Skip to main content

Morphology and Charge Transport in P3HT: A Theorist’s Perspective

  • Chapter
  • First Online:
P3HT Revisited – From Molecular Scale to Solar Cell Devices

Part of the book series: Advances in Polymer Science ((POLYMER,volume 265))

Abstract

Poly(3-hexylthiophene) (P3HT) is the fruit fly among polymeric organic semiconductors. It has complex self-assembling and electronic properties and yet lacks the synthetic challenges that characterize advanced donor–acceptor-type polymers. P3HT can be used both in solar cells and in field-effect transistors. Its morphological, conductive, and optical properties have been characterized in detail using virtually any and every experimental technique available, whereas the contributions of theory and simulation to a rationalization of these properties have so far been modest. The purpose of this review is to take a snapshot of these results and, more importantly, outline directions that still require substantial method development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCullough RD (1998) Adv Mater 10(2):93–116

    CAS  Google Scholar 

  2. McCullough RD, Lowe RD (1992) Chem Commun 1992(1):70

    Google Scholar 

  3. Meyer V (1883) Berichte der deutschen chemischen Gesellschaft 16(1):1465

    Google Scholar 

  4. Yamamoto T, Sanechika K, Yamamoto A (1980) J Polym Sci Polym Lett Ed 18(1):9

    CAS  Google Scholar 

  5. Lin JWP, Dudek LP (1980) J Polym Sci Polym Chem Ed 18(9):2869

    CAS  Google Scholar 

  6. Elsenbaumer R, Jen K, Oboodi R (1986) Synth Met 15(2–3):169

    CAS  Google Scholar 

  7. Perepichka IF, Perepichka DF, Meng H (2009) Thiophene-based materials for electroluminescent applications. In: Perepichka IF, Perepichka DF (ed), Handbook of thiophene-based materials. Wiley, Hoboken, p 695–756

    Google Scholar 

  8. Prosa TJ, Winokur MJ, McCullough RD (1996) Macromolecules 29(10):3654

    CAS  Google Scholar 

  9. Brinkmann M (2011) J Polym Sci B Polym Phys 49(17):1218

    CAS  Google Scholar 

  10. Wu Z, Petzold A, Henze T, Thurn-Albrecht T, Lohwasser RH, Sommer M, Thelakkat M (2010) Macromolecules 43(10):4646

    CAS  Google Scholar 

  11. Yuan Y, Zhang J, Sun J, Hu J, Zhang T, Duan Y (2011) Macromolecules 44(23):9341

    CAS  Google Scholar 

  12. Dudenko D, Kiersnowski A, Shu J, Pisula W, Sebastiani D, Spiess HW, Hansen MR (2012) Angew Chem Int Ed 51(44):11068

    CAS  Google Scholar 

  13. Poelking C, Andrienko D (2013) Macromolecules 46(22):8941

    CAS  Google Scholar 

  14. Shimomura T, Takahashi T, Ichimura Y, Nakagawa S, Noguchi K, Heike S, Hashizume T (2011) Phys Rev B 83(11):115314

    Google Scholar 

  15. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4(11):864

    CAS  Google Scholar 

  16. Mauer R, Kastler M, Laquai F (2010) Adv Funct Mater 20(13):2085

    CAS  Google Scholar 

  17. Ballantyne AM, Chen L, Dane J, Hammant T, Braun FM, Heeney M, Duffy W, McCulloch I, Bradley DDC, Nelson J (2008) Adv Funct Mater 18(16):2373–2380

    CAS  Google Scholar 

  18. Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49(18):1210

    CAS  Google Scholar 

  19. Bao Z, Dodabalapur A, Lovinger AJ (1996) Appl Phys Lett 69(26):4108

    CAS  Google Scholar 

  20. Chang JF, Clark J, Zhao N, Sirringhaus H, Breiby DW, An-dreasen JW, Nielsen MM, Giles M, Heeney M, McCulloch I (2006) Phys Rev B 74(11):115318

    Google Scholar 

  21. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Fréchet JMJ, Toney MF (2005) Macromolecules 38(8):3312

    CAS  Google Scholar 

  22. Zen A, Paum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rabe JP, Scherf U, Neher D (2004) Adv Funct Mater 14(8):757–764

    CAS  Google Scholar 

  23. Merlo JA, Frisbie CD (2003) J Polym Sci B Polym Phys 41(21):2674–2680

    CAS  Google Scholar 

  24. Bolsée JC, Oosterbaan WD, Lutsen L, Vanderzande D, Manca J (2011) Org Electron 12(12):2084

    Google Scholar 

  25. Raos G, Famulari A, Marcon V (2003) Chem Phys Lett 379(3–4):364

    CAS  Google Scholar 

  26. Darling SB, Sternberg M (2009) J Phys Chem B 113(18):6215, PMID: 19290596

    CAS  Google Scholar 

  27. Marchiori C, Koehler M (2010) Synth Met 160(7–8):643

    CAS  Google Scholar 

  28. Bhatta RS, Yimer YY, Tsige M, Perry DS (2012) Comput Theor Chem 995:36

    CAS  Google Scholar 

  29. Tsuzuki S, Honda K, Azumi R (2002) J Am Chem Soc 124(41):12200

    CAS  Google Scholar 

  30. Bhatta RS, Perry DS (2013) Comput Theor Chem 1008:90

    CAS  Google Scholar 

  31. Baggioli A, Famulari A (2014) Phys Chem Chem Phys 16:3983-3994

    Google Scholar 

  32. Maillard A, Rochefort A (2009) Phys Rev B 79(11):115207

    Google Scholar 

  33. Colle R, Grosso G, Ronzani A, Zicovich-Wilson CM (2011) Physica Status Solidi B 248(6):1360–1368

    CAS  Google Scholar 

  34. Xie W, Sun YY, Zhang SB, Northrup JE (2011) Phys Rev B 83(18):184117

    Google Scholar 

  35. Famulari A, Raos G, Baggioli A, Casalegno M, Po R, Meille SV (2012) J Phys Chem B 116(49):14504

    CAS  Google Scholar 

  36. Dag S, Wang LW (2010) J Phys Chem B 114(18):5997

    CAS  Google Scholar 

  37. Marcon V, Raos G (2004) J Phys Chem B 108(46):18053

    CAS  Google Scholar 

  38. Moreno M, Casalegno M, Raos G, Meille SV, Po R (2010) J Phys Chem B 114(4):1591

    CAS  Google Scholar 

  39. To TT, Adams S (2012) Nanosci Nanotechnol Lett 4(7):703

    CAS  Google Scholar 

  40. Bhatta RS, Yimer YY, Perry DS, Tsige M (2013) J Phys Chem B 117(34):10035

    CAS  Google Scholar 

  41. Melis C, Colombo L, Mattoni A (2011) J Phys Chem C 115(2):576

    CAS  Google Scholar 

  42. Alexiadis O, Mavrantzas VG (2013) Macromolecules 46(6):2450

    CAS  Google Scholar 

  43. Curcó D, Alemán C (2007) J Comput Chem 28(10):1743–1749

    Google Scholar 

  44. Zhang G, Pei Y, Ma J, Yin K, Chen CL (2004) J Phys Chem B 108(22):6988

    CAS  Google Scholar 

  45. Huang DM, Faller R, Do K, Moulé AJ (2010) J Chem Theory Comput 6(2):526

    CAS  Google Scholar 

  46. Do K, Huang DM, Faller R, Moulé AJ (2010) Phys Chem Chem Phys 12(44):14735

    CAS  Google Scholar 

  47. Yimer YY, Dhinojwala A, Tsige M (2012) J Chem Phys 137(4):044703

    Google Scholar 

  48. Reddy S, Kuppa VK (2012) Synth Met 162(23):2117

    CAS  Google Scholar 

  49. D’Avino G, Mothy S, Muccioli L, Zannoni C, Wang L, Cornil J, Beljonne D, Castet F (2013) J Phys Chem C 117(25):12981

    Google Scholar 

  50. Lee CK, Pao CW, Chu CW (2011) Energ Environ Sci 4(10):4124

    CAS  Google Scholar 

  51. Müller M (2011) J Stat Phys 145(4):967

    Google Scholar 

  52. Noid WG (2013) J Chem Phys 139(9):090901

    CAS  Google Scholar 

  53. Kremer K, Müller-Plathe F (2002) Mol Simulat 28(8–9):729

    CAS  Google Scholar 

  54. Lyubartsev AP, Laaksonen A (1995) Phys Rev E 52(4):3730

    CAS  Google Scholar 

  55. Izvekov S, Voth GA (2005) J Phys Chem B 109(7):2469

    CAS  Google Scholar 

  56. Noid WG, Chu J, Ayton GS, Krishna V, Izvekov S, Voth GA, Das A, Andersen HC (2008) J Chem Phys 128:244114

    CAS  Google Scholar 

  57. Shell MS (2008) J Chem Phys 129(14):144108

    Google Scholar 

  58. Daoulas KC, Müller M (2010) Comparison of simulations of lipid membranes with membranes of block copolymers. In: Meier WP, Knoll W (eds) Polymer membranes/biomembranes. Advances in Polymer Science, vol 224. Springer, Berlin Heidelberg, pp 43–85

    Google Scholar 

  59. Jankowski E, Marsh HS, Jayaraman A (2013) Macromolecules 46(14):5775

    CAS  Google Scholar 

  60. Schwarz KN, Kee TW, Huang DM (2013) Nanoscale 5(5):2017

    CAS  Google Scholar 

  61. Reith D, Pütz M, Müller-Plathe F (2003) J Comput Chem 24(13):1624–1636

    CAS  Google Scholar 

  62. Carbone P, Varzaneh HAK, Chen X, Müller-Plathe F (2008) J Chem Phys 128(6):064904

    Google Scholar 

  63. Daoulas KC, Rühle V, Kremer K (2012) J Phys Condens Mat 24(28):284121

    Google Scholar 

  64. Gemünden P, Poelking C, Kremer K, Andrienko D, Daoulas KC (2013) Macromolecules 46(14):5762

    Google Scholar 

  65. Stingelin N (2012) Polym Int 61(6):866–873

    CAS  Google Scholar 

  66. Ho V, Boudouris BW, Segalman RA (2010) Macromolecules 43(19):7895

    CAS  Google Scholar 

  67. Holyst R, Vilgis TA (1996) Macromol Theor Simulat 5(4):573–643

    CAS  Google Scholar 

  68. Hamm M, Goldbeck-Wood G, Zvelindovsky AV, Sevink GJA, Fraaije JGEM (2002) J Chem Phys 116(7):3152

    CAS  Google Scholar 

  69. Wang Q (2011) Soft Matter 7(8):3711

    CAS  Google Scholar 

  70. Pryamitsyn V, Ganesan V (2004) J Chem Phys 120(12):5824

    CAS  Google Scholar 

  71. Kumar NA, Ganesan V (2012) J Chem Phys 136(10):101101

    Google Scholar 

  72. Vettorel T, Besold G, Kremer K (2010) Soft Matter 6(10):2282

    CAS  Google Scholar 

  73. Helfand E, Tagami Y (2003) J Chem Phys 56(7):3592

    Google Scholar 

  74. Daoulas KC, Müller M (2006) J Chem Phys 125(18):184904

    Google Scholar 

  75. Detcheverry FA, Pike DQ, Nealey PF, Müller M, Pablo JJD (2009) Faraday Discuss 144:111

    Google Scholar 

  76. Kron AK (1965) Polym Sci USSR 7(7):1361

    Google Scholar 

  77. Wall FT, Mandel F (2008) J Chem Phys 63(11):4592

    Google Scholar 

  78. Rühle V, Kirkpatrick J, Andrienko D (2010) J Chem Phys 132(13):134103

    Google Scholar 

  79. Marcus RA (1993) Rev Mod Phys 65(3):599

    CAS  Google Scholar 

  80. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  81. Grabert H, Weiss U (1985) Phys Rev Lett 54(15):1605

    Google Scholar 

  82. Fisher MPA, Dorsey AT (1985) Phys Rev Lett 54(15):1609

    Google Scholar 

  83. Rühle V, Lukyanov A, May F, Schrader M, Vehoff T, Kirkpatrick J, Baumeier B, Andrienko D (2011) J Chem Theory Comput 7(10):3335

    Google Scholar 

  84. Asadi K, Kronemeijer AJ, Cramer T, Jan Anton Koster L, Blom PWM, de Leeuw DM (2013) Nat Commun 4:1710

    Google Scholar 

  85. Reimers JR (2001) J Chem Phys 115(20):9103

    CAS  Google Scholar 

  86. Hsu CP (2009) Accounts Chem Res 42(4):509

    CAS  Google Scholar 

  87. Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas JL (2006) J Am Chem Soc 128(30):9882

    CAS  Google Scholar 

  88. Brédas JL, Calbert JP, Filho DADS, Cornil J (2002) Proc Natl Acad Sci USA 99(9):5804

    Google Scholar 

  89. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Chem Rev 107(4):926

    CAS  Google Scholar 

  90. Kirkpatrick J (2008) Int J Quantum Chem 108(1):51, Bibtex: Kirkpatrick 2008

    CAS  Google Scholar 

  91. Baumeier B, Kirkpatrick J, Andrienko D (2010) Phys Chem Chem Phys 12(36):11103

    CAS  Google Scholar 

  92. Fogel Y, Zhi L, Rouhanipour A, Andrienko D, Räder HJ, Müllen K (2009) Macromolecules 42(18):6878

    CAS  Google Scholar 

  93. Scher H, Alexander S, Montroll EW (1980) Proc Natl Acad Sci U S A 77(7):3758

    CAS  Google Scholar 

  94. Stone AJ (1997) The theory of intermolecular forces. Clarendon, Oxford

    Google Scholar 

  95. Hättig C (1996) Chem Phys Lett 260(3–4):341

    Google Scholar 

  96. Hättig C, Heß BA (1994) Mol Phys 81(4):813

    Google Scholar 

  97. Verstraelen T, Pauwels E, De Proft F, Van Speybroeck V, Geer-lings P, Waroquier M (2012) J ChemTheory Comput 8(2):661

    CAS  Google Scholar 

  98. Breneman CM, Wiberg KB (1990) J Comput Chem 11(3):361–373

    CAS  Google Scholar 

  99. Stone A, Alderton M (1985) Mol Phys 56(5):1047

    CAS  Google Scholar 

  100. Stone AJ (2005) J Chem Theory Comput 1(6):1128

    CAS  Google Scholar 

  101. Kramer C, Bereau T, Spinn A, Liedl KR, Gedeck P, Meuwly M (2013) J Chem Inf Model 53(12):3410

    CAS  Google Scholar 

  102. Chirlian LE, Francl MM (1987) J Comput Chem 8(6):894

    CAS  Google Scholar 

  103. Thole B (1981) Chem Phys 59(3):341

    CAS  Google Scholar 

  104. van Duijnen PT, Swart M (1998) J Phys Chem A 102(14):2399

    Google Scholar 

  105. Applequist J, Carl JR, Fung KK (1972) J Am Chem Soc 94(9):2952

    CAS  Google Scholar 

  106. Ren P, Ponder JW (2003) J Phys Chem B 107(24):5933

    CAS  Google Scholar 

  107. Vukmirović N, Wang LW (2011) J Phys Chem B 115(8):1792

    Google Scholar 

  108. McMahon DP, Cheung DL, Goris L, Dacuna J, Salleo A, Troisi A (2011) J Phys Chem C 115(39):19386

    CAS  Google Scholar 

  109. Baessler H (1993) Phys Status Solidi B 175(1):15

    CAS  Google Scholar 

  110. Lan YK, Yang CH, Yang HC (2010) Polym Int 59(1):16

    CAS  Google Scholar 

  111. Kirkpatrick J, Marcon V, Nelson J, Kremer K, Andrienko D (2007) Phys Rev Lett 98(22):227402

    Google Scholar 

  112. Marcon V, Kirkpatrick J, Pisula W, Andrienko D (2008) Phys Status Solidi B 245(5):820–824

    CAS  Google Scholar 

  113. Andrienko D, Kirkpatrick J, Marcon V, Nelson J, Kremer K (2008) Phys Status Solidi B 245(5):830

    CAS  Google Scholar 

  114. Nelson J, Kwiatkowski JJ, Kirkpatrick J, Frost JM (2009) Accounts Chem Res 42(11):1768

    CAS  Google Scholar 

  115. May F, Marcon V, Hansen MR, Grozema F, Andrienko D (2011) J Mater Chem 21(26):9538

    CAS  Google Scholar 

  116. Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D (2012) J Am Chem Soc 134(13):6052

    CAS  Google Scholar 

  117. Schrader M, Körner C, Elschner C, Andrienko D (2012) J Mater Chem 22(41):22258

    CAS  Google Scholar 

  118. Mas-Torrent M, Boer DD, Durkut M, Hadley P, Schenning APHJ (2004) Nanotechnology 15(4):S265

    CAS  Google Scholar 

  119. Poelking C, Ivanov V, Kremer K, Risko C, Brédas JL, Andrienko D, Eunkyung C (2013) J Phys Chem C 117(4):1633

    CAS  Google Scholar 

  120. Olivier Y, Muccioli L, Lemaur V, Geerts YH, Zannoni C, Cornil J (2009) J Phys Chem B 113(43):14102

    CAS  Google Scholar 

  121. De Leener C, Hennebicq E, Sancho-Garcia JC, Beljonne D (2009) J Phys Chem B 113(5):1311

    Google Scholar 

  122. DuBay KH, Hall ML, Hughes TF, Wu C, Reichman DR, Friesner RA (2012) J Chem Theory Comput 8(11):4556

    CAS  Google Scholar 

  123. Kumar P, Mehta A, Mahurin SM, Dai S, Dadmun MD, Sumpter BG, Barnes MD (2004) Macromolecules 37(16):6132

    CAS  Google Scholar 

  124. Collini E, Scholes GD (2009) Science 323(5912):369, PMID: 19150843

    CAS  Google Scholar 

  125. Salleo A, Kline RJ, DeLongchamp DM, Chabinyc ML (2010) Adv Mater 22(34):3812–3838

    CAS  Google Scholar 

  126. Beljonne D, Cornil J, Sirringhaus H, Brown PJ, Shkunov M, Friend RH, Brédas JL (2001) Adv Funct Mater 11(3):229–234

    CAS  Google Scholar 

  127. Brown PJ, Sirringhaus H, Harrison M, Shkunov M, Friend RH (2001) Phys Rev B 63(12):125204

    Google Scholar 

  128. Magin EH, Borsenberger PM (1993) J Appl Phys 73(2):787

    CAS  Google Scholar 

  129. Van der Auweraer M, De Schryver FC, Borsenberger PM, Bässler H (1994) Adv Mater 6(3):199–213

    Google Scholar 

  130. Zade SS, Zamoshchik N, Bendikov M (2011) Accounts Chem Res 44(1):14

    CAS  Google Scholar 

  131. Nayyar IH, Batista ER, Tretiak S, Saxena A, Smith DL, Martin RL (2013) J Chem Theory Comput 9(2):1144

    CAS  Google Scholar 

  132. Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Shakya Tuladhar P, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, McCul-loch I (2011) J Am Chem Soc 133(10):3272

    CAS  Google Scholar 

  133. Qin T, Troisi A (2013) J Am Chem Soc 135(30):11247

    CAS  Google Scholar 

  134. Shaked S, Tal S, Roichman Y, Razin A, Xiao S, Eichen Y, Tessler N (2003) Adv Mater 15(11):913–916

    CAS  Google Scholar 

  135. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Mat 14(11):2745

    CAS  Google Scholar 

  136. Skylaris CK, Haynes PD, Mostofi AA, Payne MC (2005) J Chem Phys 122(8):084119

    Google Scholar 

  137. Gordon MS, Mullin JM, Pruitt SR, Roskop LB, Slipchenko LV, Boatz JA (2009) J Phys Chem B 113(29):9646

    CAS  Google Scholar 

  138. McMahon DP, Troisi A (2009) Chem Phys Lett 480(4–6):210

    CAS  Google Scholar 

  139. Vukmirović N, Wang LW (2009) J Phys Chem B 113(2):409

    Google Scholar 

  140. Vukmirović N, Wang LW (2009) Nano Lett 9(12):3996

    Google Scholar 

  141. Fedorov DG, Kitaura K (2007) J Phys Chem A 111(30):6904

    CAS  Google Scholar 

  142. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem PhysLett 313(3–4):701

    CAS  Google Scholar 

  143. Kubař T, Elstner M (2013) J R Soc Interface 10(87):20130415, PMID: 23883952

    Google Scholar 

  144. Liu J, Sun Y, Gao X, Xing R, Zheng L, Wu S, Geng Y, Han Y (2011) Langmuir 27(7):4212

    CAS  Google Scholar 

  145. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51(19):12947

    CAS  Google Scholar 

  146. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauen-heim T, Suhai S, Seifert G (1998) Phys Rev B 58(11):7260

    CAS  Google Scholar 

  147. Liu T, Troisi A (2014) Adv Funct Mater 24(7):925-933

    Google Scholar 

  148. Kubař T, Elstner M (2010) J Phys Chem B 114(34):11221

    Google Scholar 

  149. Kubař T, Kleinekathöfer U, Elstner M (2009) J Phys Chem B 113(39):13107

    Google Scholar 

  150. Johansson Ǻ, Stafström S (2001) Phys Rev Lett 86(16):3602

    CAS  Google Scholar 

  151. Barford W, Trembath D (2009) Phys Rev B 80(16):165418

    Google Scholar 

  152. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) Nat Mater 12(11):1038

    CAS  Google Scholar 

  153. Cheung DL, McMahon DP, Troisi A (2009) J Am Chem Soc 131(31):11179

    CAS  Google Scholar 

  154. Vukmirović N, Wang LW (2010) Appl Phys Lett 97(4):043305

    Google Scholar 

  155. Miller A, Abrahams E (1960) Phys Rev 120(3):745

    CAS  Google Scholar 

  156. Vukmirović N (2013) Phys Chem Chem Phys 15(10):3543

    Google Scholar 

  157. Bronold FX, Alvermann A, Fehske H (2004) Phil Mag 84(7):673

    CAS  Google Scholar 

  158. Fornari RP, Troisi A (2014) Phys Chem Chem Phys 16(21):9997

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the DFG program IRTG 1404, DFG grant SPP 1355, and BMBF grants MEDOS (FKZ 03EK3503B), MESOMERIE (FKZ 13N10723), and MORPHEUS (FKZ 13N11704). We thank Patrick Gemünden for fruitful collaborations and discussions. We are grateful to Jeroen van der Holst, Mara Jochum and Kurt Kremer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Andrienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poelking, C., Daoulas, K., Troisi, A., Andrienko, D. (2014). Morphology and Charge Transport in P3HT: A Theorist’s Perspective. In: Ludwigs, S. (eds) P3HT Revisited – From Molecular Scale to Solar Cell Devices. Advances in Polymer Science, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2014_277

Download citation

Publish with us

Policies and ethics