Skip to main content

P3HT and Other Polythiophene Field-Effect Transistors

  • Chapter
  • First Online:
P3HT Revisited – From Molecular Scale to Solar Cell Devices

Part of the book series: Advances in Polymer Science ((POLYMER,volume 265))

Abstract

Long before the potential of poly(3-hexylthiophene) (P3HT) in bulk-heterojunction solar cells was discovered, this conjugated polymer was one of the first and strongest contenders as a high mobility, solution-processable semiconductor for organic field-effect transistors (FETs). Many of the fundamental charge transport properties that were investigated for P3HT-FETs have informed subsequent studies of P3HT-based solar cells and the development of other high-mobility polythiophene-based polymers. Here we will give a brief overview of P3HT transistors, including the general working principles of polymer FETs and the various factors that influence device performance, such as regioregularity, molecular weight, solvents, chain alignment, and doping. Strategies for tuning the P3HT nano- and microstructure by using blends and copolymers and ways to reach the limits of charge transport in P3HT at high carrier densities will be discussed. Finally, we will survey some of the new polythiophene derivatives that have been developed over the last decade and may replace P3HT as the most popular polymer semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assadi A, Svensson C, Willander M, Inganas O (1988) Field-effect mobility of poly(3-hexylthiophene). Appl Phys Lett 53:195–197

    CAS  Google Scholar 

  2. Paloheimo J, Kuivalainen P, Stubb H, Vuorimaa E, Yli-Lahti P (1990) Molecular field-effect transistors using conducting polymer Langmuir–Blodgett films. Appl Phys Lett 56:1157–1159

    CAS  Google Scholar 

  3. Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69:4108–4110

    CAS  Google Scholar 

  4. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744

    CAS  Google Scholar 

  5. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P et al (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    CAS  Google Scholar 

  6. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M (1993) Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure–property relationships in conducting polymers. J Am Chem Soc 115:4910–4911

    CAS  Google Scholar 

  7. Lu G, Blakesley J, Himmelberger S, Pingel P, Frisch J, Lieberwirth I, Salzmann I, Oehzelt M, Di Pietro R, Salleo A et al (2013) Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat Commun 4:1588

    Google Scholar 

  8. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12:1038–1044

    CAS  Google Scholar 

  9. Tanase C, Meijer EJ, Blom PWM, de Leeuw DM (2003) Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys Rev Lett 91:216601

    CAS  Google Scholar 

  10. Natali D, Fumagalli L, Sampietro M (2007) Modeling of organic thin film transistors: effect of contact resistances. J Appl Phys 101:014501–014512

    Google Scholar 

  11. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic transistors in optical displays and microelectronic applications. Adv Mater 22:3778–3798

    CAS  Google Scholar 

  12. Sze SM (2002) Semiconductor devices – physics and technology, 2nd edn. Wiley, New York

    Google Scholar 

  13. Panzer MJ, Frisbie CD (2008) Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv Mater 20:3177–3180

    CAS  Google Scholar 

  14. Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie CD (2012) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846

    Google Scholar 

  15. Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056

    CAS  Google Scholar 

  16. Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533

    CAS  Google Scholar 

  17. Cho JH, Lee J, Xia Y, Kim B, He YY, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mat 7:900–906

    CAS  Google Scholar 

  18. Xia Y, Cho JH, Lee J, Ruden PP, Frisbie CD (2009) Comparison of the mobility-carrier density relation in polymer and single-crystal organic transistors employing vacuum and liquid gate dielectrics. Adv Mater 21:2174–2179

    CAS  Google Scholar 

  19. Xie W, Frisbie CD (2011) Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J Phys Chem C 115:14360–14368

    CAS  Google Scholar 

  20. McCullough RD, Lowe RD (1992) Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Commun 1992(1):70–72

    Google Scholar 

  21. McCullough RD, Lowe RD, Jayaraman M, Anderson DL (1993) Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). J Org Chem 58:904–912

    CAS  Google Scholar 

  22. Clark J, Silva C, Friend RH, Spano FC (2007) Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys Rev Lett 98:206406

    Google Scholar 

  23. Osaka I, McCullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41:1202–1214

    CAS  Google Scholar 

  24. Aiyar AR, Hong J-I, Reichmanis E (2012) Regioregularity and intrachain ordering: impact on the nanostructure and charge transport in two-dimensional assemblies of poly(3-hexylthiophene). Chem Mat 24:2845–2853

    CAS  Google Scholar 

  25. Kohn P, Huettner S, Komber H, Senkovskyy V, Tkachov R, Kiriy A, Friend RH, Steiner U, Huck WTS, Sommer J-U, Sommer M (2012) On the role of single regiodefects and polydispersity in regioregular poly(3-hexylthiophene): defect distribution, synthesis of defect-free chains, and a simple model for the determination of crystallinity. J Am Chem Soc 134(10):4790–4805

    Google Scholar 

  26. Kline RJ, McGehee MD, Kadnikova EN, Liu JS, Frechet JMJ (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522

    CAS  Google Scholar 

  27. Chang JF, Clark J, Zhao N, Sirringhaus H, Breiby DW, Andreasen JW, Nielsen MM, Giles M, Heeney M, McCulloch I (2006) Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers. Phys Rev B 74:115318

    Google Scholar 

  28. Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rabe JP, Scherf U, Neher D (2004) Effect of molecular weight and annealing of poly(3-hexylthiophene)S on the performance of organic field-effect transistors. Adv Funct Mater 14:757–764

    CAS  Google Scholar 

  29. Zhang R, Li B, Iovu MC, Jeffries-El M, Sauvé G, Cooper J, Jia S, Tristram-Nagle S, Smilgies DM, Lambeth DN et al (2006) Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J Am Chem Soc 128:3480–3481

    CAS  Google Scholar 

  30. Kline RJ, McGehee MD, Kadnikova EN, Liu JS, Frechet JMJ, Toney MF (2005) Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38:3312–3319

    CAS  Google Scholar 

  31. Virkar AA, Mannsfeld S, Bao Z, Stingelin N (2010) Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv Mater 22:3857–3875

    CAS  Google Scholar 

  32. Verilhac J-M, Pokrop R, LeBlevennec G, Kulszewicz-Bajer I, Buga K, Zagorska M, Sadki S, Pron A (2006) Molecular weight dependent charge carrier mobility in poly(3,3″-dioctyl-2,2′:5′,2″-terthiophene). J Phys Chem B 110:13305–13309

    CAS  Google Scholar 

  33. Donley CL, Zaumseil J, Andreasen JW, Nielsen MM, Sirringhaus H, Friend RH, Kim JS (2005) Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-Di-N-octylfluorene-Alt-benzothiadiazole). J Am Chem Soc 127:12890–12899

    CAS  Google Scholar 

  34. Brinkmann M, Rannou P (2009) Molecular weight dependence of chain packing and semicrystalline structure in oriented films of regioregular poly(3-hexylthiophene) revealed by high-resolution transmission electron microscopy. Macromolecules 42:1125–1130

    CAS  Google Scholar 

  35. Rivnay J, Noriega R, Kline RJ, Salleo A, Toney MF (2011) Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys Rev B 84:045203

    Google Scholar 

  36. Chang J-F, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H (2004) Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mat 16:4772–4776

    CAS  Google Scholar 

  37. Clark J, Chang J-F, Spano FC, Friend RH, Silva C (2009) Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl Phys Lett 94:163306

    Google Scholar 

  38. Salleo A, Chen TW, Volkel AR, Wu Y, Liu P, Ong BS, Street RA (2004) Intrinsic hole mobility and trapping in a regioregular poly(thiophene). Phys Rev B 70:115311

    Google Scholar 

  39. DeLongchamp DM, Vogel BM, Jung Y, Gurau MC, Richter CA, Kirillov OA, Obrzut J, Fischer DA, Sambasivan S, Richter LJ et al (2005) Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem Mat 17:5610–5612

    CAS  Google Scholar 

  40. Yang H, Shin TJ, Yang L, Cho K, Ryu CY, Bao Z (2005) Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv Funct Mater 15:671–676

    CAS  Google Scholar 

  41. Salammal Shabi T, Grigorian S, Brinkmann M, Pietsch U, Koenen N, Kayunkid N, Scherf U (2012) Enhancement in crystallinity of poly(3-hexylthiophene) thin films prepared by low-temperature drop casting. J Appl Polym Sci 125:2335–2341

    Google Scholar 

  42. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energ Mater Sol Cell 93:394–412

    CAS  Google Scholar 

  43. Khim D, Han H, Baeg K-J, Kim J, Kwak S-W, Kim D-Y, Noh Y-Y (2013) Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits. Adv Mater 25:4302–4308

    CAS  Google Scholar 

  44. Sondergaard R, Hosel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49

    CAS  Google Scholar 

  45. Søndergaard RR, Hösel M, Krebs FC (2013) Roll-to-roll fabrication of large area functional organic materials. J Polym Sci B 51:16–34

    Google Scholar 

  46. Wong L-Y, Png R-Q, Silva FBS, Chua L-L, Repaka DVM, Shi-Chen, Gao X-Y, Ke L, Chua S-J, Wee ATS et al (2010) Interplay of processing, morphological order, and charge-carrier mobility in polythiophene thin films deposited by different methods: comparison of spin-cast, drop-cast, and inkjet-printed films. Langmuir 26:15494–15507

    CAS  Google Scholar 

  47. Kim SH, Hong K, Lee KH, Frisbie CD (2013) Performance and stability of aerosol-Jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl Mater Interfaces 5:6580–6585

    CAS  Google Scholar 

  48. Aiyar AR, Hong J-I, Nambiar R, Collard DM, Reichmanis E (2011) Tunable crystallinity in regioregular poly(3-hexylthiophene) thin films and its impact on field effect mobility. Adv Funct Mater 21:2652–2659

    CAS  Google Scholar 

  49. Aiyar AR, Hong J-I, Izumi J, Choi D, Kleinhenz N, Reichmanis E (2013) Ultrasound-induced ordering in poly(3-hexylthiophene): role of molecular and process parameters on morphology and charge transport. ACS Appl Mater Interfaces 5:2368–2377

    CAS  Google Scholar 

  50. Zhao K, Khan HU, Li R, Su Y, Amassian A (2013) Entanglement of conjugated polymer chains influences molecular self-assembly and carrier transport. Adv Funct Mater 23:6024–6035

    CAS  Google Scholar 

  51. Park YD, Lee HS, Choi YJ, Kwak D, Cho JH, Lee S, Cho K (2009) Solubility-induced ordered polythiophene precursors for high-performance organic thin-film transistors. Adv Funct Mater 19:1200–1206

    CAS  Google Scholar 

  52. Chang M, Choi D, Fu B, Reichmanis E (2013) Solvent based hydrogen bonding: impact on poly(3-hexylthiophene) nanoscale morphology and charge transport characteristics. Acs Nano 7:5402–5413

    CAS  Google Scholar 

  53. Lide DR (ed) (1994) CRC handbook of chemistry and physics, 75th edn. CRC, Boca Raton

    Google Scholar 

  54. Lu G, Tang H, Qu Y, Li L, Yang X (2007) Enhanced electrical conductivity of highly crystalline polythiophene/insulating-polymer composite. Macromolecules 40:6579–6584

    CAS  Google Scholar 

  55. Oh JY, Shin M, Lee TI, Jang WS, Min Y, Myoung J-M, Baik HK, Jeong U (2012) Self-seeded growth of poly(3-hexylthiophene) (P3ht) nanofibrils by a cycle of cooling and heating in solutions. Macromolecules 45:7504–7513

    CAS  Google Scholar 

  56. Qiu L, Lee WH, Wang X, Kim JS, Lim JA, Kwak D, Lee S, Cho K (2009) Organic thin-film transistors based on polythiophene nanowires embedded in insulating polymer. Adv Mater 21:1349–1353

    CAS  Google Scholar 

  57. Jo SB, Lee WH, Qiu L, Cho K (2012) Polymer blends with semiconducting nanowires for organic electronics. J Mater Chem 22:4244–4260

    CAS  Google Scholar 

  58. Wu P-T, Xin H, Kim FS, Ren G, Jenekhe SA (2009) Regioregular poly(3-pentylthiophene): synthesis, self-assembly of nanowires, high-mobility field-effect transistors, and efficient photovoltaic cells. Macromolecules 42:8817–8826

    CAS  Google Scholar 

  59. Liu J, Zou J, Zhai L (2009) Bottom-up assembly of poly(3-hexylthiophene) on carbon nanotubes: 2d building blocks for nanoscale circuits. Macromol Rapid Commun 30:1387–1391

    CAS  Google Scholar 

  60. Sarker BK, Liu J, Zhai L, Khondaker SI (2011) Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode. ACS Appl Mater Interfaces 3:1180–1185

    CAS  Google Scholar 

  61. Merlo JA, Frisbie CD (2003) Field effect conductance of conducting polymer nanofibers. J Polym Sci B 41:2674–2680

    CAS  Google Scholar 

  62. Merlo JA, Frisbie CD (2004) Field effect transport and trapping in regioregular polythiophene nanofibers. J Phys Chem B 108:19169–19179

    CAS  Google Scholar 

  63. Wang GM, Swensen J, Moses D, Heeger AJ (2003) Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J Appl Phys 93:6137–6141

    CAS  Google Scholar 

  64. Cho S, Lee K, Yuen J, Wang G, Moses D, Heeger AJ, Surin M, Lazzaroni R (2006) Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. J Appl Phys 100:114503–114506

    Google Scholar 

  65. Crossland EJW, Rahimi K, Reiter G, Steiner U, Ludwigs S (2011) Systematic control of nucleation density in poly(3-hexylthiophene) thin films. Adv Funct Mater 21:518–524

    CAS  Google Scholar 

  66. Lu GH, Li LG, Yang XN (2007) Achieving perpendicular alignment of rigid polythiophene backbones to the substrate by using solvent-vapor treatment. Adv Mater 19:3594–3598

    CAS  Google Scholar 

  67. Wang H, Liu J, Xu Y, Han Y (2013) Fibrillar morphology of derivatives of poly(3-alkylthiophene)S by solvent vapor annealing: effects of conformational transition and conjugate length. J Phys Chem B 117:5996–6006

    CAS  Google Scholar 

  68. Crossland EJW, Tremel K, Fischer F, Rahimi K, Reiter G, Steiner U, Ludwigs S (2012) Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv Mater 24:839–844

    CAS  Google Scholar 

  69. Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of N-type field-effect behaviour in organic semiconductors. Nature 434:194–199

    CAS  Google Scholar 

  70. Aguirre CM, Levesque PL, Paillet M, Lapointe F, St-Antoine BC, Desjardins P, Martel R (2009) The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors. Adv Mater 21:3087–3091

    CAS  Google Scholar 

  71. Lim SC, Kim SH, Lee JH, Kim MK, Kim DJ, Zyung T (2005) Surface-treatment effects on organic thin-film transistors. Synth Met 148:75–79

    CAS  Google Scholar 

  72. Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131:9396–9404

    CAS  Google Scholar 

  73. Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S, Iwasa Y (2004) Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat Mater 3:317–322

    CAS  Google Scholar 

  74. Kim DH, Park YD, Jang Y, Yang H, Kim YH, Han JI, Moon DG, Park S, Chang T, Chang C et al (2005) Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors. Adv Funct Mater 15:77–82

    Google Scholar 

  75. Kline RJ, McGehee MD, Toney MF (2006) Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat Mater 5:222–228

    Google Scholar 

  76. Jimison LH, Himmelberger S, Duong DT, Rivnay J, Toney MF, Salleo A (2013) Vertical confinement and interface effects on the microstructure and charge transport of P3ht thin films. J Polym Sci B 51:611–620

    CAS  Google Scholar 

  77. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF (2012) Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112:5488–5519

    CAS  Google Scholar 

  78. Veres J, Ogier SD, Leeming SW, Cupertino DC, Khaffaf SM (2003) Low-K insulators as the choice of dielectrics in organic field- effect transistors. Adv Funct Mater 13:199–204

    CAS  Google Scholar 

  79. Veres J, Ogier S, Lloyd G, de Leeuw D (2004) Gate insulators in organic field-effect transistors. Chem Mat 16:4543–4555

    CAS  Google Scholar 

  80. Lan Y-K, Huang C-I (2009) Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly(3-hexylthiophene). J Phys Chem B 113:14555–14564

    CAS  Google Scholar 

  81. Lan Y-K, Yang CH, Yang H-C (2010) Theoretical investigations of electronic structure and charge transport properties in polythiophene-based organic field-effect transistors. Polym Int 59:16–21

    CAS  Google Scholar 

  82. Sirringhaus H, Wilson RJ, Friend RH, Inbasekaran M, Wu W, Woo EP, Grell M, Bradley DDC (2000) Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl Phys Lett 77:406–408

    CAS  Google Scholar 

  83. Zaumseil J, Groves C, Winfield JM, Greenham NC, Sirringhaus H (2008) Electron-hole recombination in uniaxially aligned semiconducting polymers. Adv Funct Mater 18:3630–3637

    CAS  Google Scholar 

  84. Amundson KR, Sapjeta BJ, Lovinger AJ, Bao ZN (2002) An in-plane anisotropic organic semiconductor based upon poly(3-hexyl thiophene). Thin Solid Films 414:143–149

    CAS  Google Scholar 

  85. Jimison LH, Toney MF, McCulloch I, Heeney M, Salleo A (2009) Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv Mater 21:1568–1572

    CAS  Google Scholar 

  86. O’Connor B, Kline RJ, Conrad BR, Richter LJ, Gundlach D, Toney MF, DeLongchamp DM (2011) Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv Funct Mater 21:3697–3705

    Google Scholar 

  87. Fischer FSU, Tremel K, Sommer M, Crossland EJC, Ludwigs S (2012) Directed crystallization of poly(3-hexylthiophene) in micrometre channels under confinement and in electric fields. Nanoscale 4:2138–2144

    CAS  Google Scholar 

  88. Lee MJ, Gupta D, Zhao N, Heeney M, McCulloch I, Sirringhaus H (2011) Anisotropy of charge transport in a uniaxially aligned and chain-extended, high-mobility, conjugated polymer semiconductor. Adv Funct Mater 21:932–940

    CAS  Google Scholar 

  89. Goffri S, Muller C, Stingelin-Stutzmann N, Breiby DW, Radano CP, Andreasen JW, Thompson R, Janssen RAJ, Nielsen MM, Smith P et al (2006) Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nat Mater 5:950–956

    CAS  Google Scholar 

  90. Kim FS, Jenekhe SA (2012) Charge transport in poly(3-butylthiophene) nanowires and their nanocomposites with an insulating polymer. Macromolecules 45:7514–7519

    CAS  Google Scholar 

  91. Kim HC, Park SM, Hinsberg WD (2010) Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem Rev 110:146–177

    CAS  Google Scholar 

  92. Liu J, Haynes D, Balliet C, Zhang R, Kowalewski T, McCullough RD (2012) Self encapsulated poly(3-hexylthiophene)-poly(fluorinated alkyl methacrylate) rod-coil block copolymers with high field effect mobilities on bare Sio2. Adv Funct Mater 22:1024–1032

    CAS  Google Scholar 

  93. Yu X, Xiao K, Chen J, Lavrik NV, Hong K, Sumpter BG, Geohegan DB (2011) High-performance field-effect transistors based on polystyrene-B-poly(3-hexylthiophene) diblock copolymers. Acs Nano 5:3559–3567

    CAS  Google Scholar 

  94. Sauvé G, McCullough RD (2007) High field-effect mobilities for diblock copolymers of poly(3-hexylthiophene) and poly(methyl acrylate). Adv Mater 19:1822–1825

    Google Scholar 

  95. Lee J-Y, Lin C-J, Lo C-T, Tsai J-C, Chen W-C (2013) Synthesis, morphology, and field-effect transistor characteristics of crystalline diblock copolymers consisted of poly(3-hexylthiophene) and syndiotactic polypropylene. Macromolecules 46:3005–3014

    CAS  Google Scholar 

  96. Lin J-C, Lee W-Y, Kuo C-C, Li C, Mezzenga R, Chen W-C (2012) Synthesis, morphology, and field-effect transistor characteristics of new crystalline–crystalline diblock copolymers of poly(3-hexylthiophene-block-steryl acrylate). J Polym Sci A Polym Chem 50:686–695

    CAS  Google Scholar 

  97. Müller C, Goffri S, Breiby DW, Andreasen JW, Chanzy HD, Janssen RAJ, Nielsen MM, Radano CP, Sirringhaus H, Smith P et al (2007) Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater 17:2674–2679

    Google Scholar 

  98. Radano CP, Scherman OA, Stingelin-Stutzmann N, Müller C, Breiby DW, Smith P, Janssen RAJ, Meijer EW (2005) Crystalline–crystalline block copolymers of regioregular poly(3-hexylthiophene) and polyethylene by ring-opening metathesis polymerization. J Am Chem Soc 127:12502–12503

    CAS  Google Scholar 

  99. Arias AC, Endicott F, Street RA (2006) Surface-induced self-encapsulation of polymer thin-film transistors. Adv Mater 18:2900–2904

    CAS  Google Scholar 

  100. Abdou MSA, Orfino FP, Son Y, Holdcroft S (1997) Interaction of oxygen with conjugated polymers: charge transfer complex formation with poly(3-alkylthiophenes). J Am Chem Soc 119:4518–4524

    CAS  Google Scholar 

  101. Liao H-H, Yang C-M, Liu C-C, Horng S-F, Meng H-F, Shy J-T (2008) Dynamics and reversibility of oxygen doping and De-doping for conjugated polymer. J Appl Phys 103:104506–104508

    Google Scholar 

  102. Liu C-C, Yang C-M, Liu W-H, Liao H-H, Horng S-F, Meng H-F (2009) Interface effect of oxygen doping in polythiophene. Synth Met 159:1131–1134

    CAS  Google Scholar 

  103. Sperlich A, Kraus H, Deibel C, Blok H, Schmidt J, Dyakonov V (2011) Reversible and irreversible interactions of poly(3-hexylthiophene) with oxygen studied by spin-sensitive methods. J Phys Chem B 115:13513–13518

    CAS  Google Scholar 

  104. Ong BS, Wu YL, Liu P, Gardner S (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126:3378–3379

    CAS  Google Scholar 

  105. Xia Y, Zhang W, Ha M, Cho JH, Renn MJ, Kim CH, Frisbie CD (2010) Printed sub-2V gel-electrolyte-gated polymer transistors and circuits. Adv Funct Mater 20:587–594

    CAS  Google Scholar 

  106. Wang S, Ha M, Manno M, Daniel Frisbie C, Leighton C (2012) Hopping transport and the hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat Commun 3:1210

    Google Scholar 

  107. Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y et al (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754

    Google Scholar 

  108. Kang I, Yun H-J, Chung DS, Kwon S-K, Kim Y-H (2013) Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc 135:14896–14899

    CAS  Google Scholar 

  109. Ong BS, Wu Y, Li Y, Liu P, Pan H (2008) Thiophene polymer semiconductors for organic thin-film transistors. Chemistry 14:4766–4778

    CAS  Google Scholar 

  110. McCulloch I, Heeney M, Chabinyc ML, DeLongchamp D, Kline RJ, Cölle M, Duffy W, Fischer D, Gundlach D, Hamadani B et al (2009) Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv Mater 21:1091–1109

    CAS  Google Scholar 

  111. Nielsen CB, McCulloch I (2013) Recent advances in transistor performance of polythiophenes. Prog Polym Sci 38:2053–2069

    CAS  Google Scholar 

  112. McCulloch I, Holliday S, Donaghey J (2014) Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem Mater 26:647-663

    Google Scholar 

  113. McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W et al (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328–333

    CAS  Google Scholar 

  114. Kim J, Lim B, Baeg K-J, Noh Y-Y, Khim D, Jeong H-G, Yun J-M, Kim D-Y (2011) Highly soluble poly(thienylenevinylene) derivatives with charge-carrier mobility exceeding 1 cm2 v−1 s−1. Chem Mat 23:4663–4665

    CAS  Google Scholar 

  115. Rieger R, Beckmann D, Pisula W, Steffen W, Kastler M, Müllen K (2010) Rational optimization of benzo[2,1-B;3,4-B′]dithiophene-containing polymers for organic field-effect transistors. Adv Mater 22:83–86

    CAS  Google Scholar 

  116. Pan H, Li Y, Wu Y, Liu P, Ong BS, Zhu S, Xu G (2007) Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J Am Chem Soc 129:4112–4113

    CAS  Google Scholar 

  117. Pan H, Wu Y, Li Y, Liu P, Ong BS, Zhu S, Xu G (2007) Benzodithiophene copolymer – a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv Funct Mater 17:3574–3579

    CAS  Google Scholar 

  118. Horie M, Majewski LA, Fearn MJ, Yu C-Y, Luo Y, Song A, Saunders BR, Turner ML (2010) Cyclopentadithiophene based polymers-a comparison of optical, electrochemical and organic field-effect transistor characteristics. J Mater Chem 20:4347–4355

    CAS  Google Scholar 

  119. Zhang M, Tsao HN, Pisula W, Yang C, Mishra AK, Müllen K (2007) Field-effect transistors based on a benzothiadiazole–cyclopentadithiophene copolymer. J Am Chem Soc 129:3472–3473

    CAS  Google Scholar 

  120. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K (2009) The influence of morphology on high-performance polymer field-effect transistors. Adv Mater 21:209–212

    CAS  Google Scholar 

  121. Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133:2605–2612

    CAS  Google Scholar 

  122. Fan J, Yuen JD, Cui W, Seifter J, Mohebbi AR, Wang M, Zhou H, Heeger A, Wudl F (2012) High-hole-mobility field-effect transistors based on Co-benzobisthiadiazole-quaterthiophene. Adv Mater 24:6164–6168

    CAS  Google Scholar 

  123. Zhang X, Richter LJ, DeLongchamp DM, Kline RJ, Hammond MR, McCulloch I, Heeney M, Ashraf RS, Smith JN, Anthopoulos TD et al (2011) Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J Am Chem Soc 133:15073–15084

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Zaumseil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zaumseil, J. (2014). P3HT and Other Polythiophene Field-Effect Transistors. In: Ludwigs, S. (eds) P3HT Revisited – From Molecular Scale to Solar Cell Devices. Advances in Polymer Science, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2014_279

Download citation

Publish with us

Policies and ethics