Skip to main content

Microwave-Assisted Step-Growth Polymerizations (From Polycondensation to C–C Coupling)

  • Chapter
  • First Online:
Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

The use of microwave irradiation has become a widespread and convenient method for heating food and beverages in modern society due to the energy efficient and volumetric heating observed with microwave irradiation. The application of microwave or dielectric heating in chemistry has been limited, however, with most applications occurring in organic chemistry. This new technology provides novel approaches for enhancing the material properties. The technique offers a simple, clean, fast, efficient, and economic method for the synthesis of a large number of organic molecules, which provided the momentum for many chemists to switch from traditional heating method to microwave-assisted chemistry. In recent years, the use of microwave irradiation has become a common heat source in organic chemistry. Inspired by this enormous success, chemists are also increasingly studying microwave irradiation for polymerization reactions. Polymer technology forms one of the largest areas of application of microwave technology, and the methods and procedures used therein are among the most developed in chemistry. The main areas in which the use of this energy has been explored in recent years are step-growth polymerizations, ring-opening polymerizations, and radical polymerizations. Its specific heating method attracts extensive interest because of rapid heating, suppressed side reactions, energy saving, direct heating, decreased environmental pollution, and safe operation. In the present chapter, an overview will be given of recent applications of microwave technology in well-known step-growth polymerization reactions. A comparison with the conventional methods demonstrates the advantages of microwaves in synthetic condensation polymerization chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCMO:

3,3-Bis(chloromethyl)oxetane

DAI:

Diphenylamino-isosorbide

DBTDL:

Dibutyltin dilaurate

DDS:

4,4′-Diaminodiphenylsulfone

DMAc:

N,N-Dimethylacetamide

DMF:

N,N-Dimethylformamide

DSC:

Differential scanning calorimetry

HMDI:

Hexamethylene diisocyanate

IL:

Ionic liquid

IPDI:

Isophorone diisocyanate

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MDI:

4,4′-Diphenylmethane diisocyanate

M n :

Number-average molecular weight

MPU:

4-(4-Methoxyphenyl)urazole

M w :

Weight-average molecular weight

NMP:

N-Methyl-2-pyrrolidone

NMR:

Nuclear magnetic resonance

PA:

Poly(amide)

PAI:

Poly(amide-imide)

PEA:

Poly(ester-amide)

PEG:

Poly(ethylene glycol)

PEI:

Poly(ester-imide)

PHU:

4-Phenylurazole

PI:

Poly(imide)

PPV:

Poly(phenylene vinylene)

PTC:

Phase-transfer catalysis

Py:

Pyridine

T g :

Glass transition temperature

TGA:

Thermogravimetric analysis

TPP:

Triphenyl phosphite

References

  1. Leadbeater NE (ed) (2001) Microwave heating as a tool for sustainable chemistry. CRC, Boca Raton

    Google Scholar 

  2. Spencer PL (1952) Means for treating foodstuffs. US Patent 2,605,383

    Google Scholar 

  3. Hollas JM (2004) Modern spectroscopy. Wiley, Chichester

    Google Scholar 

  4. Gabriel G, Gabriel S, Grant EH et al (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–223

    Article  CAS  Google Scholar 

  5. Gedye R, Smith F, Westaway K et al (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282

    Article  CAS  Google Scholar 

  6. Giguere JR, Bray TL, Duncan SM et al (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948

    Article  CAS  Google Scholar 

  7. Loupy A (ed) (2002) Microwaves in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  8. Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403–10432

    Article  CAS  Google Scholar 

  9. Lidstrom P, Tierney J, Wathey B et al (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283

    Article  CAS  Google Scholar 

  10. Kappe CO (2001) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  11. Baxendale IR, Ley SV, Nessi M et al (2002) Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents. Tetrahedron 58:6285–6304

    Article  CAS  Google Scholar 

  12. Artman DD, Grubbs AW, Williams RM et al (2007) Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. J Am Chem Soc 129:6336–6342

    Article  CAS  Google Scholar 

  13. Sen G, Pal S (2009) Microwave initiated synthesis of polyacrylamide grafted carboxymethylstarch (CMS-g-PAM): application as a novel matrix for sustained drug release. Int J Biol Macromol 45:48–55

    Article  CAS  Google Scholar 

  14. Jacob A, Pratuangdejkul J, Buffet S et al (2009) In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: the body in a Hilbertian space. Drug Discov Today 14:406–412

    Article  CAS  Google Scholar 

  15. Wathey B, Tierney J, Lidstrom P et al (2002) The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov Today 7:373–380

    Article  CAS  Google Scholar 

  16. Aquino RP, Auriemma G, d’Amore M et al (2012) Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: Morphology and drug release. Carbohydr Polym 89:740–748

    Article  CAS  Google Scholar 

  17. Mustafa DA, Kashemirov BA, McKenna CE (2011) Microwave-assisted synthesis of nitrogen-containing 1-hydroxymethylenebisphosphonate drugs. Tetrahedron Lett 52:2285–2287

    Article  CAS  Google Scholar 

  18. Leonetti F, Capaldi C, Carotti A (2007) Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug. Tetrahedron Lett 48:3455–3458

    Article  CAS  Google Scholar 

  19. Nicho ME, García-Escobar CH, Hernández-Martínez D et al (2012) Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug. Mater Sci Eng B 177:1441–1445

    Article  CAS  Google Scholar 

  20. Wiesbrock F, Hoogenboom R, Schubert US (2004) Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol Rapid Commun 25:1739–1764

    Article  CAS  Google Scholar 

  21. Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28:368–386

    Article  CAS  Google Scholar 

  22. Zhang C, Liao L, Gong S (2007) Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization. Green Chem 9:303–314

    Article  CAS  Google Scholar 

  23. Singh S, Chakraborty M, Murthy ZVP (2011) Microwave assisted synthesis of poly(ether sulfone) – an efficient synthetic route to control polymer chain structure. J Macromol Sci Pure Appl Chem 48:872–879

    Article  CAS  Google Scholar 

  24. Mallakpour S, Rafiee Z (2008) Application of microwave-assisted reactions in step-growth polymerization: a review. Iran Polym J 17:907–935

    CAS  Google Scholar 

  25. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Progress Sci J 36:1754–1765

    Article  CAS  Google Scholar 

  26. Marlow S, Marder SR (2003) Single-mode microwave synthesis in organic materials chemistry. Adv Funct Mater 13:517–518

    Article  CAS  Google Scholar 

  27. Zhu YJ, Wang WW, Qi RJ et al (2004) Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 43:1410–1414

    Article  CAS  Google Scholar 

  28. Perelaer J, de Gans BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104

    Article  CAS  Google Scholar 

  29. Jhung SH, Jin T, Hwang YK et al (2007) Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? Chem Eur J 13:4410–4417

    Article  CAS  Google Scholar 

  30. Millos CJ, Whittaker AG, Brechin EK (2007) Microwave heating – a new synthetic tool for cluster synthesis. Polyhedron 26:1927–1933

    Google Scholar 

  31. Tsuji M, Hashimoto M, Nishizawa Y et al (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452

    Article  CAS  Google Scholar 

  32. Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. Chem Phys Chem 7:296–319

    CAS  Google Scholar 

  33. Shi W, Yan Y, Yan X (2013) Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. Chem Eng J 215–216:740–746

    Article  CAS  Google Scholar 

  34. Collins JM, Leadbeater NE (2007) Microwave energy: a versatile tool for the biosiences. Org Biomol Chem 5:1141–1150

    Article  CAS  Google Scholar 

  35. Lill JR, Ingle ES, Liu PS et al (2007) Microwave-assisted proteomics. Mass Spectrom Rev 26:657–671

    Article  CAS  Google Scholar 

  36. Zafar F, Hassan Mir M, Kashif M et al (2011) Microwave assisted synthesis of bio based metallopolyurethaneamide. J Inorg Organomet Polym Mater 21:61–68

    Article  CAS  Google Scholar 

  37. Narkhede HP, More UB, Dalal DS et al (2008) Solid-supported synthesis of bio-active carvacrol compounds using microwaves. Synth Commun 38:2413–2418

    Article  CAS  Google Scholar 

  38. Cheng J, Zhou J, Li Y et al (2008) Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat. Energy Fuels 22:2422–2428

    Article  CAS  Google Scholar 

  39. Lu H, Zhou J, Xiong S et al (2010) Effects of low-intensity microwave radiation on Tribolium castaneum physiological and biochemical characteristics and survival. J Insect Physiol 56:1356–1361

    Article  CAS  Google Scholar 

  40. Imai Y (1996) Recent advances in synthesis of high-temperature aromatic polymers. React Funct Polym 30:3–15

    Article  CAS  Google Scholar 

  41. Imai Y (1996) A new facile and rapid synthesis of polyamides and polyimides by microwave-assisted polycondensation. ACS Symp Ser 624:421–430

    Article  CAS  Google Scholar 

  42. Imai Y, Nemoto H, Kakimoto MA (1996) A new facile and rapid synthesis of polyamides and polyimides by microwave-assisted polycondensation. J Polym Sci Part A Polym Chem 34:701–704

    Article  CAS  Google Scholar 

  43. Imai Y, Nemoto H, Watanabe S et al (1996) A new facile and rapid synthesis of polyamides and polyimides by microwave-assisted polycondensation. Polym J 28:256–260

    Article  CAS  Google Scholar 

  44. Watanabe S, Hayama K, Park KH et al (1993) New microwave-assisted rapid synthesis of polyamides from nylon salts. Die Makromol Chem. Rapid Commun 14:481–484

    Article  CAS  Google Scholar 

  45. Hong PK, Watanabe S, Kakimoto MA et al (1993) Rapid synthesis of aromatic polyamides by microwave-assisted directed polycondensation of aromatic diamines with aromatic dicarboxilic acids. Polym J 25:209–213

    Article  Google Scholar 

  46. Pourjavadi A, Zamanlu MR, Zohuriaan-Mehr MJ (1999) Microwave-induced synthesis of partially aromatic polyamides via the Yamazaki phosphorylation reaction. Polym J 269:54–60

    CAS  Google Scholar 

  47. Sundarrajan S, Surianarayanan M, Sabdham K et al (2005) Synthesis and characterization of saturated and unsaturated polysulfide polymers and their thermal degradation processes investigated by flash pyrolysis-gas chromatography/mass spectrometry. J Polym Sci Part A Polym Chem 43:638–649

    Article  CAS  Google Scholar 

  48. Caouthar A, Roger P, Tessier M et al (2007) Synthesis and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide. Eur Polym J 43:220–230

    Article  CAS  Google Scholar 

  49. Mallakpour S, Dinari M (2008) Microwave step-growth polymerization of 5-(4-methyl-2-phthalimidylpentanoylamino)isophthalic acid with different diisocyanates. Polym Adv Technol 19:1334–1342

    Article  CAS  Google Scholar 

  50. Mallakpour S, Taghavi M (2008) A facile, microwave-assisted synthesis of novel optically active polyamides derived from 5-(3-methyl-2-phthalimidylpentanoylamino) isophthalic acid and different diisocyanates. Eur Polym J 44:87–97

    Article  CAS  Google Scholar 

  51. Mallakpour S, Sepehri S (2008) Preparation of new optically active polyamides containing a l-phenylalanine, phthalimide side-chain via the diisocyanate route by microwave energy: Comparison with conventional heating. Des Monomers Polym 11:535–546

    Article  CAS  Google Scholar 

  52. Mallakpour S, Dinari M (2009) Soluble new optically active polyamides derived from 5-(4-methyl-2-phthalimidylpentanoylamino)isophthalic acid and different diisocyanates under microwave irradiation in molten ionic liquid. J Appl Polym Sci 112:244–253

    Article  CAS  Google Scholar 

  53. Mallakpour S, Sepehri S (2008) Polycondensation of new optically active diacid with diisocyanates in the presence of tetrabutylammonium bromide as a green media under microwave heating. React Funct Polym 68:1459–1466

    Article  CAS  Google Scholar 

  54. Mallakpour S, Taghavi M (2008) Efficient and rapid synthesis of optically active polyamides in the presence of tetrabutylammonium bromide as ionic liquids under microwave irradiation. J Appl Polym Sci 109:3603–3612

    Article  CAS  Google Scholar 

  55. Mallakpour S, Rafiee Z (2009) Expeditious synthesis of novel aromatic polyamides from 5-[3-phenyl-2-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido) propanoylamino]iso-phthalic acid and various diamines using microwave-assisted polycondensation. React Funct Polym 69:252–258

    Article  CAS  Google Scholar 

  56. Mallakpour S, Taghavi M (2008) Microwave heating coupled with ionic liquids: synthesis and properties of novel optically active polyamides, thermal degradation and electrochemical stability on multi-walled carbon nanotubes electrode. Polymer 49:3239–3249

    Article  CAS  Google Scholar 

  57. Mallakpour S, Zadehnazari A (2009) Fast synthesis, using microwave induction heating in ionic liquid and characterization of optically active aromatic polyamides. J Macromol Sci Part A Pure Appl Chem 46:783–789

    Article  CAS  Google Scholar 

  58. Carretero P, Sandin R, Mercier R et al (2009) Microwave-Induced synthesis of aromatic polyamides by the phosphorylation reaction. Aust J Chem 62:250–253

    Article  CAS  Google Scholar 

  59. Mittal KL (ed) (2003) Polyimides and other high temperature polymers: synthesis, charactherization and applications. VSP, Utrecht

    Google Scholar 

  60. Barikani M (2002) Polyimides derived from diisocyanates. Iran Polym J 11:1026–1065

    Google Scholar 

  61. Imal Y, Nemoto H, Kakimoto MA (1996) A new facile and rapid synthesis of aliphatic polypyromellitimides by microwave-assisted polycondensation of salt monomers composed of aliphatic diamines and pyromellitic acid. J Polym Sci Part A Polym Chem 34:701–704

    Article  Google Scholar 

  62. Tang X, Lu J, Zhang Z et al (2003) Polycondensation of sodium tetrazodiphenyl naphthionate and pyromellitic dianhydride under microwave irradiation and the performance of the third-order nonlinear optics. J Appl Polym Sci 88:1121–1128

    Article  CAS  Google Scholar 

  63. Lu JM, Ji SJ, Chen NY et al (2003) Third-order nonlinear optical properties of polyureas and polyimide synthesized by microwave irradiation. J Appl Polym Sci 89:2611–2617

    Article  CAS  Google Scholar 

  64. Li Q, Xu Z, Yi C (2008) Preparation of poly(amic acid) and polyimide derived from 3,3',4,4'-benzophenonetetracarboxylic dianhydride with different diamines by microwave irradiation. J Appl Polym Sci 107:797–802

    Article  CAS  Google Scholar 

  65. Li Q, Yang X, Chen W et al (2008) Preparation of poly(amic acid) and polyimide via microwaveassisted polycondensation of aromatic dianhydrides and diamines. Macromol Symp 261:148–156

    Article  CAS  Google Scholar 

  66. Theis J, Ritter H (2008) Microwave-assisted synthesis and bulk polymerization of 3-aminophthalic anhydride as an AB-typemonomer for the formation of linear and cyclic polyimides. Polym Int 61:1238–1244

    Article  CAS  Google Scholar 

  67. Hurduc N, Abdelylah D, Buisine JM et al (1997) Microwave effects in the synthesis of polyethers by phase transfer catalysis. Eur Polym J 33:187–190

    Article  CAS  Google Scholar 

  68. Hurduc N, Buisine JM, Decock P et al (1996) Influence of microwaves irradiation on modification of oxetane based polymers with 4-(2-amino-ethyl)morpholine. Polym J 28:550–552

    Article  CAS  Google Scholar 

  69. Alimi K, Molinie P, Majdoub M et al (2001) Synthesis and characterization of copolymer derived from polyphenylene-vinylene potentially luminescent copolymers. Eur Polym J 37:781–787

    Article  CAS  Google Scholar 

  70. Chatti S, Bortolussi M, Loupy A et al (2002) Efficient synthesis of polyethers from isosorbide by microwave-assisted phase transfer catalysis. Eur Polym J 38:1851–1861

    Article  CAS  Google Scholar 

  71. Chatti S, Bortolussi M, Loupy A (2003) Synthesis of new polyethers derived from isoidide under phase-transfer catalysis: reactivity and selectivity under microwaves and classical heating. J Appl Polym Sci 90:1255–1266

    Article  CAS  Google Scholar 

  72. Flèche IG, Huchette IM (1986) Isosorbide. Preparation, properties and chemistry. Starch 38:26–30

    Article  Google Scholar 

  73. Chatti S, Bortolussi M, Bogdal D et al (2004) Microwave-assisted polycondensation of aliphatic diols of isosorbide with aliphatic disulphonylesters via phase-transfer catalysis. Eur Polym J 40:561–577

    Article  CAS  Google Scholar 

  74. Cakmak O, Bastukmen M, Kisakerek D (2004) Synthesis and characterization of conducting and non-conducting polymers of sodium 2,4,6-trichlorophenolate by microwave initiation. Polymer 45:5451–5458

    Article  CAS  Google Scholar 

  75. Bezdushna E, Ritter H, Troev K (2005) Microwave-assisted single-step synthesis of poly(alkylene hydrogen phosphonate)s by transesterification of dimethyl hydrogen phosphonate with poly(ethylene glycol). Macromol Rapid Commun 26:471–476

    Article  CAS  Google Scholar 

  76. Scheirs J, Long TE (eds) (2003) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, Chichester

    Google Scholar 

  77. Velamathi S, Nagahata R, Takeuchi K (2007) Extremely rapid synthesis of aliphatic polyesters by direct polycondensation of 1:1 mixtures of dicarboxylic acids and diols using microwaves. Polym J 39:841–844

    Article  CAS  Google Scholar 

  78. Takasu A, Oishi Y, Iio Y et al (2003) Synthesis of aliphatic polyesters by direct polyesterification of dicarboxylic acids with diols under mild conditions catalyzed by reusable rare-earth triflate. Macromolecules 36:1772–1774

    Article  CAS  Google Scholar 

  79. Ishihara K, Nakayama M, Ohara S et al (2002) Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium(IV) or zirconium(IV) salts. Tetrahedron 58:8179–8188

    Article  CAS  Google Scholar 

  80. Zhu C, Zhang Z, Liu Q et al (2003) Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 90:982–990

    Article  CAS  Google Scholar 

  81. Nagahata R, Sano D, Suzuki H et al (2007) Microwave-assisted single-step synthesis of poly(lactic acid) by direct polycondensation of lactic acid. Macromol Rapid Commun 28:437–442

    Article  CAS  Google Scholar 

  82. Velmathi S, Nagahata R, Sugiyama JI et al (2005) A rapid eco-friendly synthesis of poly(butylenes succinate) by a direct polyesterification under microwave irradiation. Macromol Rapid Commun 26:1163–1167

    Article  CAS  Google Scholar 

  83. Pielichowski J, Bogdal D, Wolff E (2003) Microwave-assisted synthesis of unsaturated polyester resins (UPR). Przem Chem 82:8–9–938

    Google Scholar 

  84. Keki S, Bodnar I, Borda J et al (2001) Fast microwave-mediated bulk polycondensation of d, l-lactic Acid. Macromol Rapid Commun 22:1063–1065

    Article  CAS  Google Scholar 

  85. Banihashemi A, Hazarkhani H, Abdolmaleki A (2004) Efficient and rapid synthesis of polyureas and polythioureas from the reaction of urea and thiourea with diamines under microwave irradiation. J Polym Sci A Polym Chem 42:2106–2111

    Article  CAS  Google Scholar 

  86. Mallakpour S, Rafiee Z (2004) Microwave-assisted rapid polycondensation reaction of 4-(4′-acetamidophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. J Appl Polym Sci 91:2103–2113

    Article  CAS  Google Scholar 

  87. Mallakpour S, Rafiee Z (2003) Polymerization of 4-(4′-N-1,8-naphthalimidophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. J Appl Polym Sci 90:2861–2869

    Article  CAS  Google Scholar 

  88. Mallakpour S, Rezazadeh S (2004) Microwave-induced and high temperature solution polymerization of 4-(4′-t-butylphenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. Iran Polym J 13:29–38

    CAS  Google Scholar 

  89. Mallakpour S, Dinari M (2010) A green route for synthesis of different polyureas based on phenylurazole: rapid solid-state, microwave-assisted technique. High Perform Polym 22:314–327

    Article  CAS  Google Scholar 

  90. Chantarasiri N, Choprayoon C, Thussanee MP et al (2004) Thermally stable metal-containing polyureas from hexadentate Schiff base metal complexes and diisocyanates. Polym Degrad Stab 86:505–513

    Article  CAS  Google Scholar 

  91. Cassidy PE (1980) Thermally stable polymers: syntheses and properties. Dekker, New York

    Google Scholar 

  92. Park S, Kim K, Kim DM et al (2004) High temperature polyimide containing anthracene moiety and its structure, interface, and nonvolatile memory behavior. ACS Appl Mater Interfaces 3:765–773

    Article  CAS  Google Scholar 

  93. Wang DH, Lee KM, Yu Z et al (2011) Photomechanical response of glassy azobenzene polyimide networks. Macromolecules 44:3840–3846

    Article  CAS  Google Scholar 

  94. Behniafar H, Mohammadparast-delshaad S (2012) Novel ortho-linked and CF3-substituted poly(amide-imide)s: Optical and thermal behavior. Polym Degrad Stab 97:228–233

    Article  CAS  Google Scholar 

  95. Thiruvasagam P, Vijayan M (2012) Synthesis of new diacid monomers and poly(amide-imide)s: study of structure–property relationship and applications. J Polym Res 19:9845–9853

    Article  CAS  Google Scholar 

  96. Hsiao SH, Guo W, Lee WF et al (2011) Synthesis and characterization of electrochromic poly(amide-imide)s bearing methoxy-substituted triphenylamine units. Mater Chem Phys 130:1086–1093

    Article  CAS  Google Scholar 

  97. Chen Y, Huang SP, Liu QL et al (2011) Influence of flexible oligo(tetrafluoroethene) segment on the sorption and diffusion of carbon dioxide in poly(amide-imide) membranes. J Appl Polym Sci 120:1859–1865

    Article  CAS  Google Scholar 

  98. Hamciuc C, Carja LD, Hamciuc E et al (2011) Influence of flexible oligo(tetrafluoroethene) segment on the sorption and diffusion of carbon dioxide in poly(amide-imide) membranes. High Perform Polym 23:362–373

    Article  CAS  Google Scholar 

  99. Mallakpour SE, Hajipour AR, Habibi S (2001) Facial synthesis of new optically active poly(amide-imide)s derived from N, N'-(pyromellitoyl)-bisleucine diacid chloride and aromatic diamines under microwave irradiation. Eur Polym J 37:2435–2442

    Article  CAS  Google Scholar 

  100. Mallakpour S, Shahmohammadi MH (2004) Microwave-promoted rapid synthesis of new optically active poly(amide imide)s derived from N, N′-(pyromellitoyl)-bis-isoleucine diacid chloride and aromatic diamines. J Appl Polym Sci 92:951–959

    Article  CAS  Google Scholar 

  101. Mallakpour S, Shahmohammadi MH (2005) Synthesis of new optically active poly(amide-imide)s derived from N, N-(pyromellitoyl)-bis-S-valine diacid chloride and aromatic diamines under microwave irradiation and classical heating. Iran Polym J 14:473–483

    CAS  Google Scholar 

  102. Mallakpour SE, Hajipour AR, Zamanlou MR (2002) Novel optically active poly(amide-imide)s from N,N′-(4,4′-carbonyldiphthaloyl)-bis-phenylalanine diacid chloride and aromatic diamines by microwave irradiation. Eur Polym J 38:475–485

    Article  CAS  Google Scholar 

  103. Mallakpour SE, Hajipour AR, Faghihi K (2001) Microwave-assisted synthesis of optically active poly(amide-imide)s with benzophenone and l-alanine linkages. Eur Polym J 37:119–124

    Article  CAS  Google Scholar 

  104. Mallakpour SE, Hajipour AR, Zamanlou MR (2001) Synthesis of optically active poly(amide-imide)s derived from N,N′-(4,4′-carbonyldiphthaloyl)-bis-l-leucine diacid chloride and aromatic diamines by microwave radiation. J Polym Sci A Polym Chem 39:177–186

    Article  CAS  Google Scholar 

  105. Mallakpour SE, Dabbagh AH, Faghihi K (2000) Synthesis of novel optically active poly(amide-imide)s with benzophenone and l-alanine moieties. Iran Polym J 9:41–48

    CAS  Google Scholar 

  106. Mallakpour S, Kowsari E (2006) Thermally stable and optically active poly(amideimide)s derived from 4,4′-(hexafluoroisopropylidene)-N, N′-bis-(phthaloylmethionine) diacid chloride and various aromatic diamines: synthesis and characterization. Polym Bull 57:169–178

    Article  CAS  Google Scholar 

  107. Mallakpour SE, Hajipour AR, Khoee S (1999) Synthesis and characterization of novel optically active poly(amide-imide)s. Polym Int 48:1133–1140

    Article  CAS  Google Scholar 

  108. Mallakpour S, Moghadam E (2006) Direct polyamidation of N,N′-(4,4′-hexafluoroiso-propylidendiphthaloyl)-bis-isoleucine with different aromatic diamines via vilsmeier adduct derived from tosyl chloride and N,N-dimethylformamide. Polym Bull 56:339–347

    Article  CAS  Google Scholar 

  109. Mallakpour SE, Hajipour AR, Khoee S (2002) Rapid synthesis of optically active poly(amide-imide)s by direct polycondensation of aromatic dicarboxylic acid with aromatic diamines. Eur Polym J 38:2011–2016

    Article  CAS  Google Scholar 

  110. Mallakpour S, Kowsari E (2005) Synthesis and properties of novel soluble and thermally stable optically active poly(amide-imide)s from N,N′-(4,4′-oxydiphthaloyl)-bisphenylalanine diacid chloride and aromatic diamines. Polym Bull 54:147–155

    Article  CAS  Google Scholar 

  111. Mallakpour S, Kowsari E (2005) Ionic liquids as novel solvents and catalysts for the direct polycondensation of N, N′-(4,4′-oxydiphthaloyl)-bisphenylalanine diacid with various aromatic diamines. J Polym Sci Part A Polym Chem 43:6545–6553

    Article  CAS  Google Scholar 

  112. Mallakpour S, Kowsari E (2005) Soluble novel optically active poly(amide-imide)s derived from N, N′-(4,4′-oxydiphthaloyl)-bisleucine diacid chloride and various aromatic diamines: synthesis and characterization. J Appl Polym Sci 96:435–442

    Article  CAS  Google Scholar 

  113. Mallakpour S, Kowsari E (2006) Polycondensation reaction of N,N′-(4,4′-oxydiphthaloyl)-bismethionine diacid chloride with aromatic diamines: synthesis and properties. J Appl Polym Sci 99:1038–1044

    Article  CAS  Google Scholar 

  114. Mallakpour S, Kowsari E (2006) Preparation and characterization of new optically active poly(amide imide)s derived from N,N′-(4,4′-oxydiphthaloyl)-bis-(S)-(-)-valine diacid chloride and aromatic diamines. Polym Eng Sci 46:558–565

    Article  CAS  Google Scholar 

  115. Mallakpour S, Rafiemanzelat F (2004) Microwave assisted and classical heating polycondensation reaction of bis(p-amido benzoic acid)-N-trimellitylimidoleucine with diisocyanates as a new method for preparation of optically active poly(amide imide)s. J Appl Polym Sci 93:1647–1659

    Article  CAS  Google Scholar 

  116. Mallakpour S, Kowsari E (2005) Preparation and characterization of new optically active poly(amide imide)s derived from N,N'-(4,4′-sulphonediphthaloyl)-bis-(S)-(+)-valine diacid chloride and aromatic diamines under microwave irradiation. Polym Bull 53:169–180

    Article  CAS  Google Scholar 

  117. Mallakpour S, Kowsari E (2003) Synthesis and characterization of novel, optically active poly(amide imide)s from N,N′-(4,4′-sulfonediphthaloyl)-bis-l-phenylalanine diacid chloride and aromatic diamines under microwave irradiation. J Appl Polym Sci 41:3974–3988

    Article  CAS  Google Scholar 

  118. Mallakpour S, Kowsari E (2004) Microwave-assisted and conventional polycondensation reaction of optically active N,N′-(4,4′-sulphonediphthaloyl)-bis-leucine diacid chloride with aromatic diamines. J Appl Polym Sci 91:2992–3000

    Article  CAS  Google Scholar 

  119. Mallakpour S, Kowsari E (2005) Preparation and characterization of optically active and organosoluble poly(amide imide)s from polycondensation reaction of N,N′-(4,4′-sulphonediphthaloyl)-bis-isoleucine diacid with aromatic diamines. Polym Adv Technol 16:466–472

    Article  CAS  Google Scholar 

  120. Mallakpour SE, Hajipour AR, Faghihi K et al (2001) Novel optically active poly(amide imide)s with tetrahydropyrimidinone and tetrahydro-2-thioxopyrimidine moieties by microwave-assisted polycondensation. J Appl Polym Sci 80:2416–2421

    Article  CAS  Google Scholar 

  121. Mallakpour S, Kowsari E (2004) Application of microwave irradiation for synthesis of novel optically active poly(amide imides) derived from diacid chloride containing epiclon and l-isoleucine with aromatic diamines. J Appl Polym Sci 93:2218–2229

    Article  CAS  Google Scholar 

  122. Mallakpour SE, Hajipour AR, Zamanlou MR (2003) Microwave-assisted synthesis of optically active poly(amide imide)s derived from diacid chloride containing epiclon and l-leucine with aromatic diamines. J Polym Sci Part A Polym Chem 41:1077–1090

    Article  CAS  Google Scholar 

  123. Mallakpour S, Kowsari E (2005) Synthesis and characterization of new optically active poly(amide-imide)s containing epiclon and l-methionine moieties in the main chain. Polym Adv Technol 16:732–737

    Article  CAS  Google Scholar 

  124. Mallakpour S, Zamanlou MR (2004) Synthesis of new optically active poly(amide-imide)s containing EPICLON and l-phenylalanine in the main chain by microwave irradiation and classical heating. J Appl Polym Sci 91:3281–3291

    Article  CAS  Google Scholar 

  125. Mallakpour S, Kowsari E (2005) Synthesis and properties of organosoluble and optically active poly(amide-imide)s based on epiclon and (S)-(+)-valine under microwave irradiation. Iran Polym J 14:81–90

    CAS  Google Scholar 

  126. Mallakpour S, Zadehnazari A (2012) New organosoluble, thermally stable, and nanostructured poly(amide-imide)s with dopamine pendant groups: microwave-assisted synthesis and characterization. Int J Polym Anal Charact 17:408–416

    Article  CAS  Google Scholar 

  127. Mallakpour S, Zadehnazari A (2012) Synergic effects of molten ionic liquid and microwave irradiation in preparation of optically active nanostructured poly(amide-imide)s containing amino acid and dopamine moiety. Polym Plast Technol Eng 51:1090–1096

    Article  CAS  Google Scholar 

  128. Mallakpour S, Zadehnazari A (2012) Simple and efficient microwave-assisted polycondensation for preparation of chiral poly(amide-imide) having pendant phenol moiety. Polym Sci Ser B 54:362–370

    Article  CAS  Google Scholar 

  129. Mallakpour S, Zadehnazari A (2012) Microwave-assisted synthesis and morphological characterization of chiral poly(amide-imide) nanostructures in molten ionic liquid salt. Adv Polym Technol 32:21333. doi:10.1002/adv.21333

    Google Scholar 

  130. Mallakpour S, Dinari M (2012) Straightforward and green method for the synthesis of nanostructure poly(amide-imide)s-containing benzimidazole and amino acid moieties by microwave irradiation. Polym Bull 70:1049–1064. doi:10.1007/s00289-012-0875-y

    Article  CAS  Google Scholar 

  131. Borriello A, Nicolais L, Fang X et al (2007) Synthesis of poly(amide-ester)s by microwave methods. J Appl Polym Sci 103:1952–1958

    Article  CAS  Google Scholar 

  132. Mallakpour SE, Hajipour AR, Habibi S (2002) Microwave-assisted synthesis of new optically active poly(ester-imide)s containing N,N′-(pyromellitoyl)-bisphenylalanine moieties. J Appl Polym Sci 86:2211–2216

    Article  CAS  Google Scholar 

  133. Mallakpour S, Habibi S (2003) Microwave-promoted synthesis of new optically active poly(ester-imide)s derived from N,N′-(pyromellitoyl)-bis-l-leucine diacid chloride and aromatic diols. Eur Polym J 39:1823–1829

    Article  CAS  Google Scholar 

  134. Mallakpour SE, Hajipour AR, Zamanlou MR (2002) New optically active poly(ester-imide)s derived from N,N'-(4,4'-carbonyldiphthaloyl)-bisphenylalanine diacid chloride. J Appl Polym Sci 85:315–320

    Article  CAS  Google Scholar 

  135. Mallakpour SE, Hajipour AR, Faghihi K (2000) Synthesis of novel optically active poly(ester-imide)s with benzophenone linkages by microwave-assisted polycondensation. Polym Int 49:1383–1388

    Article  CAS  Google Scholar 

  136. Gao C, Zhang S, Gao L et al (2004) Microwave-assisted synthesis of high-molecular-weight poly(ether imide)s by phase-transfer catalysis. J Appl Polym Sci 92:2415–2419

    Article  CAS  Google Scholar 

  137. Chatti S, Bortolussi M, Bogdal D et al (2006) Synthesis and properties of new poly(ether–ester)s containing aliphatic diol based on isosorbide. Effects of the microwaveassisted polycondensation. Eur Polym J 42:410–424

    Article  CAS  Google Scholar 

  138. Mallakpour S, Rafiemanzelat F (2005) New optically active Ppoly(amide-imide-urethane) thermoplastic elastomers derived from poly(ethylene glycol diols), 4,4′-methylene-bis(4-phenylisocyanate), and a diacid based on an amino acid by a two-step method under microwave irradiation. J Appl Polym Sci 93:1647–1659

    Article  CAS  Google Scholar 

  139. Mallakpour S, Rafiemanzelat F (2005) Facile and rapid synthesis of novel optically active poly(amide-imide-urethane)s derived from bis(p-amido benzoic acid)-N-trimellitylimido-l-leucine and polyoxyethylene-MDI under microwave irradiation. Iran Polym J 14:909–919

    CAS  Google Scholar 

  140. Mallakpour S, Rafiemanzelat F, Faghihi K (2007) Synthesis and characterization of new self-colored thermally stable poly(amide-ether-urethane)s based on an azo dye and different diisocyanates. Dyes Pigments 74:713–722

    Article  CAS  Google Scholar 

  141. Suzuki A (1999) Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet Chem 576:147–168

    Article  CAS  Google Scholar 

  142. Khan S, Hecht S (2004) Microwave-accelerated synthesis of lengthy and defect-free poly(m-phenyleneethylene) via AB′ and A + BB′ polycondensation routes. Chem Commun 2004(3):300–301

    Article  CAS  Google Scholar 

  143. Nehls BS, Asawapirom U, Fuldner S et al (2004) Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions. Adv Funct Mater 14:352–356

    Article  CAS  Google Scholar 

  144. Melucci M, Barbarella G, Zambianchi M et al (2004) Solution-phase microwave-assisted synthesis of unsubstituted and modified α-quinque- and sexithiophenes. J Org Chem 69:4821–4828

    Article  CAS  Google Scholar 

  145. Alesi S, Di Maria F, Melucci M et al (2008) Microwave-assisted synthesis of oligothiophene semiconductors in aqueous media using silica and chitosan supported Pd catalysts. Green Chem 10:517–523

    Article  CAS  Google Scholar 

  146. Nehls BS, Fuldner S, Preis E et al (2005) Microwave-assisted synthesis of 1,5- and 2,6-linked naphthylene-based ladder polymers. Macromolecules 38:687–694

    Article  CAS  Google Scholar 

  147. Bunnagel TW, Nehls BS, Galbrecht F et al (2008) Microwave-assisted synthesis of 1,5- and 2,6-linked naphthylene-based ladder polymers. J Polym Sci Part A Polym Chem 46:7342–7353

    Article  CAS  Google Scholar 

  148. Tierney S, Heeney M, McCulloch I (2005) Microwave-assisted synthesis of 1,5- and 2,6-linked naphthylene-based ladder polymers. Synth Met 148:195–198

    Article  CAS  Google Scholar 

  149. Bezdushna E, Ritter H (2008) Microwave promoted polymer analogous amidation and esterification of poly(ether sulfone) bearing free carboxylic groups. Macromol Rapid Commun 209:1942–1947

    Article  CAS  Google Scholar 

  150. Koopmans C, Iannelli M, Kerep P et al (2006) Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer–Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials. Tetrahedron 62:4709–4714

    Article  CAS  Google Scholar 

  151. Carter KR (2002) Nickel(0)-mediated coupling polymerizations via microwave-assisted chemistry. Macromolecules 35:6757–6759

    Article  CAS  Google Scholar 

  152. Yamamoto T, Fujiwara Y, Fukumoto H et al (2003) Preparation of a new poly(p-phenylene) type polymer, poly(pyrazine-2,5-diyl), with a coplanar structure. Polymer 44:4487–4490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mallakpour, S., Zadehnazari, A. (2013). Microwave-Assisted Step-Growth Polymerizations (From Polycondensation to C–C Coupling). In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2013_275

Download citation

Publish with us

Policies and ethics