Skip to main content

Bridging Polymer Science and Medicine Through Supramolecular Nanoassemblies

  • Chapter
  • First Online:
Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 261))

Abstract

Boundaries between synthetic polymers and biology are disappearing as an increasing number of manmade macromolecular constructs take a central role in biological processes. The research in this area has been continuously growing since the structure of polymers was proposed by Hermann Staudinger, with landmark findings in the 1970s, 1980s, and 1990s. Polymeric systems in the biological interface have evolved from linear bioactive polymers into self-assembled nanostructures with compartmentalized architectures that perform versatile complex processes within specific cellular locations. Due to their supramolecular nature, it is possible to integrate the structural and functional information of these nanoassemblies just by engineering the starting macromolecules. These assemblies have demonstrated high clinical potential for efficient site-specific sensing, transport, and modulation of bioactive molecules by taking advantage of their controlled interaction with physiological environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staudinger H (1920) Über polymerisation. Ber Dtsch Chem Ges A/B 53:1073–1085

    Article  Google Scholar 

  2. Nobelprize.org (1964) Hermann Staudinger – Nobel lecture, December 11, 1953: Macromolecular chemistry. In: Nobel lectures, chemistry 1942–1962. Elsevier, Amsterdam. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/staudinger-lecture.pdf

  3. Charnley J (1960) Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Jt Surg 42-B:28–30

    CAS  Google Scholar 

  4. Harken DE, Taylor WJ, Lefemine AA, Lunzer S, Low HB, Cohen ML, Jacobey JA (1962) Aortic valve replacement with a caged ball valve. Am J Cardiol 9:292–299

    Article  CAS  Google Scholar 

  5. Eilert JB, Binder P, McKinney PW, Beal JM, Conn J Jr (1971) Polyglycolic acid synthetic absorbable sutures. Am J Surg 121:561–565

    Article  CAS  Google Scholar 

  6. Jatzkewitz H (1955) Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z Naturforsch 10:27–31

    Google Scholar 

  7. Jenkins LB, Kredel FE, Mccord WM (1956) Evaluation of polyvinyl pyrrolidone as a plasma expander. AMA Arch Surg 72:612–617

    Article  CAS  Google Scholar 

  8. Regelson W, Holand JF (1958) The anionic polyelectrolyte polyethylenesulfonate, as a new anti-neoplastic agent. Nature 181:46–47

    Article  CAS  Google Scholar 

  9. Breslow DS (1976) Biologically active synthetic polymers. Pure Appl Chem 46:103–113

    Article  CAS  Google Scholar 

  10. Regelson W, Holand JF (1962) Clinical pharmacology of a macromolecule. Clin Pharmacol Ther 3:730–749

    CAS  Google Scholar 

  11. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Symp 51:135–153

    Article  CAS  Google Scholar 

  12. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    Article  Google Scholar 

  13. Strebhardt K, Ullrich A (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    Article  CAS  Google Scholar 

  14. Duncan R, Kopeček J (1984) Soluble synthetic-polymers as potential drug carriers. Adv Polym Sci 57:51–101

    Article  CAS  Google Scholar 

  15. Duncan R, Cable HC, Lloyd JB, Rejmanova P, Kopeček J (1983) Polymers containing enzymatically degradable bonds 7: design of oligopeptide side-chains in poly[n-(2-hydroxypropyl)methacrylamide] copolymers to promote efficient degradation by lysosomal-enzymes. Makromol Chem Macromol Chem Phys 184:1997–2008

    Article  CAS  Google Scholar 

  16. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 5:83–94

    CAS  Google Scholar 

  17. Maeda H, Takeshita J, Kanamaru R (1979) A lipophilic derivative of neocarzinostatin a polymer conjugation of an antitumor protein antibiotic. Int J Pept Protein Res 14:81–87

    Article  CAS  Google Scholar 

  18. Maeda H (1991) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185

    Article  Google Scholar 

  19. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  20. Davis FF (2002) The origin of PEGnology. Adv Drug Del Rev 54:457–458

    Article  CAS  Google Scholar 

  21. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581

    CAS  Google Scholar 

  22. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586

    CAS  Google Scholar 

  23. Klibanov A, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Article  CAS  Google Scholar 

  24. Woodle MC, Lasic DD, Redemann C (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and anti-tumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    Article  Google Scholar 

  25. Philp D, Stoddart JF (1996) Self-Assembly in natural and unnatural systems. Angew Chem Int Ed Engl 35:1154–1196

    Article  Google Scholar 

  26. Bader H, Ringsdorf H, Schmidt B (1984) Watersoluble polymers in medicine. Angew Makromol Chem 123:457–485

    Article  Google Scholar 

  27. Kabanov AV, Chekhonin VP, Alakhov V, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 258:343–345

    Article  CAS  Google Scholar 

  28. Yokoyama M, Inoue S, Kataoka K, Yui N, Okano T, Sakurai Y (1989) Molecular design for missile drug: synthesis of adriamycin conjugated with immunoglobulin G using poly(ethylene glycol)-block-poly(aspartic acid) as intermediate carrier. Makromol Chem 190:2041–2054

    Article  CAS  Google Scholar 

  29. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Shohei I, Kataoka K (1990) Polymeric micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)–poly(aspartic acid) block copolymer. J Contr Release 11:269–278

    Article  CAS  Google Scholar 

  30. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    Article  CAS  Google Scholar 

  31. Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  Google Scholar 

  32. Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tilby MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y, Kataoka K, Nishiya T (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104:593–598

    Article  CAS  Google Scholar 

  33. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 30:1621–1627

    Article  CAS  Google Scholar 

  34. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  Google Scholar 

  35. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  CAS  Google Scholar 

  36. Nance EA, Woodworth GF, Sailor KA, Shih T-Y, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J (2012) A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 4:149ra119

    Article  Google Scholar 

  37. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O'Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164

    Article  CAS  Google Scholar 

  38. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–822

    Article  CAS  Google Scholar 

  39. Cabral H, Kataoka K (2010) Multifunctional nanoassemblies of block copolymers for future cancer therapy. Sci Technol Adv Mater 11:014109

    Article  Google Scholar 

  40. Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784

    Article  CAS  Google Scholar 

  41. Discher DE, Eisenberg A (2002) Polymeric vesicles. Science 297:967–973

    Article  CAS  Google Scholar 

  42. Park S, Lim J-H, Chung S-W, Mirkin CA (2004) Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303:348–351

    Article  CAS  Google Scholar 

  43. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block-copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299

    Article  CAS  Google Scholar 

  44. Harada A, Kataoka K (1999) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67

    Article  CAS  Google Scholar 

  45. Kataoka K, Togawa H, Harada A, Yasugi K, Matsumoto T, Katayose S (1996) Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29:8556–8557

    Article  CAS  Google Scholar 

  46. Katayose S, Kataoka K (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)–poly(L-lysine) block copolymer. Bioconjug Chem 8:702–707

    Article  CAS  Google Scholar 

  47. Lee Y, Ishii T, Cabral H, Kim HJ, Seo JH, Nishiyama N, Oshima H, Osada K, Kataoka K (2009) Charge-conversional PIC micelles – an efficient protein delivery nanocarrier into cytoplasm. Angew Chem Int Ed 48:5309–5312

    Article  CAS  Google Scholar 

  48. Itaka K, Kanayama N, Nishiyama N, Jang WD, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K (2004) Supramolecular nanocarrier of siRNA from PEG-based block catiomer carrying diamine side chain with distinctive pKa directed to enhance intracellular gene silencing. J Am Chem Soc 126(13):612–613

    Google Scholar 

  49. Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K (1996) Introduction of cisplatin into polymeric micelle. J Contr Release 39:351–356

    Article  CAS  Google Scholar 

  50. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63:8977–8983

    CAS  Google Scholar 

  51. Cabral H, Nishiyama N, Okazaki S, Koyama H, Kataoka K (2005) Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J Contr Release 101:223–232

    Article  CAS  Google Scholar 

  52. Kataoka K, Ishihara A, Harada A, Miyazaki H (1998) Effect of the secondary structure of poly(L-lysine) segments on the micellization in aqueous milieu of poly(ethylene glycol)–poly(L-lysine) block copolymer partially substituted with a hydrocinnamoyl group at the N-epsilon-position. Macromolecules 31:6071–6076

    Article  CAS  Google Scholar 

  53. Kakizawa Y, Kataoka K (2002) Block copolymer self-assembly into monodispersive nanoparticles with hybrid core of antisense DNA and calcium phosphate. Langmuir 18:4539–4543

    Article  CAS  Google Scholar 

  54. Osada K, Yamasaki Y, Katayose S, Kataoka K (2005) A synthetic block copolymer regulates S1 nuclease fragmentation of supercoiled plasmid DNA. Angew Chem Int Ed 44:3544–3548

    Article  CAS  Google Scholar 

  55. Osada K, Oshima H, Kobayashi D, Doi M, Enoki M, Yamasaki Y, Kataoka K (2010) Quantized folding of plasmid DNA condensed with block catiomer into characteristic rod structures promoting transgene efficacy. J Am Chem Soc 132:12343–12348

    Article  CAS  Google Scholar 

  56. Burkoth TS, Benzinger TLS, Urban V, Lynn DG, Meredith SC, Thiyagarajan P (1999) Self-assembly of Aβ(10–35)-PEG block copolymer fibrils. J Am Chem Soc 121:7429–7430

    Article  CAS  Google Scholar 

  57. Checler F (1995) Processing of the β-amyloid precursor protein and its regulation in alzheimer's disease. J Neurochemistry 65:1431–1444

    Article  CAS  Google Scholar 

  58. Lynn DG, Meredith SC (2000) Review: model peptides and the physicochemical approach to β-amyloids. J Struc Biol 130:153–173

    Article  CAS  Google Scholar 

  59. Zhang L, Eisenberg A (1995) Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731

    Article  CAS  Google Scholar 

  60. Koide A, Kishimura A, Osada K, Jang W-D, Yamasaki Y, Kataoka K (2006) Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J Am Chem Soc 128:5988–5989

    Article  CAS  Google Scholar 

  61. Osada K, Cabral H, Mochida Y, Lee S, Nagata K, Matsuura T, Yamamoto M, Anraku Y, Kishimura A, Nishiyama N, Kataoka K (2012) Bioactive polymeric metallosomes self-assembled through block copolymer−metal complexation. J Am Chem Soc 134:13172–13175

    Article  CAS  Google Scholar 

  62. Arifin DR, Palmer AF (2005) Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Biomacromol 6:2172–2181

    Article  CAS  Google Scholar 

  63. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K (2007) Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. Angew Chem Int Ed 46:6085–6088

    Article  CAS  Google Scholar 

  64. vanDongen SFM, Verdurmen WPR, Peters RJRW, Nolte RJM, Brock R, van Hest JCM (2010) Cellular integration of an enzyme-loaded polymersome nanoreactor. Angew Chem Int Ed 49:7213–7216

    Article  Google Scholar 

  65. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  CAS  Google Scholar 

  66. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813–817

    Article  CAS  Google Scholar 

  67. Lutolf MP, Hubbell JF (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  CAS  Google Scholar 

  68. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  CAS  Google Scholar 

  69. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768

    Article  CAS  Google Scholar 

  70. Wiley DT, Webster P, Gale A, Davis M (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A 110:8662–8667

    Article  CAS  Google Scholar 

  71. Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42

    Article  CAS  Google Scholar 

  72. Murakami M, Cabral H, Matsumoto Y, Wu S, Kano MR, Yamori T, Nishiyama N, Kataoka K (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3:64ra2

    Article  CAS  Google Scholar 

  73. Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41:2562–2574

    Article  CAS  Google Scholar 

  74. Torchilin VP (2008) Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90:604–610

    Article  CAS  Google Scholar 

  75. Rangel R, Guzman-Rojas L, le Roux LG, Staquicini FI, Hosoya H, Barbu EM, Ozawa MG, Nie J, Dunner K Jr, Langley RR, Sage EH, Koivunen E, Gelovani JR, Lobb RR, Sidman RL, Pasqualini R, Arap W (2012) Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun 3:788

    Article  Google Scholar 

  76. Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44:999–1008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Kataoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cabral, H., Kataoka, K. (2013). Bridging Polymer Science and Medicine Through Supramolecular Nanoassemblies. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize I. Advances in Polymer Science, vol 261. Springer, Cham. https://doi.org/10.1007/12_2013_271

Download citation

Publish with us

Policies and ethics