Advertisement

Nanohybrid Materials by Electrospinning

  • Chiara Gualandi
  • Annamaria Celli
  • Andrea Zucchelli
  • Maria Letizia FocareteEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 267)

Abstract

Organic-inorganic hybrid nanofibers obtained by electrospinning technology have experienced a growing interest in the last decade thanks to the versatility and the high productivity of the technique, compared to other technologies devoted to the fabrication of nanocomposites, and to the unique and numerous features displayed by the produced nanomaterials. In this review, we classify and highlight recent progress, as well as current issues, in the production of hybrid nanofibers by electrospinning and their related applications. In particular, the scientific literature has been classified by taking into account the different methodologies that have been developed to fabricate hybrid polymeric-inorganic nanofibers by making use of electrospinning technology in combination with additional specific synthetic and processing procedures. The following technological and synthetic strategies have been discussed in detail: (1) electrospinning of inorganic dispersions in polymer solutions, (2) post treatments of electrospun fibers, (3) electrospinning combined with sol–gel processes, (4) electrospinning combined with electrospraying, (5) coaxial electrospinning, and (6) electrospinning of hybrid polymers. The huge number of different fiber morphologies, structures, and properties that can be achieved by electrospinning is impressive. The power of this technology is even more evident if we take into account that innovative hybrid nanofibers can be fabricated with a simple, versatile, extremely cheap, and scalable technology that makes electrospinning the most interesting currently available technique for the production of nanocomposites.

Keywords

Electrospinning Hybrid material Nanofiber Organic–inorganic nanocomposite Review 

Abbreviations

β-TCP

β-Tricalcium phosphate

1D

One-dimensional

Ac

Acetate

ALD

Atomic layer deposition

AOT

Dioctyl sulfosuccinate sodium salt

APTES

(3-Aminopropyl)triethoxysilane

ATRP

Atom transfer radical polymerization

BSA

Bovine serum albumine

BTESPTS

1,4-Bis(triethoxysilyl)propane tetrasulfide

CA

Cellulose acetate

Con-A

Concanavalin-A

COS

Chitosan oligomers

Ct

Cathecol

CTAB

Cetyltrimethyl ammonium bromide

DMF

N,N-Dimethyl formamide

DSC

Differential scanning calorimetry

FA

Formic acid

FESEM

Field emission scanning electron microscopy

FTIR

Fourier transform infrared spectroscopy

HA

Hydroxyapatite

HFIP

1,1,1,3,3,3-Hexafluoro-2-propanol

HSA

12-Hydroxystearic acid

LbL

Layer-by-layer

LPD

Liquid phase deposition

MPTMS

(3-Mercaptopropyl)trimethoxysilane

NEC

Neuro-microvascular endothelial cell

NIR

Near infrared

NP

Nanoparticle

P(LA-co-CL)

Poly(lactic acid-co-caprolactone)

P(VDF-co-CTFE)

Poly(vinylidene fluoride-co-chlorotrifluoroethylene)

PAA

Poly(acrylic acid)

PAN

Polyacrylonitrile

PANI

Polyaniline

PCL

Poly(ε-caprolactone)

PE

Polyethylene

PEDOT:PSS

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PET

Poly(ethylene terephthalate)

PHB

Poly(3-hydroxybutyric acid)

PHEMA

Poly(2-hydroxyethyl methacrylate)

PI

Polyimide

PLA

Polylactide

PLLA

Poly(l-lactic acid)

PLGA

Poly(lactide-co-glycolide)

PMMA

Poly(methyl methacrylate)

POSS-NH3+

Octa(3-ammoniumpropyl) octasilsesquioxane octachlo ride

PPhe-GlyP

Polyphosphazenes with phenylalanine ethyl ester and glycine ethyl ester as co-substituents

PPV

Poly(p-phenylene vinylene)

PPy

Polypyrrole

PS

Polystyrene

PSEI

Poly(dimethylsiloxane-b-etherimide)

PSU

Polysulfone

PU

Polyurethane

PVA

Poly(vinyl alcohol)

PVAc

Poly(vinyl acetate)

PVC

Poly(vinyl chloride)

PVDF

Poly(vinylidene difluoride)

PVP

Poly(vinyl pyrrolidone)

QDs

Quantum dots

Rh-B

Rhodamine-B

RT

Room temperature

SEM

Scanning electron microscopy

SERS

Surface-enhanced Raman scattering

TEM

Transmission electron microscopy

TEOS

Tetraethyl orthosilicate

TESPSA

(3-Triethoxysilylpropyl)succinic anhydride

Triton X-100

4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol

UV

Ultraviolet

VA

Vinyl alcohol

Vis

Visible

XPS

X-ray photoelectron spectroscopy

References

  1. 1.
    Crespy D, Friedemann K, Popa AM (2012) Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions. Macromol Rapid Commun 33:1978–1995Google Scholar
  2. 2.
    Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Progr Polym Sci 38:963–991Google Scholar
  3. 3.
    Ramakrishna S, Fujihara K, Teo W-E, Lim T, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, SingaporeGoogle Scholar
  4. 4.
    Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2010) Electrospun nanofibers for enhancing structural performance of composite materials. Polym Adv Technol 22:339–349Google Scholar
  5. 5.
    Bianco A, Bozzo BM, Del Gaudio C, Cacciotti I, Armentano I, Dottori M, D’Angelo F, Martino S, Orlacchio A, Kenny JM (2011) Poly (l-lactic acid)/calcium-deficient nanohydroxyapatite electrospun mats for bone marrow stem cell cultures. J Bioactive Compatible Polym 26:225–241Google Scholar
  6. 6.
    Lu X, Liu X, Wang L, Zhang W, Wang C (2006) Fabrication of luminescent hybrid fibres based on the encapsulation of polyoxometalate into polymer matrices. Nanotechnology 17:3048–3053Google Scholar
  7. 7.
    Li Z, Huang H, Wang C (2006) Electrostatic forces induce poly(vinyl alcohol)-protected copper nanoparticles to form copper/poly(vinyl alcohol) nanocables via electrospinning. Macromol Rapid Commun 27:152–155Google Scholar
  8. 8.
    Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, Tang Y, Yang B (2007) Electrospinning: a facile method to disperse fluorescent quantum dots in nanofibers without forster resonance energy transfer. Adv Funct Mater 17:3650–3656Google Scholar
  9. 9.
    Cho D, Bae WJ, Joo YL, Ober CK, Frey MW (2011) Properties of PVA/HfO2 hybrid electrospun fibers and calcined inorganic HfO2 fibers. J Phys Chem C 115:5535–5544Google Scholar
  10. 10.
    He D, Hu B, Yao QF, Wang K, Yu SH (2009) Large-scale synthesis of flexible free-standing sers substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002Google Scholar
  11. 11.
    Zhang CL, Lv KP, Cong HP, Yu SH (2012) Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small 8:648–653Google Scholar
  12. 12.
    Cheng M, Wang H, Zhang Z, Li N, Fang X, Xu S (2014) Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS Appl Mater Interfaces 6:1569–1575Google Scholar
  13. 13.
    Wang Y, Li Y, Sun G, Zhang G, Liu H, Du J, Yang S, Bai J, Yang Q (2007) Fabrication of Au/PVP nanofiber composites by electrospinning. J Appl Polym Sci 105:3618–3622Google Scholar
  14. 14.
    Kriha O, Becker M, Lehmann M, Kriha D, Krieglstein J, Yosef M, Schlecht S, Wehrspohn RB, Wendorff JH, Greiner A (2007) Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers – a route to magnetic micromanipulators. Adv Mater 19:2483–2485Google Scholar
  15. 15.
    Wang N, Si Y, Wang N, Sun G, El-Newehy M, Al-Deyab SS, Ding B (2014) Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Separation Purification Technol 126:44–51Google Scholar
  16. 16.
    Kim YJ, Ahn CH, Lee MB, Choi MS (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127:137–142Google Scholar
  17. 17.
    Hsu CY, Liu YL (2010) Rhodamine B-anchored silica nanoparticles displaying white-light photoluminescence and their uses in preparations of photoluminescent polymeric films and nanofibers. J Colloid Interface Sci 350:75–82Google Scholar
  18. 18.
    Jin Y, Yang D, Kang D, Jiang X (2009) Fabrication of necklace-like structures via electrospinning. Langmuir 26:1186–1190Google Scholar
  19. 19.
    Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab SS, Yu J (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26Google Scholar
  20. 20.
    Cui WW, Tang DY, Gong ZL (2013) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–213Google Scholar
  21. 21.
    Gupta KK, Kundan A, Mishra PK, Srivastava P, Mohanty S, Singh NK, Mishra A, Maiti P (2012) Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Phys Chem Chem Phys 14:12844–12853Google Scholar
  22. 22.
    Ahmadpoor P, Nateri AS, Motaghitalab V (2013) The optical properties of PVA/TiO2 composite nanofibers. J Appl Polym Sci 130:78–85Google Scholar
  23. 23.
    Xin Y, Huang ZH, Peng L, Wang DJ (2009) Photoelectric performance of poly(p-phenylene vinylene)/Fe3O4 nanofiber array. J Appl Phys 105:086106Google Scholar
  24. 24.
    Tan ST, Wendorff JH, Pietzonka C, Jia ZH, Wang GQ (2005) Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties. ChemPhysChem 6:1461–1465Google Scholar
  25. 25.
    Gupta P, Asmatulu R, Claus R, Wilkes G (2006) Superparamagnetic flexible substrates based on submicron electrospun Estane® fibers containing MnZnFe-Ni nanoparticles. J Appl Polym Sci 100:4935–4942Google Scholar
  26. 26.
    Andrew JS, Clarke DR (2008) Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles. Langmuir 24:8435–8438Google Scholar
  27. 27.
    Sui X, Shao C, Liu Y (2007) Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers. Polymer 48:1459–1463Google Scholar
  28. 28.
    Sui XM, Shao CL, Liu YC (2005) White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl Phys Lett 87:113115Google Scholar
  29. 29.
    Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114:3652–3658Google Scholar
  30. 30.
    Modisha P, Nyokong T (2014) Fabrication of phthalocyanine-magnetic nanoparticles hybrid nanofibers for degradation of Orange-G. J Mol Catal A Chem 381:132–137Google Scholar
  31. 31.
    Tombe S, Antunes E, Nyokong T (2013) Electrospun fibers functionalized with phthalocyanine-gold nanoparticle conjugates for photocatalytic applications. J Mol Catal A Chem 371:125–134Google Scholar
  32. 32.
    Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42:8400–8407Google Scholar
  33. 33.
    Lee YS, Jeong YB, Kim DW (2010) Cycling performance of lithium-ion batteries assembled with a hybrid composite membrane prepared by an electrospinning method. J Power Sources 195:6197–6201Google Scholar
  34. 34.
    Padmaraj O, Nageswara Rao B, Jena P, Venkateswarlu M, Satyanarayana N (2014) Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery. Polymer 55:1136–1142Google Scholar
  35. 35.
    Im JS, Bai BC, Bae TS, In SJ, Lee YS (2011) Improved anti-oxidation properties of electrospun polyurethane nanofibers achieved by oxyfluorinated multi-walled carbon nanotubes and aluminum hydroxide. Mater Chem Phys 126:685–692Google Scholar
  36. 36.
    Li S, Li Y, Qian K, Ji S, Luo H, Gao Y, Jin P (2013) Functional fiber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers. ACS Appl Mater Interfaces 6:9–13Google Scholar
  37. 37.
    Chinnappan A, Kang HC, Kim H (2011) Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride. Energy 36:755–759Google Scholar
  38. 38.
    Abiona AA, Ajao JA, Chigome S, Kana JB, Osinkolu GA, Maaza M (2010) Synthesis and characterization of cobalt chloride/poly(ethylene oxide) electrospun hybrid nanofibers. J Sol Gel Sci Technol 55:235–241Google Scholar
  39. 39.
    Unnithan AR, Barakat NAM, Abadir MF, Yousef A, Kim HY (2012) Novel CdPdS/PVAc core-shell nanofibers as an effective photocatalyst for organic pollutants degradation. J Mol Catal A Chem 363–364:186–194Google Scholar
  40. 40.
    Wang Q, Chen Y, Liu R, Liu H, Li Z (2012) Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers. Compos Part A Appl Sci Manuf 43:1869–1876Google Scholar
  41. 41.
    Dhandayuthapani B, Poulose AC, Nagaoka Y, Hasumura T, Yoshida Y, Maekawa T, Kumar DS (2012) Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication 4:025008Google Scholar
  42. 42.
    Bashouti M, Salalha W, Brumer M, Zussman E, Lifshitz E (2006) Alignment of colloidal cds nanowires embedded in polymer nanofibers by electrospinning. ChemPhysChem 7:102–106Google Scholar
  43. 43.
    Mthethwa TP, Moloto MJ, De Vries A, Matabola KP (2011) Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres. Mater Res Bull 46:569–575Google Scholar
  44. 44.
    Atabey E, Wei S, Zhang X, Gu H, Yan X, Huang Y, Shao L, He Q, Zhu J, Sun L, Kucknoor AS, Wang A, Guo Z (2013) Fluorescent electrospun polyvinyl alcohol/CdSe@ZnS nanocomposite fibers. J Compos Mater 47:3175–3185Google Scholar
  45. 45.
    Cho K, Kim M, Choi J, Kim K, Kim S (2010) Synthesis and characterization of electrospun polymer nanofibers incorporated with CdTe nanoparticles. Synthetic Met 160:888–891Google Scholar
  46. 46.
    Wang S, Sun Z, Yan E, Sun L, Huang N, Zang W, Ni L, Wang Q, Gao Y (2014) Spectrum-control of poly(p-phenylene vinylene) nanofibers fabricated by electrospinning with highly photoluminescent ZnS quantum dots. Int J Electrochem Sci 9:549–561Google Scholar
  47. 47.
    Schlecht S, Tan S, Yosef M, Dersch R, Wendorff JH, Jia Z, Schaper A (2005) Toward linear arrays of quantum dots via polymer nanofibers and nanorods. Chem Mater 17:809–814Google Scholar
  48. 48.
    Li M, Zhang Z, Cao T, Sun Y, Liang P, Shao C, Liu Y (2012) Electrospinning preparation and photoluminescence properties of poly(methyl methacrylate)/Eu3+ ions composite nanofibers and nanoribbons. Mater Res Bull 47:321–327Google Scholar
  49. 49.
    Tang S, Shao C, Liu Y, Mu R (2010) Electrospun nanofibers of poly(acrylonitrile)/Eu3+ and their photoluminescence properties. J Phys Chem Solids 71:273–278Google Scholar
  50. 50.
    Wang H, Yang Q, Sun L, Zhang C, Li Y, Wang S, Li Y (2009) Improved photoluminescence properties of europium complex/polyacrylonitrile composite fibers prepared by electrospinning. J Alloys Comp 488:414–419Google Scholar
  51. 51.
    Liu L, Li B, Zhang J, Qin R, Zhao H, Ren X (2009) Electrospinning preparation and characterization of a new kind of composite nanomaterials: one-dimensional composite nanofibers doped with TiO2 nanoparticles and Ru(II) complex. Mater Res Bull 44:2081–2086Google Scholar
  52. 52.
    Wang H, Li Y, Sun L, Li Y, Wang W, Wang S, Xu S, Yang Q (2010) Electrospun novel bifunctional magnetic-photoluminescent nanofibers based on Fe2O3 nanoparticles and europium complex. J Colloid Interface Sci 350:396–401Google Scholar
  53. 53.
    Zhang H, Song H, Yu H, Bai X, Li S, Pan G, Dai Q, Wang T, Li W, Lu S, Ren X, Zhao H (2007) Electrospinning preparation and photoluminescence properties of rare-earth complex/polymer composite fibers. J Phys Chem C 111:6524–6527Google Scholar
  54. 54.
    Hong JH, Jeong EH, Lee HS, Baik DH, Seo SW, Youk JH (2005) Electrospinning of polyurethane/organically modified montmorillonite nanocomposites. J Polym Sci B Polym Phys 43:3171–3177Google Scholar
  55. 55.
    Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C (2008) Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomaterialia 4:756–765Google Scholar
  56. 56.
    Park J, Lee H, Chae D, Oh W, Yun J, Deng Y, Yeum J (2009) Electrospinning and characterization of poly(vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions. Colloid Polym Sci 287:943–950Google Scholar
  57. 57.
    Wang S, Zheng F, Huang Y, Fang Y, Shen M, Zhu M, Shi X (2012) Encapsulation of amoxicillin within laponite-doped poly(lactic-co-glycolic acid) nanofibers: preparation, characterization, and antibacterial activity. ACS Appl Mater Interfaces 4:6393–6401Google Scholar
  58. 58.
    Deng XL, Sui G, Zhao ML, Chen CQ, Yang XP (2007) Poly(l-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polym Ed 18:117–130Google Scholar
  59. 59.
    Jeong SI, Ko EK, Yum J, Jung CH, Lee YM, Shin H (2008) Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol Biosci 8:328–338Google Scholar
  60. 60.
    Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S (2007) Poly-l-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res Part A 82A:445–454Google Scholar
  61. 61.
    Kutikov AB, Song J (2013) An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomaterialia 9:8354–8364Google Scholar
  62. 62.
    Shen K, Hu Q, Chen L, Shen J (2010) Preparation of chitosan bicomponent nanofibers filled with hydroxyapatite nanoparticles via electrospinning. J Appl Polym Sci 115:2683–2690Google Scholar
  63. 63.
    Teng SH, Lee EJ, Wang P, Kim HE (2008) Collagen/hydroxyapatite composite nanofibers by electrospinning. Mater Lett 62:3055–3058Google Scholar
  64. 64.
    Stanishevsky A, Chowdhury S, Chinoda P, Thomas V (2008) Hydroxyapatite nanoparticle loaded collagen fiber composites: microarchitecture and nanoindentation study. J Biomed Mater Res Part A 86A:873–882Google Scholar
  65. 65.
    Yang D, Jin Y, Ma G, Chen X, Lu F, Nie J (2008) Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. J Appl Polym Sci 110:3328–3335Google Scholar
  66. 66.
    Ba Linh NT, Min YK, Lee BT (2013) Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. J Biomater Sci Polym Ed 24:520–538Google Scholar
  67. 67.
    Bianco A, Di Federico E, Cacciotti I (2011) Electrospun poly(e-caprolactone)-based composites using synthesized b-tricalcium phosphate. Polym Adv Technol 22:1832–1841Google Scholar
  68. 68.
    Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147Google Scholar
  69. 69.
    Hang AT, Tae B, Park JS (2010) Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr Polym 82:472–479Google Scholar
  70. 70.
    Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178Google Scholar
  71. 71.
    Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907Google Scholar
  72. 72.
    Faridi-Majidi R, Sharifi-Sanjani N (2007) In situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process. J Appl Polym Sci 105:1351–1355Google Scholar
  73. 73.
    Wang Y, Li Y, Yang S, Zhang G, An D, Wang C, Yang Q, Chen X, Wei Y (2006) A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning. Nanotechnology 17:3304–3307Google Scholar
  74. 74.
    Saquing CD, Manasco JL, Khan SA (2009) Electrospun nanoparticle-nanofiber composites via a one-step synthesis. Small 5:944–951Google Scholar
  75. 75.
    Tijing LD, Ruelo MT, Amarjargal A, Pant HR, Park CH, Kim CS (2012) One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide))-polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Mater Chem Phys 134:557–561Google Scholar
  76. 76.
    An J, Zhang H, Zhang J, Zhao Y, Yuan X (2009) Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci 287:1425–1434Google Scholar
  77. 77.
    Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J Mater Chem 21:10330–10335Google Scholar
  78. 78.
    Penchev H, Paneva D, Manolova N, Rashkov I (2009) Electrospun hybrid nanofibers based on chitosan or N-carboxyethylchitosan and silver nanoparticles. Macromol Biosci 9:884–894Google Scholar
  79. 79.
    Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47:1402–1409Google Scholar
  80. 80.
    Celebioglu A, Aytac Z, Umu OCO, Dana A, Tekinay T, Uyar T (2014) One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydr Polym 99:808–816Google Scholar
  81. 81.
    Lu X, Li L, Zhang W, Wang C (2005) Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology 16:2233–2237Google Scholar
  82. 82.
    Afeesh R, Barakat NAM, Al-Deyab SS, Yousef A, Kim HY (2012) Nematic shaped cadmium sulfide doped electrospun nanofiber mat: highly efficient, reusable, solar light photocatalyst. Colloids Surf A Physicochem Eng Asp 409:21–29Google Scholar
  83. 83.
    Wang S, Wang C, Zhang B, Sun Z, Li Z, Jiang X, Bai X (2010) Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Mat Lett 64:9–11Google Scholar
  84. 84.
    Deniz AE, Vural HA, Ortac B, Uyar T (2011) Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mat Lett 65:2941–2943Google Scholar
  85. 85.
    Zhuang X, Cheng B, Kang W, Xu X (2010) Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym 82:524–527Google Scholar
  86. 86.
    Li L, Bellan LM, Craighead HG, Frey MW (2006) Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers. Polymer 47:6208–6217Google Scholar
  87. 87.
    Fong H, Liu W, Wang CS, Vaia RA (2002) Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43:775–780Google Scholar
  88. 88.
    Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322Google Scholar
  89. 89.
    Song JH, Kim HE, Kim HW (2008) Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19:2925–2932Google Scholar
  90. 90.
    Kim HW, Song JH, Kim HE (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988–1994Google Scholar
  91. 91.
    Kim GM, Wutzler A, Radusch HJ, Michler GH, Simon P, Sperling RA, Parak WJ (2005) One-dimensional arrangement of gold nanoparticles by electrospinning. Chem Mater 17:4949–4957Google Scholar
  92. 92.
    Drew C, Liu X, Ziegler D, Wang X, Bruno FF, Whitten J, Samuelson LA, Kumar J (2003) Metal oxide-coated polymer nanofibers. Nano Lett 3:143–147Google Scholar
  93. 93.
    Niesen TP, De Guire MR (2002) Review: deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ionics 151:61–68Google Scholar
  94. 94.
    George SM, Ott AW, Klaus JW (1996) Surface chemistry for atomic layer growth. J Phys Chem 100:13121–13131Google Scholar
  95. 95.
    Oldham CJ, Gong B, Spagnola JC, Jur JS, Senecal KJ, Godfrey TA, Parsons GN (2011) Encapsulation and chemical resistance of electrospun nylon nanofibers coated using integrated atomic and molecular layer deposition. J Electrochem Soc 158:D549–D556Google Scholar
  96. 96.
    Kayaci F, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T (2012) Polymer–inorganic core–shell nanofibers by electrospinning and atomic layer deposition: flexible Nylon–ZnO core–shell nanofiber mats and their photocatalytic activity. ACS Appl Mater Interfaces 4:6185–6194Google Scholar
  97. 97.
    Shi W, Song S, Zhang H (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42:5714–5743Google Scholar
  98. 98.
    He T, Zhou Z, Xu W, Ren F, Ma H, Wang J (2009) Preparation and photocatalysis of TiO2-fluoropolymer electrospun fiber nanocomposites. Polymer 50:3031–3036Google Scholar
  99. 99.
    Chang Z (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers viaelectrospinning and hydrothermal process. Chem Commun 47:4427–4429Google Scholar
  100. 100.
    Kim HJ, Pant HR, Amarjargal A, Kim CS (2013) Incorporation of silver-loaded ZnO rods into electrospun nylon-6 spider-web-like nanofibrous mat using hydrothermal process. Colloids Surf A Physicochem Eng Asp 434:49–55Google Scholar
  101. 101.
    Xiao S, Shen M, Guo R, Wang S, Shi X (2009) Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J Phys Chem C 113:18062–18068Google Scholar
  102. 102.
    Xiao S, Shen M, Guo R, Huang Q, Wang S, Shi X (2010) Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J Mater Chem 20:5700–5708Google Scholar
  103. 103.
    Xiao S, Xu W, Ma H, Fang X (2012) Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol. RSC Adv 2:319–327Google Scholar
  104. 104.
    Dong H, Fey E, Gandelman A, Jones WE (2006) Synthesis and assembly of metal nanoparticles on electrospun poly(4-vinylpyridine) fibers and poly(4-vinylpyridine) composite fibers. Chem Mater 18:2008–2011Google Scholar
  105. 105.
    Fang X, Ma H, Xiao S, Shen M, Guo R, Cao X, Shi X (2011) Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J Mater Chem 21:4493–4501Google Scholar
  106. 106.
    Gardella L, Basso A, Prato M, Monticelli O (2013) PLA/POSS nanofibers: a novel system for the immobilization of metal nanoparticles. ACS Appl Mater Interfaces 5:7688–7692Google Scholar
  107. 107.
    Liu Z, Zhou C, Zheng B, Qian L, Mo Y, Luo F, Shi Y, Choi MMF, Xiao D (2011) In situ synthesis of gold nanoparticles on porous polyacrylonitrile nanofibers for sensing applications. Analyst 136:4545–4551Google Scholar
  108. 108.
    Son HY, Ryu JH, Lee H, Nam YS (2013) Bioinspired templating synthesis of metal–polymer hybrid nanostructures within 3D electrospun nanofibers. ACS Appl Mater Interfaces 5:6381–6390Google Scholar
  109. 109.
    Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG (2004) Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules 37:1787–1792Google Scholar
  110. 110.
    Han GY, Guo B, Zhang LW, Yang BS (2006) Conductive gold films assembled on electrospun poly(methyl methacrylate) fibrous mats. Adv Mater 18:1709–1712Google Scholar
  111. 111.
    Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637Google Scholar
  112. 112.
    Li Z, Huang H, Shang T, Yang F, Zheng W, Wang C, Manohar S (2006) Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres. Nanotechnology 17:917Google Scholar
  113. 113.
    Lu X, Zhao Y, Wang C, Wei Y (2005) Fabrication of CdS nanorods in PVP fiber matrices by electrospinning. Macromol Rapid Commun 26:1325–1329Google Scholar
  114. 114.
    Lu X, Zhao Y, Wang C (2005) Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv Mater 17:2485–2488Google Scholar
  115. 115.
    Dong F, Li Z, Huang H, Yang F, Zheng W, Wang C (2007) Fabrication of semiconductor nanostructures on the outer surfaces of polyacrylonitrile nanofibers by in-situ electrospinning. Mater Lett 61:2556–2559Google Scholar
  116. 116.
    Wang H, Lu X, Zhao Y, Wang C (2006) Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning. Mater Lett 60:2480–2484Google Scholar
  117. 117.
    Wang C, Yan E, Sun Z, Jiang Z, Tong Y, Xin Y, Huang Z (2007) Mass ratio of CdS/poly(ethylene oxide) controlled photoluminescence of one-dimensional hybrid fibers by electrospinning. Macromol Mater Eng 292:949–955Google Scholar
  118. 118.
    Ye J, Chen Y, Zhou W, Wang X, Guo Z, Hu Y (2009) Preparation of polymer@PbS hybrid nanofibers by surface-initiated atom transfer radical polymerization and acidolysis by H2S. Mater Lett 63:1425–1427Google Scholar
  119. 119.
    Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340Google Scholar
  120. 120.
    Ding B, Kim J, Kimura E, Shiratori S (2004) Layer-by-layer structured films of TiO2 nanoparticles and poly(acrylic acid) on electrospun nanofibres. Nanotechnology 15:913Google Scholar
  121. 121.
    Muller K, Quinn JF, Johnston APR, Becker M, Greiner A, Caruso F (2006) Polyelectrolyte functionalization of electrospun fibers. Chem Mater 18:2397–2403Google Scholar
  122. 122.
    Lee JA, Krogman KC, Ma M, Hill RM, Hammond PT, Rutledge GC (2009) Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv Mater 21:1252–1256Google Scholar
  123. 123.
    Xiao S, Wu S, Shen M, Guo R, Huang Q, Wang S, Shi X (2009) Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications. ACS Appl Mater Interfaces 1:2848–2855Google Scholar
  124. 124.
    Lu X, Zhao Q, Liu X, Wang D, Zhang W, Wang C, Wei Y (2006) Preparation and characterization of polypyrrole/TiO2 coaxial nanocables. Macromol Rapid Commun 27:430–434Google Scholar
  125. 125.
    Li Y, Gong J, He G, Deng Y (2011) Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Mater Chem Phys 129:477–482Google Scholar
  126. 126.
    Zampetti E, Macagnano A, Pantalei S, Bearzotti A (2013) PEDOT:PSS coated titania nanofibers for NO2 detection: study of humidity effects. Sensor Actuator B Chem 179:69–73Google Scholar
  127. 127.
    Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progr Polym Sci 28:83–114Google Scholar
  128. 128.
    Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592Google Scholar
  129. 129.
    Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1681Google Scholar
  130. 130.
    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72Google Scholar
  131. 131.
    Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. J Am Chem Soc 125:1154–1155Google Scholar
  132. 132.
    Kim ID, Rothschild A (2011) Nanostructured metal oxide gas sensors prepared by electrospinning. Polym Adv Technol 22:318–325Google Scholar
  133. 133.
    Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5:2349–2370Google Scholar
  134. 134.
    Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1:2–23Google Scholar
  135. 135.
    Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol–gel electrospinning. Langmuir 28:5834–5844Google Scholar
  136. 136.
    Jang TS, Lee EJ, Jo JH, Jeon JM, Kim MY, Kim HE, Koh YH (2012) Fibrous membrane of nano-hybrid poly-l-lactic acid/silica xerogel for guided bone regeneration. J Biomed Mater Res 100B:321–330Google Scholar
  137. 137.
    Lee EJ, Teng SH, Jang TS, Wang P, Yook SW, Kim HE, Koh YH (2010) Nanostructured poly(e-caprolactone)-silica xerogel fibrous membrane for guided bone regeneration. Acta Biomaterialia 6:3557–3565Google Scholar
  138. 138.
    Shao C, Kim HY, Gong J, Ding B, Lee DR, Park SJ (2003) Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett 57:1579–1584Google Scholar
  139. 139.
    Tong HW, Mutlu BR, Wackett LP, Aksan A (2013) Silica/PVA biocatalytic nanofibers. Mater Lett 111:234–237Google Scholar
  140. 140.
    Allo BA, Rizkalla AS, Mequanint K (2010) Synthesis and electrospinning of e-polycaprolactone-bioactive glass hybrid biomaterials via a sol–gel process. Langmuir 26:18340–18348Google Scholar
  141. 141.
    Rawolle M, Niedermeier MA, Kaune G, Perlich J, Lellig P, Memesa M, Cheng YJ, Gutmann JS, Muller-Buschbaum P (2012) Fabrication and characterization of nanostructured titania films with integrated function from inorganic–organic hybrid materials. Chem Soc Rev 41:5131–5142Google Scholar
  142. 142.
    Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12Google Scholar
  143. 143.
    Wu N, Shao D, Wei Q, Cai Y, Gao W (2009) Characterization of PVAc/TiO2 hybrid nanofibers: from fibrous morphologies to molecular structures. J Appl Polym Sci 112:1481–1485Google Scholar
  144. 144.
    Larsen G, Skotak M (2008) Co-solvent mediated fiber diameter and fiber morphology control in electrospinning of sol–gel formulations. J Non Crystal Solids 354:5547–5554Google Scholar
  145. 145.
    Skotak M, Larsen G (2006) Solution chemistry control to make well defined submicron continuous fibres by electrospinning: the (CH3CH2CH2O)4Ti/AcOH/poly(N-vinylpyrrolidone) system. J Mater Chem 16:3031–3039Google Scholar
  146. 146.
    Wu N, Chen L, Wei Q, Liu Q, Li J (2011) Nanoscale three-point bending of single polymer/inorganic composite nanofiber. J Text Inst 103:154–158Google Scholar
  147. 147.
    Hong Y, Li D, Zheng J, Zou G (2006) Sol–gel growth of titania from electrospun polyacrylonitrile nanofibres. Nanotechnology 17:1986Google Scholar
  148. 148.
    Meng X, Luo N, Cao S, Zhang S, Yang M, Hu X (2009) In-situ growth of titania nanoparticles in electrospun polymer nanofibers at low temperature. Mater Lett 63:1401–1403Google Scholar
  149. 149.
    Su C, Tong Y, Zhang M, Zhang Y, Shao C (2013) TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers mats: a flexible and recyclable photocatalyst for phenol degradation. RSC Adv 3:7503–7512Google Scholar
  150. 150.
    Arafat MM, Dinan B, Akbar SA, Haseeb SMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12:7207–7258Google Scholar
  151. 151.
    Udom I, Ram MK, Stefanakos EK, Hepp AF, Goswami DY (2013) One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process 16:2070–2083Google Scholar
  152. 152.
    Znaidi L (2010) Sol–gel-deposited ZnO thin films: a review. Mater Sci Eng B 174:18–30Google Scholar
  153. 153.
    Liu H, Yang J, Liang J, Huang Y, Tang C (2008) ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J Am Ceram Soc 91:1287–1291Google Scholar
  154. 154.
    Yang X, Shao C, Guan H, Li X, Gong J (2004) Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg Chem Commun 7:176–178Google Scholar
  155. 155.
    Wu H, Pan W (2006) Preparation of zinc oxide nanofibers by electrospinning. J Am Ceram Soc 89:699–701Google Scholar
  156. 156.
    Hong Y, Li D, Zheng J, Zou G (2006) In situ growth of ZnO nanocrystals from solid electrospun nanofiber matrixes. Langmuir 22:7331–7334Google Scholar
  157. 157.
    Ye S, Zhang D, Liu H, Zhou J (2011) ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity. J Appl Polym Sci 121:1757–1764Google Scholar
  158. 158.
    Zhang J, Wen B, Wang F, Ding Y, Zhang S, Yang M (2011) In situ synthesis of ZnO nanocrystal/PET hybrid nanofibers via electrospinning. J Polym Sci B Polym Phys 49:1360–1368Google Scholar
  159. 159.
    Park SH, Lee SM, Lim HS, Han JT, Lee DR, Shin HS, Jeong Y, Kim J, Cho JH (2010) Robust superhydrophobic mats based on electrospun crystalline nanofibers combined with a silane precursor. ACS Appl Mater Interfaces 2:658–662Google Scholar
  160. 160.
    Song JH, Yoon BH, Kim HE, Kim HW (2008) Bioactive and degradable hybridized nanofibers of gelatin-siloxane for bone regeneration. J Biomed Mater Res Part A 84A:875–884Google Scholar
  161. 161.
    Ren L, Wang J, Yang FY, Wang L, Wang D, Wang TX, Tian MM (2010) Fabrication of gelatin-siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Mat Sci Eng C 30:437–444Google Scholar
  162. 162.
    Gao C, Gao Q, Li Y, Rahaman MN, Teramoto A, Abe K (2013) In vitro evaluation of electrospun gelatin-bioactive glass hybrid scaffolds for bone regeneration. J Appl Polym Sci 127:2588–2599Google Scholar
  163. 163.
    Toskas G, Cherif C, Hund RD, Laourine E, Mahltig B, Fahmi A, Heinemann C, Hanke T (2013) Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 94:713–722Google Scholar
  164. 164.
    Allo BA, Lin S, Mequanint K, Rizkalla AS (2013) Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. ACS Appl Mater Interfaces 5:7574–7583Google Scholar
  165. 165.
    Poologasundarampillai G, Yu B, Jones JR, Kasuga T (2011) Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter 7:10241–10251Google Scholar
  166. 166.
    Taha AA, Yn W, Wang H, Li F (2012) Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J Environ Manag 112:10–16Google Scholar
  167. 167.
    Xu R, Jia M, Zhang Y, Li F (2012) Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes. Microporous Mesoporous Mater 149:111–118Google Scholar
  168. 168.
    Xu R, Jia M, Li F, Wang H, Zhang B, Qiao J (2012) Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye. Appl Phys A 106:747–755Google Scholar
  169. 169.
    Teng M, Wang H, Li F, Zhang B (2011) Thioether-functionalized mesoporous fiber membranes: sol–gel combined electrospun fabrication and their applications for Hg2+ removal. J Colloid Interface Sci 355:23–28Google Scholar
  170. 170.
    Teng M, Li F, Zhang B, Taha AA (2011) Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye. Colloids Surf A Physicochem Eng Asp 385:229–234Google Scholar
  171. 171.
    Wu S, Li F, Wu Y, Xu R, Li G (2010) Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun 46:1694–1696Google Scholar
  172. 172.
    Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, Zhang Q (2011) Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym 12:207–213Google Scholar
  173. 173.
    Gupta KK, Mishra PK, Srivastava P, Gangwar M, Nath G, Maiti P (2013) Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibres. Appl Surface Sci 264:375–382Google Scholar
  174. 174.
    Vitchuli N, Shi Q, Nowak J, Kay K, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) Multifunctional ZnO/Nylon-6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications. Sci Technol Adv Mater 12:055004Google Scholar
  175. 175.
    Korina E, Stoilova O, Manolova N, Rashkov I (2014) Poly(3-hydroxybutyrate)-based hybrid materials with photocatalytic and magnetic properties prepared by electrospinning and electrospraying. J Mater Sci 49:2144–2153Google Scholar
  176. 176.
    Lee MW, An S, Joshi B, Latthe SS, Yoon SS (2013) Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers. ACS Appl Mater Interfaces 5:1232–1239Google Scholar
  177. 177.
    Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S (2009) Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 30:2085–2094Google Scholar
  178. 178.
    Francis L, Venugopal J, Prabhakaran MP, Thavasi V, Marsano E, Ramakrishna S (2010) Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta Biomaterialia 6:4100–4109Google Scholar
  179. 179.
    Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698Google Scholar
  180. 180.
    Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4:933–938Google Scholar
  181. 181.
    Kalra V, Mendez S, Lee JH, Nguyen H, Marquez M, Joo YG (2006) Confined assembly in coaxially electrospun block copolymer fibers. Adv Mater 18:3299–3303Google Scholar
  182. 182.
    Kalra V, Lee J, Lee JH, Lee SG, Marquez M, Wiesner U, Joo YL (2008) Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers. Small 4:2067–2073Google Scholar
  183. 183.
    Song T, Zhang Y, Zhou T, Lim CT, Ramakrishna S, Liu B (2005) Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning. Chem Phys Letts 415:317–322Google Scholar
  184. 184.
    Kim MS, Shin KM, Kim SI, Spinks GM, Kim SJ (2008) Controlled array of ferritin in tubular nanostructure. Macromol Rapid Commun 29:552–556Google Scholar
  185. 185.
    Sharma N, Hassnain Jaffari G, Ismat Shah S, Pochan DJ (2010) Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning. Nanotechnology 21:085707Google Scholar
  186. 186.
    Sung YK, Ahn BW, Kang TJ (2012) Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. J Magn Magn Mater 324:916–922Google Scholar
  187. 187.
    Medina-Castillo AL, Fernandez-Sanchez JF, Fernandez-Gutierrez A (2011) One-step fabrication of multifunctional core-shell fibres by co-electrospinning. Adv Funct Mater 21:3488–3495Google Scholar
  188. 188.
    Ma Q, Wang J, Dong X, Yu W, Liu G, Xu J (2012) Electrospinning preparation and properties of magnetic-photoluminescent bifunctional coaxial nanofibers. J Mater Chem 22:14438–14442Google Scholar
  189. 189.
    Bedford NM, Steckl AJ (2010) Photocatalytic self cleaning textile fibers by coaxial electrospinning. ACS Appl Mater Interfaces 2:2448–2455Google Scholar
  190. 190.
    Yu DG, Zhou J, Chatterton NP, Li Y, Huang J, Wang X (2012) Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int J Nanomed 7:5725–5732Google Scholar
  191. 191.
    Allcock HR (2002) Chemistry and applications of polyphosphazenes. Wiley, HobokenGoogle Scholar
  192. 192.
    Nair LS, Bhattacharyya S, Bender JD, Greish YE, Brown PW, Allcock HR, Laurencin CT (2004) Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules 5:2212–2220Google Scholar
  193. 193.
    Lin YJ, Cai Q, Li L, Li QF, Yang XP, Jin RG (2010) Co-electrospun composite nanofibers of blends of poly[(amino acid ester)phosphazene] and gelatin. Polym Int 59:610–616Google Scholar
  194. 194.
    Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellini S, Grandi C, Parnigotto PP (2007) Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res Part A 80A:661–668Google Scholar
  195. 195.
    Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR, Laurencin CT (2011) Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for load-bearing bone regeneration. Adv Funct Mater 21:2641–2651Google Scholar
  196. 196.
    Qian YC, Ren N, Huang XJ, Chen C, Yu AG, Xu ZK (2013) Glycosylation of polyphosphazene nanofibrous membrane by click chemistry for protein recognition. Macromol Chem Phys 214:1852–1858Google Scholar
  197. 197.
    Singh A, Steely L, Allcock HR (2005) Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers. Langmuir 21:11604–11607Google Scholar
  198. 198.
    Xu Y, Wen Y, Yn W, Lin C, Li G (2012) Hybrid nanofibrous mats with remarkable solvent and temperature resistance produced by electrospinning technique. Mater Lett 78:139–142Google Scholar
  199. 199.
    Schramm C, Rinderer B, Tessadri R (2013) Synthesis and characterization of novel ultrathin polyimide fibers via sol–gel process and electrospinning. J Appl Polym Sci 128:1274–1281Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chiara Gualandi
    • 1
  • Annamaria Celli
    • 2
  • Andrea Zucchelli
    • 3
  • Maria Letizia Focarete
    • 1
    Email author
  1. 1.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  2. 2.Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaBolognaItaly
  3. 3.Department of Industrial Engineering (DIN) and Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (AMM ICIR)University of BolognaBolognaItaly

Personalised recommendations