Polymer–Ceramic Nanohybrid Materials

  • Sarabjeet Kaur
  • Markus Gallei
  • Emanuel IonescuEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 267)


This review is dedicated to nanohybrid materials consisting of a polymer-based matrix and a disperse nanoscaled ceramic phase. Different preparation techniques for the synthesis of polymer–ceramic nanohybrid materials will be presented, such as blending techniques, sol–gel processing, in-situ polymerization, and self-assembly methods. Selected structural and functional properties of polymer–ceramic nanohybrid materials will be highlighted and discussed within the context of their dependence on parameters such as the homogeneity of the dispersion of the ceramic throughout the polymer matrix, the particle size of the ceramic phase, and the polymer–ceramic interface. Moreover, some advanced applications of polymer–ceramic nanohybrid materials will be addressed and compared with their polymeric counterparts.


Functional properties Multifunctional materials Nanohybrid materials Polymer–ceramic interface Polymer–ceramic nanohybrids Structural properties Synthesis methods 



Aminopropyl triethoxysilane


Butyl methacrylate


2-Hydroxyethyl methacrylate


Methacrylic acid




Methyl methacrylate




Poly (2-chloroaniline)














Poly(ether ether ketone)


Poly(ethylene glycol)


Poly(ethylene oxide)


Poly(ethylene terephthalate)






Poly(methyl methacrylate)


PMMA-grafted titanium dioxide




SiO2 nanoparticles grafted to terminally hydroxylated polypropylene










Poly(vinyl alcohol)




Poly(vinylidene fluoride)






Sulfonated poly(phthalazinone ether ketone)


Tetraethoxysilane, tetraethyl orthosilicate


Tetramethoxysilane, tetramethyl orthosilicate


  1. 1.
    Matic P (2003) Overview of multifunctional materials. In: Lagoudas DC (ed) Smart structures and materials 2003: active materials: behavior and mechanics. In: SPIE Proceedings 5053. SPIE, Bellingham, WA. doi:10.1117/12.498546
  2. 2.
    Christodoulou L, Venables J (2003) Multifunctional material systems: the first generation. JOM 55(12):39–45Google Scholar
  3. 3.
    Schottner G (2001) Hybrid sol–gel-derived polymers: applications of multifunctional materials. Chem Mater 13(10):3422–3435Google Scholar
  4. 4.
    Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16(11):1013Google Scholar
  5. 5.
    Alexandra Fidalgo RC, Laura MI, Mario P (2005) Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol–gel catalysts. Chem Mater 17:6686–6694Google Scholar
  6. 6.
    Minghuo W, Ren’an W, Fangjun W, Lianbing R, Jing D, Zhen L, Hanfa Z (2009) “One-Pot” process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem 81:3529–3536Google Scholar
  7. 7.
    Wu M, Wu R, Zhang Z, Zou H (2011) Preparation and application of organic-silica hybrid monolithic capillary columns. Electrophoresis 32(1):105–115Google Scholar
  8. 8.
    Weng X, Bao Z, Xing H, Zhang Z, Yang Q, Su B, Yang Y, Ren Q (2013) Synthesis and characterization of cellulose 3,5-dimethylphenylcarbamate silica hybrid spheres for enantioseparation of chiral beta-blockers. J Chromatogr A 1321:38–47Google Scholar
  9. 9.
    Ashby MF, Bréchet YJM (2003) Designing hybrid materials. Acta Mater 51(19):5801–5821Google Scholar
  10. 10.
    Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559Google Scholar
  11. 11.
    Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic–inorganic materials. J Mater Chem 15(35–36):3787Google Scholar
  12. 12.
    Kickelbick G (2007) Introduction to hybrid materials. In: Kickelbick G (ed) Hybrid materials. Wiley-VCH, Weinheim, pp 1–48Google Scholar
  13. 13.
    Tai CY, Hsiao B-Y, Chiu H-Y (2007) Preparation of silazane grafted yttria-stabilized zirconia nanocrystals via water/CTAB/hexanol reverse microemulsion. Mater Lett 61(3):834–836Google Scholar
  14. 14.
    Tai CY, Lee MH, Wu YC (2001) Control of zirconia particle size by using two-emulsion precipitation technique. Chem Eng Sci 56(7):2389–2398Google Scholar
  15. 15.
    Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:1–15Google Scholar
  16. 16.
    Chandradass J, Bae D-S (2008) Synthesis and characterization of alumina nanoparticles by Igepal CO-520 stabilized reverse micelle and sol–gel Processing. Mater Manuf Process 23(5):494–498Google Scholar
  17. 17.
    Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arabian J Chem 5(4):397–417Google Scholar
  18. 18.
    Dawson WJ (1988) Hydrothermal synthesis of advanced ceramic powders. Am Ceram Soc Bull 67(10):1673–1678Google Scholar
  19. 19.
    Dell'Agli G, Mascolo G (2000) Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. J Eur Ceram Soc 20(2):139–145Google Scholar
  20. 20.
    Lee S, Shin H-J, Yoon S-M, Yi DK, Choi J-Y, Paik U (2008) Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites. J Mater Chem 18(15):1751Google Scholar
  21. 21.
    Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Progr Org Coating 71(4):391–398Google Scholar
  22. 22.
    Mo T-C, Wang H-W, Chen S-Y, Dong R-X, Kuo C-H, Yeh Y-C (2007) Synthesis and characterization of polyimide–silica nanocomposites using novel fluorine-modified silica nanoparticles. J Appl Polym Sci 104(2):882–890Google Scholar
  23. 23.
    Takai C, Fuji M, Takahashi M (2007) A novel surface designed technique to disperse silica nano particle into polymer. Colloids Surf A Physicochem Eng Asp 292(1):79–82Google Scholar
  24. 24.
    Tang JC, Lin GL, Yang HC, Jiang GJ, Chen-Yang YW (2007) Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. J Appl Polym Sci 104(6):4096–4105Google Scholar
  25. 25.
    Tang JC, Yang HC, Chen SY, Chen-Yang YW (2007) Preparation and properties of polyimide/silica hybrid nanocomposites. Polymer Compos 28(5):575–581Google Scholar
  26. 26.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Progr Polym Sci 38(8):1232–1261Google Scholar
  27. 27.
    Chen C (2011) The manufacture of polymer nanocomposite materials using supercritical carbon dioxide. Virginia Polytechnic Institute and State University, Blacksburg VAGoogle Scholar
  28. 28.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42(1):167–183Google Scholar
  29. 29.
    Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957Google Scholar
  30. 30.
    Rong M, Zhang M, Zheng Y, Zeng H, Walter R, Friedrich K (2000) Irradiation graft polymerization on nano-inorganic particles: An effective means to design polymer-based nanocomposites. J Mater Sci Lett 19(13):1159–1161Google Scholar
  31. 31.
    Wu C, Zhang M, Rong M, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos Sci Technol 65(3–4):635–645Google Scholar
  32. 32.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42(7):3301–3304Google Scholar
  33. 33.
    Ruan W, Zhang M, Rong M, Friedrich K (2004) Polypropylene composites filled with in-situ grafting polymerization modified nano-silica particles. J Mater Sci 39(10):3475–3478Google Scholar
  34. 34.
    Rong MZ, Zhang MQ, Pan SL, Friedrich K (2004) Interfacial effects in polypropylene–silica nanocomposites. J Appl Polym Sci 92(3):1771–1781Google Scholar
  35. 35.
    Ruan WH, Mai YL, Wang XH, Rong MZ, Zhang MQ (2007) Effects of processing conditions on properties of nano-SiO2/polypropylene composites fabricated by pre-drawing technique. Compos Sci Technol 67(13):2747–2756Google Scholar
  36. 36.
    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62(10–11):1327–1340Google Scholar
  37. 37.
    Cai LF, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 47(20):7043–7050Google Scholar
  38. 38.
    Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43(2):490–500Google Scholar
  39. 39.
    Bikiaris DN, Papageorgiou GZ, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci 100(4):2684–2696Google Scholar
  40. 40.
    Cai LF, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Fabrication of nanoparticle/polymer composites by in situ bubble-stretching and reactive compatibilization. Macromol Chem Phys 207(22):2093–2102Google Scholar
  41. 41.
    Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41(9):1965–1978Google Scholar
  42. 42.
    Takahashi S, Paul DR (2006) Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: without chemical coupling to matrix. Polymer 47(21):7519–7534Google Scholar
  43. 43.
    Takahashi S, Paul DR (2006) Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 2: with chemical coupling to matrix. Polymer 47(21):7535–7547Google Scholar
  44. 44.
    Merkel TC, Toy LG, Andrady AL, Gracz H, Stejskal EO (2002) Investigation of enhanced free volume in nanosilica-filled poly(1-trimethylsilyl-1-propyne) by 129Xe NMR spectroscopy. Macromolecules 36(2):353–358Google Scholar
  45. 45.
    Winberg P, DeSitter K, Dotremont C, Mullens S, Vankelecom IFJ, Maurer FHJ (2005) Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposites. Macromolecules 38(9):3776–3782Google Scholar
  46. 46.
    De Sitter K, Winberg P, D’Haen J, Dotremont C, Leysen R, Martens JA, Mullens S, Maurer FHJ, Vankelecom IFJ (2006) Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes: relation between the transport of gases and structural characteristics. J Membr Sci 278(1–2):83–91Google Scholar
  47. 47.
    Kelman SD, Matteucci S, Bielawski CW, Freeman BD (2007) Crosslinking poly (1-trimethylsilyl-1-propyne) and its effect on solvent resistance and transport properties. Polymer 48(23):6881–6892Google Scholar
  48. 48.
    Merkel TC, He ZJ, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Sorption and transport in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) containing nanoscale fumed silica. Macromolecules 36(22):8406–8414Google Scholar
  49. 49.
    Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44(19):5625–5634Google Scholar
  50. 50.
    Ahn SH, Kim SH, Lee SG (2004) Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6-naphthalate). J Appl Polym Sci 94(2):812–818Google Scholar
  51. 51.
    Bikiaris D, Karavelidis V, Karayannidis G (2006) A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromol Rapid Commun 27(15):1199–1205Google Scholar
  52. 52.
    Cannillo V, Bondioli F, Lusvarghi L, Montorsi M, Avella M, Errico ME, Malinconico M (2006) Modeling of ceramic particles filled polymer–matrix nanocomposites. Compos Sci Technol 66(7–8):1030–1037Google Scholar
  53. 53.
    Avella M, Bondioli F, Cannillo V, Pace ED, Errico ME, Ferrari AM, Focher B, Malinconico M (2006) Poly(ε-caprolactone)-based nanocomposites: influence of compatibilization on properties of poly(ε-caprolactone)–silica nanocomposites. Compos Sci Technol 66(7–8):886–894Google Scholar
  54. 54.
    Avella M, Bondioli F, Cannillo V, Errico ME, Ferrari AM, Focher B, Malinconico M, Manfredini T, Montorsi M (2004) Preparation, characterisation and computational study of poly(ε-caprolactone) based nanocomposites. Mater Sci Technol 20(10):1340–1344Google Scholar
  55. 55.
    Lim JS, Noda I, Im SS (2007) Effect of hydrogen bonding on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silica hybrid composites. Polymer 48(9):2745–2754Google Scholar
  56. 56.
    Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48(6):1688–1694Google Scholar
  57. 57.
    van Zyl WE, Garcia M, Schrauwen BAG, Kooi BJ, De Hosson JTM, Verweij H (2002) Hybrid polyamide/silica nanocomposites: synthesis and mechanical testing. Macromol Mater Eng 287(2):106–110Google Scholar
  58. 58.
    Su Y, Liu Y, Sun Y, Lai J, Wang D, Gao Y, Liu B, Guiver M (2007) Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J Membr Sci 296(1–2):21–28Google Scholar
  59. 59.
    Lai YH, Kuo MC, Huang JC, Chen M (2007) On the PEEK composites reinforced by surface-modified nano-silica. Mater Sci Eng A 458(1–2):158–169Google Scholar
  60. 60.
    Wu Z, Han H, Han W, Kim B, Ahn KH, Lee K (2007) Controlling the hydrophobicity of submicrometer silica spheres via surface modification for nanocomposite applications. Langmuir 23(14):7799–7803Google Scholar
  61. 61.
    Oberdisse J, Deme B (2002) Structure of latex-silica nanocomposite films: a small-angle neutron scattering study. Macromolecules 35(11):4397–4405Google Scholar
  62. 62.
    Oberdisse J (2002) Structure and rheological properties of latex-silica nanocomposite films: stress-strain isotherms. Macromolecules 35(25):9441–9450Google Scholar
  63. 63.
    Oberdisse J, El Harrak A, Carrot G, Jestin J, Boué F (2005) Structure and rheological properties of soft–hard nanocomposites: influence of aggregation and interfacial modification. Polymer 46(17):6695–6705Google Scholar
  64. 64.
    Zhang Q, Archer LA (2004) Optical polarimetry and mechanical rheometry of Poly(ethylene oxide) − silica dispersions. Macromolecules 37(5):1928–1936Google Scholar
  65. 65.
    Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18(26):10435–10442Google Scholar
  66. 66.
    Boisvert J-P, Persello J, Guyard A (2003) Influence of the surface chemistry on the structural and mechanical properties of silica-polymer composites. J Polym Sci B Polym Phys 41(23):3127–3138Google Scholar
  67. 67.
    Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer–particle interface. J Polym Sci B Polym Phys 44(20):2944–2950Google Scholar
  68. 68.
    Inoubli R, Dagreou S, Lapp A, Billon L, Peyrelasse J (2006) Nanostructure and mechanical properties of polybutylacrylate filled with grafted silica particles. Langmuir 22(15):6683–6689Google Scholar
  69. 69.
    Hong RY, Fu HP, Zhang YJ, Liu L, Wang J, Li HZ, Zheng Y (2007) Surface-modified silica nanoparticles for reinforcement of PMMA. J Appl Polym Sci 105(4):2176–2184Google Scholar
  70. 70.
    Wang Y-J, Kim D (2007) Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 52(9):3181–3189Google Scholar
  71. 71.
    Yoshida M, Lal M, Kumar ND, Prasad PN (1997) TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles. J Mater Sci 32(15):4047–4051Google Scholar
  72. 72.
    Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288(1):44–49Google Scholar
  73. 73.
    Carter SA, Scott JC, Brock PJ (1997) Enhanced luminance in polymer composite light emitting devices. Appl Phys Lett 71(9):1145–1147Google Scholar
  74. 74.
    Li M, Zhou S, You B, Wu L (2005) Study on acrylic resin/alumina hybrid materials prepared by the sol–gel process. J Macromol Sci B 44(4):481–494Google Scholar
  75. 75.
    Bhimaraj P, Burris DL, Action J, Sawyer WG, Toney CG, Siegel RW, Schadler LS (2005) Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly(ethylene) terephthalate composites. Wear 258(9):1437–1443Google Scholar
  76. 76.
    Naderi N, Sharifi-Sanjani N, Khayyat-Naderi B, Faridi-Majidi R (2006) Preparation of organic–inorganic nanocomposites with core-shell structure by inorganic powders. J Appl Polym Sci 99(6):2943–2950Google Scholar
  77. 77.
    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72Google Scholar
  78. 78.
    Roy R (1993) Evolution of the solution-sol–gel process – from homogeneity to heterogeneity in 35 years. Abstr Pap Am Chem S 205:65Google Scholar
  79. 79.
    Roy R (1981) Sol–gel process – origins, products, problems. Am Ceram Soc Bull 60(3):363–363Google Scholar
  80. 80.
    Sakka S (2013) Sol–gel process and applications. In: Somiya S (ed) Handbook of advanced ceramics, 2nd edn. Academic, Oxford, pp 883–910Google Scholar
  81. 81.
    Mark JE (1996) Ceramic-reinforced polymers and polymer-modified ceramics. Polym Eng Sci 36(24):2905–2920Google Scholar
  82. 82.
    Novak BM (1993) Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv Mater 5(6):422–433Google Scholar
  83. 83.
    Wu CS (2004) In situ polymerization of titanium isopropoxide in polycaprolactone: properties and characterization of the hybrid nanocomposites. J Appl Polym Sci 92(3):1749–1757Google Scholar
  84. 84.
    Durand N, Boutevin B, Silly G, Améduri B (2011) “Grafting From” polymerization of vinylidene fluoride (VDF) from silica to achieve original silica–PVDF core–shells. Macromolecules 44(21):8487–8493Google Scholar
  85. 85.
    Przemyslaw P, Robert P, Hieronim M (2013) New approach to preparation of gelatine/Sio2 hybrid systems by the sol–gel process. Ceramics Silikáty 57(1):58–65Google Scholar
  86. 86.
    Joni IM, Purwanto A, Iskandar F, Okuyama K (2009) Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process. Ind Eng Chem Res 48(15):6916–6922Google Scholar
  87. 87.
    Sarwar MI, Ahmad Z (2000) Interphase bonding in organic–inorganic hybrid materials using aminophenyltrimethoxysilane. Eur Polym J 36(1):89–94Google Scholar
  88. 88.
    Xiong M, Zhou S, Wu L, Wang B, Yang L (2004) Sol–gel derived organic–inorganic hybrid from trialkoxysilane-capped acrylic resin and titania: effects of preparation conditions on the structure and properties. Polymer 45(24):8127–8138Google Scholar
  89. 89.
    Wang B, Wilkes GL, Hedrick JC, Liptak SC, Mcgrath JE (1991) New high refractive-index organic inorganic hybrid materials from sol–gel processing. Macromolecules 24(11):3449–3450Google Scholar
  90. 90.
    Nakayama N, Hayashi T (2007) Preparation and characterization of TiO2 and polymer nanocomposite films with high refractive index. J Appl Polym Sci 105(6):3662–3672Google Scholar
  91. 91.
    Saegusa T (1991) Organic polymer-silica gel hybrid: a precursor of highly porous silica gel. J Macromol Sci A Chem 28(9):817–829Google Scholar
  92. 92.
    Kobayashi S, Kaku M, Saegusa T (1988) Grafting of 2-oxazolines onto cellulose and cellulose diacetate. Macromolecules 21(7):1921–1925Google Scholar
  93. 93.
    Silveira KF, Yoshida IVP, Nunes SP (1995) Phase-separation in Pmma silica sol–gel systems. Polymer 36(7):1425–1434Google Scholar
  94. 94.
    Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid II. Effects of molecular weight and temperature. J Non Crystal Solids 139:14–24Google Scholar
  95. 95.
    Nakanishi K, Soga N (1992) Phase separation in silica sol–gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. J Non Crystal Solids 139:1–13Google Scholar
  96. 96.
    Nunes SP, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci 157(2):219–226Google Scholar
  97. 97.
    Sengupta R, Bandyopadhyay A, Sabharwal S, Chaki TK, Bhowmick AK (2005) Polyamide-6,6/in situ silica hybrid nanocomposites by sol–gel technique: synthesis, characterization and properties. Polymer 46(10):3343–3354Google Scholar
  98. 98.
    Fitzgerald JJ, Landry CJT, Pochan JM (1992) Dynamic studies of the molecular relaxations and interactions in microcomposites prepared by in-situ polymerization of silicon alkoxides. Macromolecules 25(14):3715–3722Google Scholar
  99. 99.
    Landry CJT, Coltrain BK, Landry MR, Fitzgerald JJ, Long VK (1993) Poly(vinyl acetate)/silica-filled materials: material properties of in situ vs fumed silica particles. Macromolecules 26(14):3702–3712Google Scholar
  100. 100.
    Landry CJT, Coltrain BK, Wesson JA, Zumbulyadis N, Lippert JL (1992) In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer 33(7):1496–1506Google Scholar
  101. 101.
    Stefanithis ID, Mauritz KA (1990) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. 3. Thermal analysis studies. Macromolecules 23(8):2397–2402Google Scholar
  102. 102.
    Zoppi RA, Castro CR, Yoshida IVP, Nunes SP (1997) Hybrids of SiO2 and poly(amide 6-b-ethylene oxide). Polymer 38(23):5705–5712Google Scholar
  103. 103.
    Chang C-C, Chen W-C (2002) Synthesis and optical properties of polyimide-silica hybrid thin films. Chem Mater 14(10):4242–4248Google Scholar
  104. 104.
    Tsai MH, Whang WT (2001) Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material. Polymer 42(9):4197–4207Google Scholar
  105. 105.
    Wang S, Ahmad Z, Mark JE (1994) Polyimide-silica hybrid materials modified by incorporation of an organically substituted alkoxysilane. Chem Mater 6(7):943–946Google Scholar
  106. 106.
    Srinivasan SA, Hedrick JL, Miller RD, Di Pietro R (1997) Crosslinked networks based on trimethoxysilyl functionalized poly(amic ethyl ester) chain extendable oligomers. Polymer 38(12):3129–3133Google Scholar
  107. 107.
    Chen Y, Iroh JO (1999) Synthesis and characterization of polyimide silica hybrid composites. Chem Mater 11(5):1218–1222Google Scholar
  108. 108.
    Shang XY, Zhu ZK, Yin J, Ma XD (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14(1):71–77Google Scholar
  109. 109.
    Mascia L, Kioul A (1995) Influence of siloxane composition and morphology on properties of polyimide-silica hybrids. Polymer 36(19):3649–3659Google Scholar
  110. 110.
    Schrotter JC, Smaihi M, Guizard C (1996) Polyimide-siloxane hybrid materials: influence of coupling agents addition on microstructure and properties. J Appl Polym Sci 61(12):2137–2149Google Scholar
  111. 111.
    Hsiue G-H, Chen J-K, Liu Y-L (2000) Synthesis and characterization of nanocomposite of polyimide–silica hybrid from nonaqueous sol–gel process. J Appl Polym Sci 76(11):1609–1618Google Scholar
  112. 112.
    Lee T, Park SS, Jung Y, Han S, Han D, Kim I, Ha C-S (2009) Preparation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly(amic acid) ammonium salt. Eur Polym J 45(1):19–29Google Scholar
  113. 113.
    Hsiue GH, Kuo WJ, Huang YP, Jeng RJ (2000) Microstructural and morphological characteristics of PS-SiO2 nanocomposites. Polymer 41(8):2813–2825Google Scholar
  114. 114.
    Pierre AC, Campet G, Han SD, Duguet E, Portier J (1994) TiO2-polymer Nano-composites by sol–gel. J Sol Gel Sci Technol 2(1–3):121–125Google Scholar
  115. 115.
    Hu Q, Marand E (1999) In situ formation of nanosized TiO2 domains within poly(amide–imide) by a sol–gel process. Polymer 40(17):4833–4843Google Scholar
  116. 116.
    Chiang P-C, Whang W-T (2003) The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films. Polymer 44(8):2249–2254Google Scholar
  117. 117.
    Lee L-H, Chen W-C (2001) High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate) − titania materials. Chem Mater 13(3):1137–1142Google Scholar
  118. 118.
    Zhang J, Wang BJ, Ju X, Liu T, Hu TD (2001) New observations on the optical properties of PPV/TiO2 nanocomposites. Polymer 42(8):3697–3702Google Scholar
  119. 119.
    Zhang J, Ju X, Wang BJ, Li QS, Liu T, Hu TD (2001) Study on the optical properties of PPV/TiO2 nanocomposites. Synthetic Met 118(1–3):181–185Google Scholar
  120. 120.
    Zhang J, Wu ZY, Ju X, Wang BJ, Li QS, Hu TD, Ibrahim K, Xie YN (2003) The interfacial structure of PPV/TiO2 nanocomposite. Opt Mater 21(1–3):573–578Google Scholar
  121. 121.
    Lin Y-T, Zeng T-W, Lai W-Z, Chen C-W, Lin Y-Y, Chang Y-S, Su W-F (2006) Efficient photoinduced charge transfer in TiO2 nanorod/conjugated polymer hybrid materials. Nanotechnology 17(23):5781–5785Google Scholar
  122. 122.
    Fan Q, McQuillin B, Bradley DDC, Whitelegg S, Seddon AB (2001) A solid state solar cell using sol–gel processed material and a polymer. Chem Phys Lett 347(4–6):325–330Google Scholar
  123. 123.
    Savitha KU, Prabu HG (2013) Polyaniline–TiO2 hybrid-coated cotton fabric for durable electrical conductivity. J Appl Polym Sci 127(4):3147–3151Google Scholar
  124. 124.
    Guan C, Lü C-L, Liu Y-F, Yang B (2006) Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. J Appl Polym Sci 102(2):1631–1636Google Scholar
  125. 125.
    Lu CL, Cui ZC, Wang YX, Yang B, Shen JC (2003) Studies on syntheses and properties of episulfide-type optical resins with high refractive index. J Appl Polym Sci 89(9):2426–2430Google Scholar
  126. 126.
    Seyedjamali H, Pirisedigh A (2011) Synthesis of well-dispersed polyimide/TiO2 nanohybrid films using a pyridine-containing aromatic diamine. Polym Bull 68(2):299–308Google Scholar
  127. 127.
    Liaw W-C, Chen K-P (2007) Preparation and characterization of poly(imide siloxane) (PIS)/titania(TiO2) hybrid nanocomposites by sol–gel processes. Eur Polym J 43(6):2265–2278Google Scholar
  128. 128.
    Tsai M-H, Liu S-J, Chiang P-C (2006) Synthesis and characteristics of polyimide/titania nano hybrid films. Thin Solid Films 515(3):1126–1131Google Scholar
  129. 129.
    Tsai M-H, Chang C-J, Chen P-J, Ko C-J (2008) Preparation and characteristics of poly(amide–imide)/titania nanocomposite thin films. Thin Solid Films 516(16):5654–5658Google Scholar
  130. 130.
    Li M, Zhou S, You B, Wu L (2006) Preparation and characterization of trialkoxysilane-containing acrylic resin/alumina hybrid materials. Macromol Mater Eng 291(8):984–992Google Scholar
  131. 131.
    Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K (2004) Hexagonal-structured polysiloxane material prepared by sol–gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem Mater 16(18):3417–3423Google Scholar
  132. 132.
    Kaneko Y, Iyi N, Matsumoto T, Kitamura K (2005) Synthesis of rodlike polysiloxane with hexagonal phase by sol–gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer 46(6):1828–1833Google Scholar
  133. 133.
    Kaneko Y, Iyi N (2007) Sol–gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure. Z Kristallogr 222(11/2007)Google Scholar
  134. 134.
    Kaneko Y, Toyodome H, Shoiriki M, Iyi N (2012) Preparation of ionic silsesquioxanes with regular structures and their hybridization. Int J Polym Sci 2012:1–14Google Scholar
  135. 135.
    Kaneko Y, Arake T (2012) Sol–gel preparation of highly water-dispersible silsesquioxane/zirconium oxide hybrid nanoparticles. Int J Polym Sci 2012:1–6Google Scholar
  136. 136.
    Rehman HU, Sarwar MI, Ahmad Z, Krug H, Schmidt H (1997) Synthesis and characterization of novel aramid-zirconium oxide micro-composites. J Non Crystal Solids 211(1–2):105–111Google Scholar
  137. 137.
    Hajji P, David L, Gerard JF, Pascault JP, Vigier G (1999) Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci B Polym Phys 37(22):3172–3187Google Scholar
  138. 138.
    Ou Y, Yang F, Yu Z-Z (1998) A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci B Polym Phys 36(5):789–795Google Scholar
  139. 139.
    Yang F, Ou YC, Yu ZZ (1998) Polyamide 6 silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci 69(2):355–361Google Scholar
  140. 140.
    Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J (2001) Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42(21):8759–8768Google Scholar
  141. 141.
    Liu WT, Tian XY, Cui P, Li Y, Zheng K, Yang Y (2004) Preparation and characterization of PET/Silica nanocomposites. J Appl Polym Sci 91(2):1229–1232Google Scholar
  142. 142.
    Yang Y, Xu H, Gu H (2006) Preparation and crystallization of poly(ethylene terephthalate)/SiO2 nanocomposites byin-situ polymerization. J Appl Polym Sci 102(1):655–662Google Scholar
  143. 143.
    Zheng H, Wu J (2007) Preparation, crystallization, and spinnability of poly(ethylene terephthalate)/silica nanocomposites. J Appl Polym Sci 103(4):2564–2568Google Scholar
  144. 144.
    Sugimoto H, Daimatsu K, Nakanishi E, Ogasawara Y, Yasumura T, Inomata K (2006) Preparation and properties of poly(methylmethacrylate)–silica hybrid materials incorporating reactive silica nanoparticles. Polymer 47(11):3754–3759Google Scholar
  145. 145.
    Liu Y-L, Hsu C-Y, Hsu K-Y (2005) Poly(methylmethacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles. Polymer 46(6):1851–1856Google Scholar
  146. 146.
    Yang F, Nelson GL (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91(6):3844–3850Google Scholar
  147. 147.
    Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89(8):2072–2078Google Scholar
  148. 148.
    Zhang HJ, Yao X, Zhang LY (2002) The preparation and microwave properties of Ba3ZnZCo2-ZFe24O41/SiO2 microcrystalline glass ceramics by citrate sol–gel process. Mater Res Innov 5(3–4):117–122Google Scholar
  149. 149.
    Zhang QJ, Zhang JH, Li M, Zhang QH, Qin Y (2002) Interface structures of Al2O3-ZrO2 coated engineering ceramics by sol–gel process. J Inorg Mater 17(1):185–188Google Scholar
  150. 150.
    Liu Y-L, Hsu C-Y, Wei W-L, Jeng R-J (2003) Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44(18):5159–5167Google Scholar
  151. 151.
    Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10506–10516Google Scholar
  152. 152.
    Preghenella M, Pegoretti A, Migliaresi C (2005) Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer 46(26):12065–12072Google Scholar
  153. 153.
    Preghenella M, Pegoretti A, Migliaresi C (2006) Atomic force acoustic microscopy analysis of epoxy–silica nanocomposites. Polym Test 25(4):443–451Google Scholar
  154. 154.
    Sun Y, Zhang Z, Moon K-S, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci B Polym Phys 42(21):3849–3858Google Scholar
  155. 155.
    Berriot J, Lequeux F, Monnerie L, Montes H, Long D, Sotta P (2002) Filler–elastomer interaction in model filled rubbers, a 1H NMR study. J Non Crystal Solids 307–310:719–724Google Scholar
  156. 156.
    Berriot J, Montes H, Martin F, Mauger M, Pyckhout-Hintzen W, Meier G, Frielinghaus H (2003) Reinforcement of model filled elastomers: synthesis and characterization of the dispersion state by SANS measurements. Polymer 44(17):4909–4919Google Scholar
  157. 157.
    Berriot J, Martin F, Montes H, Monnerie L, Sotta P (2003) Reinforcement of model filled elastomers: characterization of the cross-linking density at the filler–elastomer interface by 1H NMR measurements. Polymer 44(5):1437–1447Google Scholar
  158. 158.
    Saric M, Dietsch H, Schurtenberger P (2006) In situ polymerisation as a route towards transparent nanocomposites: Time-resolved light and neutron scattering experiments. Colloids Surf A Physicochem Eng Asp 291(1–3):110–116Google Scholar
  159. 159.
    Kim S, Kim E, Kim S, Kim W (2005) Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. J Colloid Interface Sci 292(1):93–98Google Scholar
  160. 160.
    Hsiao Shu C, Chiang H-C, Chien-Chao Tsiang R, Liu T-J, Wu J-J (2007) Synthesis of organic–inorganic hybrid polymeric nanocomposites for the hard coat application. J Appl Polym Sci 103(6):3985–3993Google Scholar
  161. 161.
    Bauer F, Flyunt R, Czihal K, Buchmeiser MR, Langguth H, Mehnert R (2006) Nano/micro particle hybrid composites for scratch and abrasion resistant polyacrylate coatings. Macromol Mater Eng 291(5):493–498Google Scholar
  162. 162.
    Wang Y-Y, Hsieh T-E (2007) Effect of UV curing on electrical properties of a UV-curableco-polyacrylate/silica nanocomposite as a transparent encapsulation resin for device packaging. Macromol Chem Phys 208(22):2396–2402Google Scholar
  163. 163.
    Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35(26):9756–9762Google Scholar
  164. 164.
    Zhang L, Zeng Z, Yang J, Chen Y (2003) Structure–property behavior of UV-curable polyepoxy–acrylate hybrid materials prepared via sol–gel process. J Appl Polym Sci 87(10):1654–1659Google Scholar
  165. 165.
    Xu GC, Li AY, Zhang LD, Wu G, Yuan XY, Xie T (2003) Synthesis and characterization of silica nanocomposite in situ photopolymerization. J Appl Polym Sci 90(3):837–840Google Scholar
  166. 166.
    Xu GC, Li AY, De Zhang L, Yu XY, Xie T, Wu GS (2004) Nanomechanic properties of polymer-based nanocomposites with nanosilica by nanoindentation. J Reinf Plast Comp 23(13):1365–1372Google Scholar
  167. 167.
    Li F, Zhou S, Wu L (2005) Preparation and characterization of UV-curable MPS-modified silica nanocomposite coats. J Appl Polym Sci 98(5):2274–2281Google Scholar
  168. 168.
    Li F, Zhou S, Wu L (2005) Effects of preparation method on microstructure and properties of UV-curable nanocomposite coatings containing silica. J Appl Polym Sci 98(3):1119–1124Google Scholar
  169. 169.
    Li F, Zhou S, You B, Wu L (2006) Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy. J Appl Polym Sci 99(4):1429–1436Google Scholar
  170. 170.
    Cho J-D, Ju H-T, Park Y-S, Hong J-W (2006) Kinetics of cationic photopolymerizations of UV-curable epoxy-based SU8-negative photoresists with and without silica nanoparticles. Macromol Mater Eng 291(9):1155–1163Google Scholar
  171. 171.
    Sangermano M, Malucelli G, Amerio E, Priola A, Billi E, Rizza G (2005) Photopolymerization of epoxy coatings containing silica nanoparticles. Progr Org Coating 54(2):134–138Google Scholar
  172. 172.
    Wang M, Wang X (2008) PPV/TiO2 hybrid composites prepared from PPV precursor reaction in aqueous media and their application in solar cells. Polymer 49(6):1587–1593Google Scholar
  173. 173.
    Rong Y, Chen H-Z, Wu G, Wang M (2005) Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Mater Chem Phys 91(2–3):370–374Google Scholar
  174. 174.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. J Polym Sci Pol Chem 38(24):4419–4430Google Scholar
  175. 175.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. J Polym Sci Pol Chem 38(24):4431–4440Google Scholar
  176. 176.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation. J Polym Sci Pol Chem 38(24):4441–4450Google Scholar
  177. 177.
    Džunuzović E, Jeremić K, Nedeljković JM (2007) In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. Eur Polym J 43(9):3719–3726Google Scholar
  178. 178.
    Caris CHM, Kuijpers RPM, van Herk AM, German AL (1990) Kinetics of (CO)polymerizations at the surface of inorganic submicron particles in emulsion-like systems. Makromol Chem Macromol Symp 35–36(1):535–548Google Scholar
  179. 179.
    Kim SH, Kwak S-Y, Suzuki T (2006) Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC. Polymer 47(9):3005–3016Google Scholar
  180. 180.
    Da ZL (2007) Synthesis, characterization and thermal properties of inorganic–organic hybrid. eXPRESS Polym Lett 1(10):698–703Google Scholar
  181. 181.
    Matsuyama K, Mishima K (2009) Preparation of poly(methyl methacrylate)–TiO2 nanoparticle composites by pseudo-dispersion polymerization of methyl methacrylate in supercritical CO2. J Supercrit Fluid 49(2):256–264Google Scholar
  182. 182.
    Agag T, Tsuchiya H, Takeichi T (2004) Novel organic–inorganic hybrids prepared from polybenzoxazine and titania using sol–gel process. Polymer 45(23):7903–7910Google Scholar
  183. 183.
    Ochi M, Nii D, Harada M (2011) Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. Mater Chem Phys 129(1–2):424–432Google Scholar
  184. 184.
    Ochi M, Nii D, Suzuki Y, Harada M (2010) Thermal and optical properties of epoxy/zirconia hybrid materials synthesized via in situ polymerization. J Mater Sci 45(10):2655–2661Google Scholar
  185. 185.
    Ochi M, Nii D, Harada M (2010) Effect of acetic acid content on in situ preparation of epoxy/zirconia hybrid materials. J Mater Sci 45(22):6159–6165Google Scholar
  186. 186.
    Fan F, Xia Z, Li QS, Li Z, Chen H (2013) ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix. Chin J Chem Eng 21(2):113–120Google Scholar
  187. 187.
    Hu Y, Zhou S, Wu L (2009) Surface mechanical properties of transparent poly(methyl methacrylate)/zirconia nanocomposites prepared by in situ bulk polymerization. Polymer 50(15):3609–3616Google Scholar
  188. 188.
    Di Maggio R, Fambri L, Mustarelli P, Campostrini R (2003) Physico-chemical characterization of hybrid polymers obtained by 2-hydroxyethyl(methacrylate) and alkoxides of zirconium. Polymer 44(24):7311–7320Google Scholar
  189. 189.
    Wang J, Shi T, Jiang X (2008) Synthesis and characterization of core-shell ZrO2/PAAEM/PS nanoparticles. Nanoscale Res Lett 4(3):240–246Google Scholar
  190. 190.
    Xu K, Zhou S, Wu L (2009) Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings. J Mater Sci 44(6):1613–1621Google Scholar
  191. 191.
    Zhou S, Wu L (2008) Phase separation and properties of UV-curable polyurethane/zirconia nanocomposite coatings. Macromol Chem Phys 209(11):1170–1181Google Scholar
  192. 192.
    Xu K, Zhou S, Wu L (2010) Dispersion of γ-methacryloxypropyltrimethoxysilane-functionalized zirconia nanoparticles in UV-curable formulations and properties of their cured coatings. Progr Org Coating 67(3):302–310Google Scholar
  193. 193.
    Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Tod 52(2):32Google Scholar
  194. 194.
    Hamley IW (1998) The physics of block copolymers. Oxford University Press, OxfordGoogle Scholar
  195. 195.
    Khandpur KA, Förster SJ, Bates SF, Hamley WI, Ryan JA, Brass W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28:8796–8806Google Scholar
  196. 196.
    Meins T, Hyun K, Dingenouts N, Fotouhi Ardakani M, Struth B, Wilhelm M (2012) New insight to the mechanism of the shear-induced macroscopic alignment of diblock copolymer melts by a unique and newly developed Rheo–SAXS combination. Macromolecules 45(1):455–472Google Scholar
  197. 197.
    Albalak RJ, Thomas EL (1993) Microphase separation of block copolymer solutions in a flow field. J Polym Sci B Polym Phys 31:37–46Google Scholar
  198. 198.
    Angelescu DA, Waller JH, Adamson DH, Deshpande P, Chou SY, Register RA, Chaikin PM (2004) Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv Mater 16:1736–1740Google Scholar
  199. 199.
    Olszowka V, Tsarkova L, Böker A (2009) 3-Dimensional control over lamella orientation and order in thick block copolymer films. Soft Matter 5(4):812Google Scholar
  200. 200.
    Xiang H, Lin Y, Russell PT (2004) Electrically induced patterning in block copolymer films. Macromolecules 37:5358Google Scholar
  201. 201.
    Böker A, Knoll A, Elbs H, Abetz V, Müller AHE, Krausch G (2002) Large scale domain alignment of a block copolymer from solution using electric fields. Macromolecules 35:1319–1325Google Scholar
  202. 202.
    McCulloch B, Portale G, Bras W, Pople JA, Hexemer A, Segalman RA (2013) Dynamics of magnetic alignment in rod–coil block copolymers. Macromolecules 46(11):4462–4471Google Scholar
  203. 203.
    Osuji C, Ferreira JP, Mao G, Ober KC, Van der Sande BJ, Thomas LE (2004) Alignment of self-assembled hierarchical microstructure in liquid crystalline diblock copolymers using high magnetic fields. Macromolecules 37:9903–9908Google Scholar
  204. 204.
    Cheng JY, Ross CA, Thomas EL, Smith HI, Vancso GJ (2003) Templated self-assembly of block copolymers: effect of substrate topography. Adv Mater 15:1599–1602Google Scholar
  205. 205.
    Aissou K, Shaver J, Fleury G, Pecastaings G, Brochon C, Navarro C, Grauby S, Rampnoux JM, Dilhaire S, Hadziioannou G (2013) Nanoscale block copolymer ordering induced by visible interferometric micropatterning: a route towards large scale block copolymer 2D crystals. Adv Mater 25(2):213–217Google Scholar
  206. 206.
    Koo K, Ahn H, Kim S-W, Ryu DY, Russell TP (2013) Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. Soft Matter 9(38):9059Google Scholar
  207. 207.
    Koh H-D, Park YJ, Jeong S-J, Kwon Y-N, Han IT, Kim M-J (2013) Location-controlled parallel and vertical orientation by dewetting-induced block copolymer directed self-assembly. J Mater Chem C 1(25):4020Google Scholar
  208. 208.
    Roerdink M, Hempenius MA, Gunst U, Arlinghaus HF, Vancso GJ (2007) Substrate wetting and topographically induced ordering of amorphous PI-b-PFS block-copolymer domains. Small 3(8):1415–1423Google Scholar
  209. 209.
    Kim M, Han E, Sweat DP, Gopalan P (2013) Interplay of surface chemical composition and film thickness on graphoepitaxial assembly of asymmetric block copolymers. Soft Matter 9(26):6135Google Scholar
  210. 210.
    Hsueh HY, Chen HY, Hung YC, Ling YC, Gwo S, Ho RM (2013) Well-defined multibranched gold with surface plasmon resonance in near-infrared region from seeding growth approach using gyroid block copolymer template. Adv Mater 25(12):1780–1786Google Scholar
  211. 211.
    Hsueh HY, Chen HY, She MS, Chen CK, Ho RM, Gwo S, Hasegawa H, Thomas EL (2010) Inorganic gyroid with exceptionally low refractive index from block copolymer templating. Nano Lett 10(12):4994–5000Google Scholar
  212. 212.
    Park M (1997) Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276(5317):1401–1404Google Scholar
  213. 213.
    Vukovic I, Brinke G, Loos K (2013) Block copolymer template-directed synthesis of well-ordered metallic nanostructures. Polymer 54(11):2591–2605Google Scholar
  214. 214.
    Bosc F, Ayral A, Albouy P-A, Guizard C (2003) A simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin films. Chem Mater 15:2463–2468Google Scholar
  215. 215.
    Deshpande AS, Pinna N, Smarsly B, Antonietti M, Niederberger M (2005) Controlled assembly of preformed ceria nanocrystals into highly ordered 3D nanostructures. Small 1(3):313–316Google Scholar
  216. 216.
    Ba J, Polleux J, Antonietti M, Niederberger M (2005) Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv Mater 17(20):2509–2512Google Scholar
  217. 217.
    Guldin S, Kolle M, Stefik M, Langford R, Eder D, Wiesner U, Steiner U (2011) Tunable mesoporous bragg reflectors based on block-copolymer self-assembly. Adv Mater 23(32):3664–3668Google Scholar
  218. 218.
    Rauda EI, Buonsanti R, Saldarriaga-Lopez CL, Benjauthrit K, Schelhas TL, Stefik M, Augustyn V, Ko J, Dunn B, Wiesner U, Milliron JD, Tolbert HS (2012) General method for the synthesis of hierarchical nanocrystal-based mesoporous materials. ACS Nano 6(7):6386–6399Google Scholar
  219. 219.
    Kamperman M, Garcia WBC, Du P, Ow H, Wiesner U (2004) Ordered mesoporous ceramics stable up to 1500°C from diblock copolymer mesophases. J Am Chem Soc 126:14708Google Scholar
  220. 220.
    Riedel R, Mera G, Hauser R, Klonczynski A (2006) Silicon-based polymer-derived ceramics: synthesis properties and applications a review. J Ceram Soc Jpn 114:425–444Google Scholar
  221. 221.
    Nghiem DQ, Kim P-D (2008) Direct preparation of high surface area mesoporous SiC-based ceramic by pyrolysis of a self-assembled polycarbosilane-block-polystyrene diblock copolymer. Chem Mater 20:3735–3739Google Scholar
  222. 222.
    Matsumoto K, Matsuoka H (2005) Synthesis of core-crosslinked carbosilane block copolymer micelles and their thermal transformation to silicon-based ceramics nanoparticles. J Polym Sci A Polym Chem 43(17):3778–3787Google Scholar
  223. 223.
    Nguyen CT, Hoang PH, Perumal J, Kim DP (2011) An inorganic–organic diblock copolymer photoresist for direct mesoporous SiCN ceramic patterns via photolithography. Chem Commun (Camb) 47(12):3484–3486Google Scholar
  224. 224.
    Malenfant PR, Wan J, Taylor ST, Manoharan M (2007) Self-assembly of an organic–inorganic block copolymer for nano-ordered ceramics. Nat Nanotechnol 2(1):43–46Google Scholar
  225. 225.
    Thomas KR, Ionescu A, Gwyther J, Manners I, Barnes CHW, Steiner U, Sivaniah E (2011) Magnetic properties of ceramics from the pyrolysis of metallocene-based polymers doped with palladium. J Appl Phys 109:073904Google Scholar
  226. 226.
    Cao L, Massey JA, Winnik MA, Manners I, Riethmüller S, Banhart F, Spatz JP, Möller M (2003) Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: fabrication of ceramic nanolines on semiconducting substrates. Adv Funct Mater 13:271–276Google Scholar
  227. 227.
    Clendenning SB, Han S, Coombs N, Paquet C, Rayat SM, Grozea D, Brodersen MP, Sodhi SNR, Yip CM, Lu Z-H, Manners I (2004) Magnetic ceramic films from a metallopolymer resist using reactive ion etching in a secondary magnetic field. Adv Mater 16:291–296Google Scholar
  228. 228.
    Temple K, Kulbaba K, Power-Billard NK, Manners I, Leach AK, Xu T, Russell PT, Hawker JC (2003) Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane). Adv Mater 15:297–300Google Scholar
  229. 229.
    Cheng JY, Ross CA, Chan VZ-H, Thomas EL, Lammertink RGH, Vancso GJ (2001) Formation of a cobalt magnetic dot array via block copolymer lithography. Adv Mater 13:1174–1178Google Scholar
  230. 230.
    Francis A, Ionescu E, Fasel C, Riedel R (2009) Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics. Inorg Chem 48(21):10078–10083Google Scholar
  231. 231.
    Hojamberdiev M, Prasad RM, Fasel C, Riedel R, Ionescu E (2013) Single-source-precursor synthesis of soft magnetic Fe3Si- and Fe5Si3-containing SiOC ceramic nanocomposites. J Eur Ceram Soc 33(13–14):2465–2472Google Scholar
  232. 232.
    Hardy CG, Ren L, Ma S, Tang C (2013) Self-assembly of well-defined ferrocene triblock copolymers and their template synthesis of ordered iron oxide nanoparticles. Chem Commun 49:4373–4375Google Scholar
  233. 233.
    Scheid D, Cherkashinin G, Ionescu E, Gallei M (2014) Single-source magnetic nanorattles by using convenient emulsion polymerization protocols. Langmuir 30(5):1204–1209Google Scholar
  234. 234.
    Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713Google Scholar
  235. 235.
    Hynninen AP, Thijssen JH, Vermolen EC, Dijkstra M, van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205Google Scholar
  236. 236.
    Maldovan M, Thomas EL (2006) Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl Phys Lett 88:251907-3Google Scholar
  237. 237.
    De La Rue R (2003) Photonic crystals: microassembly in 3D. Nat Mater 2:74–76Google Scholar
  238. 238.
    Gonzalez-Urbina L, Baert K, Kolaric B, Perez-Moreno J, Clays K (2012) Linear and nonlinear optical properties of colloidal photonic crystals. Chem Rev 112:2268–2285Google Scholar
  239. 239.
    Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Á, López C (2011) Self-assembled photonic structures. Adv Mater 23:30–69Google Scholar
  240. 240.
    von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554Google Scholar
  241. 241.
    Pursiainen OLJ, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2008) Shear-induced organization in flexible polymer opals. Adv Mater 20:1484–1487Google Scholar
  242. 242.
    Ruhl T, Spahn P, Hellmann GP (2003) Artificial opals prepared by melt compression. Polymer 44:7625–7634Google Scholar
  243. 243.
    Schäfer CG, Viel B, Hellmann GP, Rehahn M, Gallei M (2013) Thermo-cross-linked elastomeric opal films. ACS Appl Mater Interfaces 5:10623–10632Google Scholar
  244. 244.
    Galliano P, De Damborenea JJ, Pascual MJ, Duran A (1998) Sol–gel coatings on 316L steel for clinical applications. J Sol Gel Sci Technol 13(1–3):723–727Google Scholar
  245. 245.
    Vasconcelos DCL, Carvalho JAN, Mantel M, Vasconcelos WL (2000) Corrosion resistance of stainless steel coated with sol–gel silica. J Non Crystal Solids 273(1–3):135–139Google Scholar
  246. 246.
    Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Di Maggio R (2001) The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol–gel zirconia films. Electrochim Acta 46(24–25):3715–3724Google Scholar
  247. 247.
    Masalski J, Gluszek J, Zabrzeski J, Nitsch K, Gluszek P (1999) Improvement in corrosion resistance of the 316l stainless steel by means of Al2O3 coatings deposited by the sol–gel method. Thin Solid Films 349(1–2):186–190Google Scholar
  248. 248.
    Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Progr Org Coating 64(4):327–338Google Scholar
  249. 249.
    Messaddeq SH, Pulcinelli SH, Santilli CV, Guastaldi AC, Messaddeq Y (1999) Microstructure and corrosion resistance of inorganic–organic (ZrO2–PMMA) hybrid coating on stainless steel. J Non Crystal Solids 247(1–3):164–170Google Scholar
  250. 250.
    Sayilkan H, Sener S, Sener E, Sulu M (2003) The sol–gel synthesis and application of some anticorrosive coating materials. Mater Sci 39(5):733–739Google Scholar
  251. 251.
    Jianguo L, Gaoping G, Chuanwei Y (2006) Enhancement of the erosion–corrosion resistance of Dacromet with hybrid SiO2 sol–gel. Surf Coating Technol 200(16–17):4967–4975Google Scholar
  252. 252.
    Atik M, Luna F, Messaddeq S, Aegerter M (1997) Ormocer (ZrO2-PMMA) films for stainless steel corrosion protection. J Sol Gel Sci Technol 8(1–3):517–522Google Scholar
  253. 253.
    Du YJ, Damron M, Tang G, Zheng HX, Chu CJ, Osborne JH (2001) Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Progr Org Coating 41(4):226–232Google Scholar
  254. 254.
    Haas KH, Amberg-Schwab S, Rose K, Schottner G (1999) Functionalized coatings based on inorganic–organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films. Surf Coating Technol 111(1):72–79Google Scholar
  255. 255.
    Ono S, Tsuge H, Nishi Y, Hirano S-I (2004) Improvement of corrosion resistance of metals by an environmentally friendly silica coating method. J Sol Gel Sci Technol 29(3):147–153Google Scholar
  256. 256.
    Voevodin N, Jeffcoate C, Simon L, Khobaib M, Donley M (2001) Characterization of pitting corrosion in bare and sol–gel coated aluminum 2024-T3 alloy. Surf Coating Technol 140(1):29–34Google Scholar
  257. 257.
    Kasten LS, Grant JT, Grebasch N, Voevodin N, Arnold FE, Donley MS (2001) An XPS study of cerium dopants in sol–gel coatings for aluminum 2024-T3. Surf Coating Technol 140(1):11–15Google Scholar
  258. 258.
    Ballard RL, Williams JP, Njus JM, Kiland BR, Soucek MD (2001) Inorganic–organic hybrid coatings with mixed metal oxides. Eur Polym J 37(2):381–398Google Scholar
  259. 259.
    Byrne MT, McCarthy JE, Bent M, Blake R, Gun'ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman JN (2007) Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J Mater Chem 17(22):2351Google Scholar
  260. 260.
    Matsuno R, Otsuka H, Takahara A (2006) Polystyrene-grafted titanium oxide nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization and their application to polymer hybrid thin films. Soft Matter 2(5):415Google Scholar
  261. 261.
    Tavares MTS, Santos ASF, Santos IMG, Silva MRS, Bomio MRD, Longo E, Paskocimas CA, Motta FV (2014) TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf Coating Technol 239:16–19Google Scholar
  262. 262.
    Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S, Egan D (2006) The interlaminar toughness of carbon-fibre reinforced plastic composites using ‘hybrid-toughened’ matrices. J Mater Sci 41(15):5043–5046Google Scholar
  263. 263.
    Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40(18):5083–5086Google Scholar
  264. 264.
    Kinloch AJ, Masania K, Taylor AC, Sprenger S, Egan D (2007) The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices. J Mater Sci 43(3):1151–1154Google Scholar
  265. 265.
    Blackman BRK, Kinloch AJ, Sohn Lee J, Taylor AC, Agarwal R, Schueneman G, Sprenger S (2007) The fracture and fatigue behaviour of nano-modified epoxy polymers. J Mater Sci 42(16):7049–7051Google Scholar
  266. 266.
    Liu H-Y, Wang G, Mai Y-W (2012) Cyclic fatigue crack propagation of nanoparticle modified epoxy. Compos Sci Technol 72(13):1530–1538Google Scholar
  267. 267.
    Bray DJ, Dittanet P, Guild FJ, Kinloch AJ, Masania K, Pearson RA, Taylor AC (2013) The modelling of the toughening of epoxy polymers via silica nanoparticles: the effects of volume fraction and particle size. Polymer 54(26):7022–7032Google Scholar
  268. 268.
    Sarwar MI, Zulfiqar S, Ahmad Z (2008) Polyamide–silica nanocomposites: mechanical, morphological and thermomechanical investigations. Polym Int 57(2):292–296Google Scholar
  269. 269.
    Taniike T, Toyonaga M, Terano M (2014) Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer 55(4):1012–1019Google Scholar
  270. 270.
    Zhang M, Singh RP (2004) Mechanical reinforcement of unsaturated polyester by AL2O3 nanoparticles. Mater Lett 58(3–4):408–412Google Scholar
  271. 271.
    Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254(5–6):573–580Google Scholar
  272. 272.
    Schwartz CJ, Bahadur S (2000) Studies on the tribological behavior and transfer film–counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear 237(2):261–273Google Scholar
  273. 273.
    Wang Y, Lim S, Luo JL, Xu ZH (2006) Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings. Wear 260(9–10):976–983Google Scholar
  274. 274.
    Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16(27):2800Google Scholar
  275. 275.
    Ng CB, Schadler LS, Siegel RW (1999) Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostruct Mater 12(1–4):507–510Google Scholar
  276. 276.
    Rong MZ, Zhang MQ, Liu H, Zeng HM (2001) Microstructure and tribological behavior of polymeric nanocomposites. Ind Lubr Tribol 53(2):72–77Google Scholar
  277. 277.
    Evora V, Shukla A (2003) Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater Sci Eng A 361(1–2):358–366Google Scholar
  278. 278.
    Al G, Şen S (2006) Preparation and characterization of poly(2-chloroaniline)/SiO2 nanocomposite via oxidative polymerization: comparative UV–vis studies into different solvents of poly(2-chloroaniline) and poly(2-chloroaniline)/SiO2. J Appl Polym Sci 102(1):935–943Google Scholar
  279. 279.
    Su S-J, Kuramoto N (2000) Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Met 114(2):147–153Google Scholar
  280. 280.
    Mo T-C, Wang H-W, Chen S-Y, Yeh Y-C (2008) Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceram Int 34(7):1767–1771Google Scholar
  281. 281.
    Cui W-W, Tang D-Y, Gong Z-L (2013) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sourc 223:206–213Google Scholar
  282. 282.
    Kim K (2003) Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with rutile TiO2 nanoparticles. Solid State Ionics 161(1–2):121–131Google Scholar
  283. 283.
    Wu N, Cao Q, Wang X, Li S, Li X, Deng H (2011) In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries. J Power Sourc 196(22):9751–9756Google Scholar
  284. 284.
    Aravindan V, Vickraman P, Kumar TP (2008) Polyvinylidene fluoride–hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J Non Crystal Solids 354(29):3451–3457Google Scholar
  285. 285.
    Croce F, Bonino F, Panero S, Scrosati B (1989) Properties of mixed polymer and crystalline ionic conductors. Philos Mag B 59(1):161–168Google Scholar
  286. 286.
    Morales-Acosta MD, Alvarado-Beltrán CG, Quevedo-López MA, Gnade BE, Mendoza-Galván A, Ramírez-Bon R (2013) Adjustable structural, optical and dielectric characteristics in sol–gel PMMA–SiO2 hybrid films. J Non Crystal Solids 362:124–135Google Scholar
  287. 287.
    Morales-Acosta MD, Quevedo-López MA, Gnade BE, Ramírez-Bon R (2011) PMMA-SiO2 organic–inorganic hybrid films: determination of dielectric characteristics. J Sol Gel Sci Technol 58(1):218–224Google Scholar
  288. 288.
    Dey A, De S, De A, De SK (2004) Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15(9):1277–1283Google Scholar
  289. 289.
    Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr and Electr Insul 15(1):12–23Google Scholar
  290. 290.
    Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park JU, Fröhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wächter C, Bräuer A (2003) Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films 442(1–2):194–200Google Scholar
  291. 291.
    Caseri WR (2008) Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Commun 196(5):549–572Google Scholar
  292. 292.
    Ershad-Langroudi A, Mai C, Vigier G, Vassoille R (1997) Hydrophobic hybrid inorganic–organic thin film prepared by sol–gel process for glass protection and strengthening applications. J Appl Polym Sci 65(12):2387–2393Google Scholar
  293. 293.
    Carotenuto G, Her YS, Matijevic E (1996) Preparation and characterization of nanocomposite thin films for optical devices. Ind Eng Chem Res 35(9):2929–2932Google Scholar
  294. 294.
    Philipp G, Schmidt H (1984) New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol–gel process. J Non Crystal Solids 63(1–2):283–292Google Scholar
  295. 295.
    Yoshida M, Prasad PN (1996) Sol−gel-processed SiO2/TiO2/Poly(vinylpyrrolidone) composite materials for optical waveguides. Chem Mater 8(1):235–241Google Scholar
  296. 296.
    Yuwono AH, Bi L, Xue J, Wang J, Elim HI, Ji W, Li Y, White TJ (2004) Controlling the crystallinity and nonlinear optical properties of transparent TiO2? PMMA nanohybrids. J Mater Chem 14(20):2978Google Scholar
  297. 297.
    Li S, Meng Lin M, Toprak MS, Kim Do K, Muhammed M (2010) Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1:5214. doi:10.3402/nano.v1i0.5214
  298. 298.
    Zhang JUN, Luo S, Gui L (1997) Poly(methyl methacrylate)–titania hybrid materials by sol–gel processing. J Mater Sci 32(6):1469–1472Google Scholar
  299. 299.
    Yuwono AH, Xue J, Wang J, Elim HI, Ji W, Li Y, White TJ (2003) Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem 13(6):1475Google Scholar
  300. 300.
    Elim HI, Ji W, Yuwono AH, Xue JM, Wang J (2003) Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites. Appl Phys Lett 82(16):2691–2693Google Scholar
  301. 301.
    Kobayashi M, Saito H, Boury B, Matsukawa K, Sugahara Y (2013) Epoxy-based hybrids using TiO2 nanoparticles prepared via a non-hydrolytic sol–gel route. Appl Organometal Chem 27(11):673–677Google Scholar
  302. 302.
    Tao P, Viswanath A, Li Y, Siegel RW, Benicewicz BC, Schadler LS (2013) Bulk transparent epoxy nanocomposites filled with poly(glycidyl methacrylate) brush-grafted TiO2 nanoparticles. Polymer 54(6):1639–1646Google Scholar
  303. 303.
    Chau JLH, Tung C-T, Lin Y-M, Li A-K (2008) Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater Lett 62(19):3416–3418Google Scholar
  304. 304.
    Chau JL, Lin Y-M, Li A-K, Su W-F, Chang K-S, Hsu SL-C, Li T-L (2007) Transparent high refractive index nanocomposite thin films. Mater Lett 61(14–15):2908–2910Google Scholar
  305. 305.
    Chandra A, Turng L-S, Gong S, Hall DC, Caulfield DF, Yang H (2007) Study of polystyrene/titanium dioxide nanocomposites via melt compounding for optical applications. Polym Compos 28(2):241–250Google Scholar
  306. 306.
    Tommalieh MJ, Zihlif AM (2010) Optical properties of polyimide/silica nanocomposite. Physica B Condensed Matter 405(23):4750–4754Google Scholar
  307. 307.
    Wang H, Xu P, Zhong W, Shen L, Du Q (2005) Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polymer Degrad Stabil 87(2):319–327Google Scholar
  308. 308.
    Ritzhaupt-Kleissl E, Boehm J, Hausselt J, Hanemann T (2006) Thermoplastic polymer nanocomposites for applications in optical devices. Mater Sci Eng C 26(5–7):1067–1071Google Scholar
  309. 309.
    Chandra A, Turng L-S, Gopalan P, Rowell RM, Gong S (2008) Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos Sci Technol 68(3–4):768–776Google Scholar
  310. 310.
    Hu Y, Gu G, Zhou S, Wu L (2011) Preparation and properties of transparent PMMA/ZrO2 nanocomposites using 2-hydroxyethyl methacrylate as a coupling agent. Polymer 52(1):122–129Google Scholar
  311. 311.
    Cong H, Radosz M, Towler B, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Separ Purif Technol 55(3):281–291Google Scholar
  312. 312.
    Pandey P, Chauhan RS (2001) Membranes for gas separation. Progr Polym Sci 26(6):853–893Google Scholar
  313. 313.
    Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175(2):181–196Google Scholar
  314. 314.
    Joly C, Goizet S, Schrotter JC, Sanchez J, Escoubes M (1997) Sol–gel polyimide-silica composite membrane: gas transport properties. J Membr Sci 130(1–2):63–74Google Scholar
  315. 315.
    Kusakabe K, Ichiki K, Hayashi J-I, Maeda H, Morooka S (1996) Preparation and characterization of silica—polyimide composite membranes coated on porous tubes for CO2 separation. J Membr Sci 115(1):65–75Google Scholar
  316. 316.
    Smaihi M, Schrotter J-C, Lesimple C, Prevost I, Guizard C (1999) Gas separation properties of hybrid imide–siloxane copolymers with various silica contents. J Membr Sci 161(1–2):157–170Google Scholar
  317. 317.
    Suzuki T, Yamada Y (2006) Characterization of 6FDA-based hyperbranched and linear polyimide–silica hybrid membranes by gas permeation and 129Xe NMR measurements. J Polym Sci B Polym Phys 44(2):291–298Google Scholar
  318. 318.
    Park HB, Kim JK, Nam SY, Lee YM (2003) Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties. J Membr Sci 220(1–2):59–73Google Scholar
  319. 319.
    Alter H (1962) A critical investigation of polyethylene gas permeability. J Polym Sci 57(165):925–935Google Scholar
  320. 320.
    Joly C, Smaihi M, Porcar L, Noble RD (1999) Polyimide–Silica composite materials: how does silica influence their microstructure and gas permeation properties? Chem Mater 11(9):2331–2338Google Scholar
  321. 321.
    Gomes D, Nunes SP, Peinemann K-V (2005) Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)–silica nanocomposites. J Membr Sci 246(1):13–25Google Scholar
  322. 322.
    Shao L, Samseth J, Hägg M-B (2009) Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations. J Membr Sci 326(2):285–292Google Scholar
  323. 323.
    Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G (1997) Poly(amide-imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. J Membr Sci 135(1):65–79Google Scholar
  324. 324.
    Kong Y, Du H, Yang J, Shi D, Wang Y, Zhang Y, Xin W (2002) Study on polyimide/TiO2 nanocomposite membranes for gas separation. Desalination 146(1–3):49–55Google Scholar
  325. 325.
    Ahmad J, Hågg MB (2013) Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J Membr Sci 445:200–210Google Scholar
  326. 326.
    Korshak VV, Vinogradova SV, Vygodskii YS (1974) Cardo polymers. J Macromol Sci C 11(1):45–142Google Scholar
  327. 327.
    Sun H, Ma C, Yuan B, Wang T, Xu Y, Xue Q, Li P, Kong Y (2014) Cardo polyimides/TiO2 mixed matrix membranes: synthesis, characterization, and gas separation property improvement. Separ Purif Technol 122:367–375Google Scholar
  328. 328.
    Schaep J, Vandecasteele C, Leysen R, Doyen W (1998) Salt retention of Zirfon® membranes. Separ Purif Technol 14(1–3):127–131Google Scholar
  329. 329.
    Genné I, Kuypers S, Leysen R (1996) Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci 113(2):343–350Google Scholar
  330. 330.
    Aerts P, Greenberg AR, Leysen R, Krantz WB, Reinsch VE, Jacobs PA (2001) The influence of filler concentration on the compaction and filtration properties of Zirfon®-composite ultrafiltration membranes. Separ Purif Technol 22–23:663–669Google Scholar
  331. 331.
    Shao L, Samseth J, Hägg M-B (2009) Crosslinking and stabilization of nanoparticle filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes for gas separations. J Appl Polym Sci 113(5):3078–3088Google Scholar
  332. 332.
    Hu X, Cong H, Shen Y, Radosz M (2007) Nanocomposite membranes for CO2 separations: silica/brominated poly(phenylene oxide). Ind Eng Chem Res 46(5):1547–1551Google Scholar
  333. 333.
    Cong H, Hu X, Radosz M, Shen Y (2007) Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation. Ind Eng Chem Res 46(8):2567–2575Google Scholar
  334. 334.
    Sadeghi M, Semsarzadeh MA, Barikani M, Pourafshari Chenar M (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376(1–2):188–195Google Scholar
  335. 335.
    Iwata M, Adachi T, Tomidokoro M, Ohta M, Kobayashi T (2003) Hybrid sol–gel membranes of polyacrylonitrile–tetraethoxysilane composites for gas permselectivity. J Appl Polym Sci 88(7):1752–1759Google Scholar
  336. 336.
    Hibshman C, Cornelius CJ, Marand E (2003) The gas separation effects of annealing polyimide–organosilicate hybrid membranes. J Membr Sci 211(1):25–40Google Scholar
  337. 337.
    Suzuki T, Yamada Y (2005) Physical and gas transport properties of novel hyperbranched polyimide – silica hybrid membranes. Polym Bull 53(2):139–146Google Scholar
  338. 338.
    Radosz M, Shen Y (2007) Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its nanocomposites as membranes for CO2 separations. Patent WO 2007133708 A1 (WO patent application PCT/US2007/011,458).
  339. 339.
    Kim JH, Lee YM (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. J Membr Sci 193(2):209–225Google Scholar
  340. 340.
    Patel NP, Miller AC, Spontak RJ (2003) Highly CO2-permeable and selective polymer nanocomposite membranes. Adv Mater 15(9):729–733Google Scholar
  341. 341.
    Kim H, Lim C, Hong S-I (2005) Gas permeation properties of organic–inorganic hybrid membranes prepared from hydroxyl-terminated polyether and 3-isocyanatopropyltriethoxysilane. J Sol Gel Sci Technol 36(2):213–221Google Scholar
  342. 342.
    Sforça ML, Yoshida IVP, Nunes SP (1999) Organic–inorganic membranes prepared from polyether diamine and epoxy silane. J Membr Sci 159(1–2):197–207Google Scholar
  343. 343.
    Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, Nagai K, Freeman BD (2000) Preparation and gas permeation of immobilized fullerene membranes. J Appl Polym Sci 77(3):529–537Google Scholar
  344. 344.
    Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2002) Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 15(1):109–123Google Scholar
  345. 345.
    Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146(1–3):35–40Google Scholar
  346. 346.
    Yan L, Li YS, Xiang CB, Xianda S (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci 276(1–2):162–167Google Scholar
  347. 347.
    Honma I, Takeda Y, Bae JM (1999) Protonic conducting properties of sol–gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules. Solid State Ionics 120(1–4):255–264Google Scholar
  348. 348.
    Honma I, Hirakawa S, Yamada K, Bae JM (1999) Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol–gel processes. Solid State Ionics 118(1–2):29–36Google Scholar
  349. 349.
    Honma I, Nomura S, Nakajima H (2001) Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane. J Membr Sci 185(1):83–94Google Scholar
  350. 350.
    Lin C, Thangamuthu R, Chang P (2005) PWA-doped PEG/SiO proton-conducting hybrid membranes for fuel cell applications. J Membr Sci 254(1–2):197–205Google Scholar
  351. 351.
    Thangamuthu R, Lin C (2005) DBSA-doped PEG/SiO proton-conducting hybrid membranes for low-temperature fuel cell applications. Solid State Ionics 176(5–6):531–538Google Scholar
  352. 352.
    Chang HY, Lin CW (2003) Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells. J Membr Sci 218(1–2):295–306Google Scholar
  353. 353.
    Chang HY, Thangamuthu R, Lin CW (2004) Structure–property relationships in PEG/SiO2 based proton conducting hybrid membranes—A 29Si CP/MAS solid-state NMR study. J Membr Sci 228(2):217–226Google Scholar
  354. 354.
    Su Y-H, Liu Y-L, Sun Y-M, Lai J-Y, Guiver MD, Gao Y (2006) Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: a significant improvement on cell performance. J Power Sourc 155(2):111–117Google Scholar
  355. 355.
    Zhi S-H, Xu J, Deng R, Wan L-S, Xu Z-K (2014) Poly(vinylidene fluoride) ultrafiltration membranes containing hybrid silica nanoparticles: preparation, characterization and performance. Polymer 55:1333–1340Google Scholar
  356. 356.
    Hench LL (2013) Chronology of bioactive glass development and clinical applications. New J Glass Ceram 3(2):67–73Google Scholar
  357. 357.
    Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. J Non Crystal Solids 143:84–92Google Scholar
  358. 358.
    Catauro M, Raucci MG, De Gaetano F, Marotta A (2003) Sol–gel synthesis, characterization and bioactivity of polycaprolactone/SiO2 hybrid material. J Mater Sci 38(14):3097–3102Google Scholar
  359. 359.
    Mills KL, Zhu X, Takayama S, Thouless MD (2008) The mechanical properties of a surface-modified layer on poly(dimethylsiloxane). J Mater Res 23(1):37–48Google Scholar
  360. 360.
    Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME, Jones JR (2012) Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos Trans Ser A Mathemat Phys Eng Sci 370(1963):1422–1443Google Scholar
  361. 361.
    Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39Google Scholar
  362. 362.
    Rhee S-H, Choi J-Y (2002) Preparation of a bioactive poly(methyl methacrylate)/silica nanocomposite. J Am Ceram Soc 85(5):1318–1320Google Scholar
  363. 363.
    Lee KH, Rhee SH (2009) The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO(2)-CaO nanocomposite. Biomaterials 30(20):3444–3449Google Scholar
  364. 364.
    Thomas NP, Tran N, Tran PA, Walters JL, Jarrell JD, Hayda RA, Born CT (2013) Characterization and bioactive properties of zirconia based polymeric hybrid for orthopedic applications. J Mater Sci Mater Med 25(2):347–354Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sarabjeet Kaur
    • 1
  • Markus Gallei
    • 2
  • Emanuel Ionescu
    • 1
    Email author
  1. 1.Institute for Materials ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Ernst-Berl-Institute for Technical and Macromolecular ChemistryTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations