Lin L, Messersmith PB (2006) Compos Sci Technol 66:1195Google Scholar
  201. 201.
    Hong RY, Qian JZ, Cao JX (2006) Powder Technol 163:160Google Scholar
  202. 202.
    Guo Z, Liang X, Pereira T, Scaffaro R, Thomas Hahn H (2007) Compos Sci Technol 67:2036Google Scholar
  203. 203.
    Bach LG, Islam Md R, Kim JT, Seo SY, Lim KT (2012) Appl Surf Sci 258:2959Google Scholar
  204. 204.
    Liu P, Wang T (2008) Curr Appl Phys 8:66Google Scholar
  205. 205.
    Wang Y, Teng X, Wang J-S, Yang H (2003) Nano Lett 3:789Google Scholar
  206. 206.
    Duan H, Kuang M, Wang D, Kurth DG, Moehwald H (2005) Angew Chem Int Ed 44:1717Google Scholar
  207. 207.
    Ninjbadgar T, Yamamoto S, Fukuda T (2004) Solid State Sci 6:879Google Scholar
  208. 208.
    Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Polymer 45:2231Google Scholar
  209. 209.
    Abbasian M, Aali NL, Shoja SE (2013) J Macromol Sci A Pure Appl Chem 50:966Google Scholar
  210. 210.
    Gelbrich T, Feyen M, Schmidt A (2006) Macromolecules 39:3469Google Scholar
  211. 211.
    Gelbrich T, Marten G, Schmidt A (2010) Polymer 51:2818Google Scholar
  212. 212.
    Sato M, Kawata A, Morito S, Sato Y, Yamaguchi I (2008) Eur Polym J 44:3430Google Scholar
  213. 213.
    Nam K, Tsutsumi Y, Yoshikawa C, Tanaka Y, Fukaya R, Kimura T, Kobayashi H, Hanawa T, Kishida A (2011) Bull Mater Sci 34:1289Google Scholar
  214. 214.
    Caseri W (2009) Chem Eng Commun 196:549Google Scholar
  215. 215.
    Li Y-Q, Fu S-Y, Mai Y-W (2006) Polymer 47:2127Google Scholar
  216. 216.
    Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW (2002) J Nanopart Res 4:167Google Scholar
  217. 217.
    Allen NS, Edge M, Ortega A, Sandoval G, Liauw CM, Verran J, Stratton J, McIntyre RB (2004) Polym Degrad Stab 85:927Google Scholar
  218. 218.
    Christensen PA, Dilks A, Egerton TA (1999) J Mater Sci 34:5689Google Scholar
  219. 219.
    Lu N, Lu X, Jin X, Lu C (2007) Polym Int 56:138Google Scholar
  220. 220.
    Sun D, Sue H-J, Miyatake N (2008) J Phys Chem C 112:16002Google Scholar
  221. 221.
    Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Appl Phys Lett 76:2901Google Scholar
  222. 222.
    Zhang J, Liu H, Wang Z, Ming N, Li Z, Biris AS (2007) Adv Funct Mater 17:3897Google Scholar
  223. 223.
    Wei SF, Lian JS, Jiang Q (2009) Appl Surf Sci 255:6978Google Scholar
  224. 224.
    Singla ML, Shafeeq MM, Kumar M (2009) J Lumin 129:434Google Scholar
  225. 225.
    Xiong HM, Zhao X, Chen JS (2001) J Phys Chem B 105:10169Google Scholar
  226. 226.
    Abdullah M, Lenggoro IW, Okuyama K, Shi FG (2003) J Phys Chem B 107:1957Google Scholar
  227. 227.
    Abdullah M, Morinoto T, Okuyama K (2003) Adv Funct Mater 13:800Google Scholar
  228. 228.
    Sun DZ, Sue HJ (2009) Appl Phys Lett 94:253106Google Scholar
  229. 229.
    Wang ZG, Zu XT, Zhu S, Xiang X, Fang LM, Wang LM (2006) Phys Lett B 350:252Google Scholar
  230. 230.
    Vollath D, Szabó DV, Schlabach S (2004) J Nanopart Res 6:181Google Scholar
  231. 231.
    Wang ZG, Zu XT, Xiang X, Yu HJ (2006) J Nanopart Res 8:137Google Scholar
  232. 232.
    Vollath D, Szabó DV (2004) Adv Eng Mater 6:117Google Scholar
  233. 233.
    Sohn BH, Cohen RE (1997) Chem Mater 9:264Google Scholar
  234. 234.
    Zhan J, Tian G, Jiang L, Wu Z, Wu D, Yang X, Jin R (2008) Thin Solid Films 516:6315Google Scholar
  235. 235.
    Nan A, Turcu R, Craciunescu I, Pana O, Schaft H, Liebscher J (2009) J Polym Sci A Polym Chem 47:5379Google Scholar
  236. 236.
    Zhong W, Liu P, Shi HG, Xue DS (2010) Express Polym Lett 4:183Google Scholar
  237. 237.
    Xu C, Ouyang C, Jia R, Li Y, Wang X (2009) J Appl Polym Sci 111:1763Google Scholar
  238. 238.
    Bhatt AS, Bhat DK, Santosh MS (2011) J Appl Polym Sci 119:968Google Scholar
  239. 239.
    Hashimoto M, Takadama H, Mizuno M, Kokubo T (2006) Mater Res Bull 41:515Google Scholar
  240. 240.
    Haldorai Y, Shim JJ (2014) Polym Compos 35:327Google Scholar
  241. 241.
    Camargo P, Satyanarayana K, Wypych F (2009) Mater Res 12:1Google Scholar
  242. 242.
    Yang Y, Li YQ, Fu SY, Xiao HM (2008) J Phys Chem C 112:10553Google Scholar
  243. 243.
    Xiong HM, Xu Y, Ren QG, Xia YY (2008) J Am Chem Soc 130:7522Google Scholar
  244. 244.
    Haldorai Y, Shim JJ (2013) Compos Interfac 20:365Google Scholar
  245. 245.
    Son DA, Park DH, Choi WK, Cho SH, Kim WT, Kim TW (2009) Nanotechnology 20:195203Google Scholar
  246. 246.
    Sinha R, Ganesana M, Andreescu S (2010) Anal Chim Acta 661:195Google Scholar
  247. 247.
    Haldorai Y, Shim JJ (2013) Int J Photoenergy 2013:245646Google Scholar
  248. 248.
    Yuan C, Xu Y, Deng Y, Jiang N, He N, Dai L (2010) Nanotechnology 21:415501Google Scholar
  249. 249.
    Pandey V, Mishra G, Verma SK, Wan M, Yadav RR (2012) Mater Sci Appl 3:664Google Scholar
  250. 250.
    Zhu DM, Wang F, Han M, Li HB, Xu Z (2007) Chin J Inorg Chem 23:2128Google Scholar
  251. 251.
    Singh H, Laibinis PE, Hatton TA (2005) Langmuir 21:11500Google Scholar
  252. 252.
    Kim DK, Maria M, Wang FH, Jan K, Borje B, Zhang Y, Tsakalakos T, Muhammed M (2003) Chem Mater 15:4343Google Scholar
  253. 253.
    Wang W, Zhang ZK (2007) J Dispers Sci Technol 28:557Google Scholar
  254. 254.
    Ali A, AlSalhi MS, Atif Anees M, Ansari A, Israr MQ, Sadaf JR, Ahmed E, Nur O, Willander M (2003) J Phys Conf Ser 414:012024Google Scholar
  255. 255.
    Wan Ngaha WS, Teonga LC, Hanafiah MAKM (2011) Carbohydr Polym 83:1446Google Scholar
  256. 256.
    Vannier EA, Cohen-Jonathan S, Gautier J, Herve-Aubert K, Munnier E, Souce M, Legras P, Passirani C, Chourpa I (2012) Eur J Pharm Biopharm 81:498Google Scholar
  257. 257.
    Liu Z, Yang H, Zhang H, Huang C, Li L (2012) Cryogenics 52:699Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Department of Energy and Materials EngineeringDongguk University-SeoulSeoulRepublic of Korea

Personalised recommendations