Mechanical Properties of Single Molecules and Polymer Aggregates

  • R. Berger
  • K. Binder
  • G. DiezemannEmail author
  • J. Gauss
  • M. Helm
  • H.-P. Hsu
  • A. Janshoff
  • T. Metzroth
  • I. Mey
  • A. Milchev
  • W. Paul
  • V. G. Rostiashvili
  • T. A. Vilgis
Part of the Advances in Polymer Science book series (POLYMER, volume 260)


This chapter deals with the mechanical properties of single polymer chains, aggregates, and supramolecular complexes. The topics discussed cover a broad range from fundamental statistical mechanics of the equilibrium elastic properties of single polymer chains to details of the behavior of binding pockets in biomolecular assemblies as observed by force spectroscopy. The first section treats the equilibrium mechanical properties of single polymer chains in various environments, investigated via extensive simulations employing coarse-grained models that have proven extremely successful in many branches of polymer physics, namely the bond-fluctuation model and the self-avoiding walk model. Apart from the phase behavior and the adsorption properties, the mechanical pulling of a polymer chain from a surface has also been investigated. Molecular dynamics (MD) simulations of spring-bead models and analytical theory are used to describe the stochastic dynamics of the system. After these sections treating fundamental aspects of mechanical adsorption and translocation of polymer chains, we consider the adhesion of specific molecular systems to form networks of hydrogen bonds. In particular, we discuss all-atom force probe MD simulations of calixarene catenane systems, which have recently been synthesized. These simulations have been performed in close collaboration with corresponding experimental investigations utilizing atomic force spectroscopy (AFS) on the same systems, which will be reviewed together with other experimental determinations of the mechanical properties of supramolecular assemblies. Although these investigations can give insight into the reversible dynamics of hydrogen-bond networks, AFS can also be used in order to determine chemical equilibria under the impact of mechanical forces. Corresponding studies of this type are reviewed in the last section.


Chain collapse Force probe molecular dynamics simulations Force spectroscopy Force-induced response Polymer adsorption Polymer translocation 


  1. 1.
    Lavery R, Lebrun A, Allemand J-F, Bensimon D, Croquette V (2002) J Phys Condens Matter 14:R383Google Scholar
  2. 2.
    Strick TR, Dessinges M-N, Charvin G, Dekker NH, Allemand J-F, Bensimon D, Croquette V (2003) Rep Prog Phys 66:1–45Google Scholar
  3. 3.
    Gallyamov MO (2011) Macromol Rapid Comm 32:1210Google Scholar
  4. 4.
    Binder K, Paul W, Strauch T, Rampf F, Ivanov V, Luettmer-Strathmann J (2008) J Phys Condens Matter 20:494215Google Scholar
  5. 5.
    Luettmer-Strathmann J, Rampf F, Paul W, Binder K (2008) J Chem Phys 128:064903Google Scholar
  6. 6.
    Rampf F, Paul W, Binder K (2005) Europhys Lett 70:628Google Scholar
  7. 7.
    Binder K, Baschnagel J, Müller M, Paul W, Rampf F (2006) Macromol Symp 237:128Google Scholar
  8. 8.
    Rampf F, Binder K, Paul W (2006) J Polym Sci B Polym Phys 44:2542Google Scholar
  9. 9.
    Paul W, Strauch T, Rampf F, Binder K (2007) Phys Rev E 75:060801(R)Google Scholar
  10. 10.
    Paul W, Rampf F, Strauch T, Binder K (2007) Macromol Symp 252:1Google Scholar
  11. 11.
    Paul W, Rampf F, Strauch T, Binder K (2008) Comput Phys Commun 179:17Google Scholar
  12. 12.
    Taylor MP, Paul W, Binder K (2009) Phys Rev E 79:050801(R)Google Scholar
  13. 13.
    Taylor MP, Paul W, Binder K (2009) J Chem Phys 131:114907Google Scholar
  14. 14.
    Taylor MP, Paul W, Binder K (2010) Phys Procedia 4:151Google Scholar
  15. 15.
    DeGennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  16. 16.
    Ivanov VA, Paul W, Binder K (1998) J Chem Phys 109:5659Google Scholar
  17. 17.
    Grassberger P (1997) Phys Rev E 56:3682Google Scholar
  18. 18.
    Hsu H-P, Grassberger P (2011) J Stat Phys 144:597Google Scholar
  19. 19.
    Kratky O, Porod G (1949) J Colloid Sci 4:35Google Scholar
  20. 20.
    Hsu H-P, Paul W, Binder K (2012) J Chem Phys 137:174902Google Scholar
  21. 21.
    Schaefer DW, Joanny JF, Pincus P (1980) Macromolecules 13:1280Google Scholar
  22. 22.
    Hsu H-P, Binder K (2012) J Chem Phys 136:024901Google Scholar
  23. 23.
    Norisuye T, Fujita H (1982) Polym J 14:143Google Scholar
  24. 24.
    Pincus P (1976) Macromolecules 9:386Google Scholar
  25. 25.
    Saleh OA, McIntosh DB, Pincus P, Ribeck N (2009) Phys Rev Lett 102:068301Google Scholar
  26. 26.
    Binder K, Butt H-J, Floudas G, Frey H, Hsu H-P, Landfester K, Kolb U, Kühnle A, Maskos M, Müllen K, Paul W, Schmidt M, Spiess HW, Virnau P Structure formation of polymeric building blocks: complex polymer architectures. Adv Polym Sci, in press doi:10.1007/12_2013_230Google Scholar
  27. 27.
    Eisenriegler E, Kremer K, Binder K (1982) J Chem Phys 77:6296Google Scholar
  28. 28.
    Eisenriegler E (1993) Polymers near surfaces. World Scientific, SingaporeGoogle Scholar
  29. 29.
    Descas R, Sommer J-U, Blumen A (2004) J Chem Phys 120:8831Google Scholar
  30. 30.
    Grassberger P (2005) J Phys A Math Gen 38:323Google Scholar
  31. 31.
    Bhattacharya S, Rostiashvili VG, Milchev A, Vilgis TA (2009) Macromolecules 42:2236Google Scholar
  32. 32.
    Klushin LI, Polotsky AA, Hsu H-P, Markelow DA, Binder K, Skvortsov AM (2013) Phys Rev E 87:022604Google Scholar
  33. 33.
    DeGennes P-G (1976) J Phys (France) 37:1445Google Scholar
  34. 34.
    Hsu H-P, Binder K (2013) Macromolecules 46:2496Google Scholar
  35. 35.
    Birshtein TM, Zhulina EB, Skvortsov AM (1979) Biopolymers 18:1171Google Scholar
  36. 36.
    Corsi A, Milchev A, Rostiashvili VG, Vilgis TA (2005) J Chem Phys 122:094907Google Scholar
  37. 37.
    Rother G, Findenegg GF (1998) Colloid Polym Sci 276:496Google Scholar
  38. 38.
    Omarjee P, Hoerner P, Riess G, Cabuil V, Mondain-Monval O (2001) Eur Phys J E 4:45Google Scholar
  39. 39.
    Taubert A, Napoli A, Meier W (2004) Curr Opin Chem Biol 8:598Google Scholar
  40. 40.
    Sommer JU, Daoud M (1995) Europhys Lett 32:407Google Scholar
  41. 41.
    Chatellier X, Joanny J-F (2000) Eur Phys J E 1:9Google Scholar
  42. 42.
    Lyatskaya Y, Gersappe D, Gross NA, Balazs AC (1996) J Chem Phys 100:1449Google Scholar
  43. 43.
    Chen ZY (1999) J Chem Phys 111:5603Google Scholar
  44. 44.
    Chen ZY (2000) J Chem Phys 112:8665Google Scholar
  45. 45.
    Corsi A, Milchev A, Rostiashvili VG, Vilgis TA (2006) Europhys Lett 73:204Google Scholar
  46. 46.
    Corsi A, Milchev A, Rostiashvili VG, Vilgis TA (2006) Macromolecules 39:1234Google Scholar
  47. 47.
    Corsi A, Milchev A, Rostiashvili VG, Vilgis TA (2006) J Polym Sci B 44:2572Google Scholar
  48. 48.
    Corsi A, Milchev A, Rostiashvili VG, Vilgis TA (2006) Macromolecules 39:7117Google Scholar
  49. 49.
    de Gennes P-G (1987) Adv Coll Int Sci 27:189Google Scholar
  50. 50.
    Fleer GJ, Scheutjens JMHM, Cohen-Stuart TCMA, Vincent B (1993) Polymers at interface. Chapman and Hall, LondonGoogle Scholar
  51. 51.
    Milchev A, Binder K (1996) Macromolecules 29:343Google Scholar
  52. 52.
    Bhattacharya S, Hsu H-P, Milchev A, Rostiashvili VG, Vilgis TA (2008) Macromolecules 41:2920Google Scholar
  53. 53.
    Bhattacharya S, Milchev A, Rostiashvili VG, Grosberg AY, Vilgis TA (2008) Phys Rev E 77:061603Google Scholar
  54. 54.
    Strick T, Allemand J-F, Croquette V, Bensimon D (2001) Phys Today 54:46Google Scholar
  55. 55.
    Celestini F, Frisch T, Oyharcabal X (2008) Phys Rev E 70:012801Google Scholar
  56. 56.
    Kikuchi H, Yokoyama N, Kajiyama T (1997) Chem Lett 11:1107Google Scholar
  57. 57.
    Rief M, Oersterhelt F, Heymann B, Gaub HE (1997) Science 275:1295Google Scholar
  58. 58.
    Smith SB, Cui Y, Bustamante C (1996) Science 271:795Google Scholar
  59. 59.
    Kafri Y, Mukamel D, Peliti L (2002) Eur Phys J B 27:135Google Scholar
  60. 60.
    Bhattacharya S, Milchev A, Rostiashvili VG, Vilgis TA (2009) Phys Rev E 79:030802 (R)Google Scholar
  61. 61.
    Milchev A, Rostiashvili VG, Bhattacharya S, Vilgis TA (2011). Polymer chain adsorption on a solid surface: scaling arguments and computer simulations. In: Michailov M (ed) Nanophenomena at surfaces. Springer series in surface sciences, vol 47. Springer, Berlin Heidelberg, p 185Google Scholar
  62. 62.
    Bhattacharya S, Milchev A, Rostiashvili VG, Vilgis TA (2009) Eur Phys J E 29:285Google Scholar
  63. 63.
    Skvortsov AM, Klushin LI, Birshtein TM (2009) Polym Sci A (Moscow) A 51:1Google Scholar
  64. 64.
    Paturej J, Milchev A, Rostiashvili VG, Vilgis TA (2012) Macromolecules 45:4371Google Scholar
  65. 65.
    Dimitrov DI, Klushin L, Milchev A, Binder K (2008) Phys Fluids 20:092102Google Scholar
  66. 66.
    Milchev A, Klushin L, Skvortsov A, Binder K (2010) Macromolecules 43:6877Google Scholar
  67. 67.
    Meller A (2003) J Phys Condens Matter 15:R581Google Scholar
  68. 68.
    Milchev A (2011) J Phys Condens Matter 23:103101Google Scholar
  69. 69.
    Nakane JJ, Akeson M, Marziali A (2003) J Phys Condens Matter 15:R1365Google Scholar
  70. 70.
    Meller A, Nivon L, Branton D (2001) Phys Rev Lett 86:3435Google Scholar
  71. 71.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Proc Natl Acad Sci USA 93:13770Google Scholar
  72. 72.
    Slonkina E, Kolomeisky AB (2003) J Chem Phys 118:7112Google Scholar
  73. 73.
    Wei D, Yang W, Jin X, Liao Q (2007) J Chem Phys 126:204901Google Scholar
  74. 74.
    Milchev A, Binder K, Bhattacharya A (2004) J Chem Phys 121:6042Google Scholar
  75. 75.
    Milchev A, Binder K (2005) Computer Phys Commun 169:107Google Scholar
  76. 76.
    Slatex GW, Guo HL, Nixon GI (1997) Phys Rev Lett 78:1170Google Scholar
  77. 77.
    Dubbeldam JLA, Milchev A, Rostiashvili VG, Vilgis TA (2007) Phys Rev E 76:010801 (R)Google Scholar
  78. 78.
    Dubbeldam JLA, Milchev A, Rostiashvili VG, Vilgis TA (2007) Eurphys Lett 79:18002Google Scholar
  79. 79.
    Dubbeldam JLA, Milchev A, Rostiashvili VG, Vilgis TA (2009) J Phys Condens Matter 21:098001Google Scholar
  80. 80.
    Dubbeldam JLA, Milchev A, Rostiashvili VG, Vilgis TA (2009) Ann N Y Acad Sci 1161:95Google Scholar
  81. 81.
    Sung W, Park PJ (1996) Phys Rev Lett 77:783Google Scholar
  82. 82.
    Muthukumar M (1999) J Chem Phys 111:10371Google Scholar
  83. 83.
    Bhattacharya A, Morrison WH, Luo K, Ala-Nissll T, Ying S-C, Milchev A, Binder K (2009) Eur Phys J E 29:423Google Scholar
  84. 84.
    Bhattacharya A, Binder K (2010) Phys Rev E81:041804Google Scholar
  85. 85.
    Sakaue T (2007) Phys Rev E 76:021803Google Scholar
  86. 86.
    Sakaue T (2010) Phys Rev E 81:041808Google Scholar
  87. 87.
    Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2011) Phys Rev E 83:011802Google Scholar
  88. 88.
    Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2013) Phys Rev E 87:032147Google Scholar
  89. 89.
    Dubbeldam JLA, Rostiashvili VG, Milchev A, Vilgis TA (2012) Phys Rev E 85:041801Google Scholar
  90. 90.
    Chatelain C, Kantor Y, Kardar M (2008) Phys Rev E 78:021129Google Scholar
  91. 91.
    Storm AJ, Storm C, Chen J, Zandbergen H, Joanny J-F, Dekker C (2005) Nano Lett 5:1193Google Scholar
  92. 92.
    Klushin LI, Skvortsov AM, Hsu H-P, Binder K (2008) Macromolecules 41:5890Google Scholar
  93. 93.
    Liphardt J, Onoa B, Smith S, Tinoco I, Bustamante C (2001) Science 292:733Google Scholar
  94. 94.
    Gebhardt JCM, Bornschlögl T, Rief M (2010) Proc Natl Acad Sci USA 107:2013Google Scholar
  95. 95.
    Janke M, Rudzevich Y, Molokanova O, Metzroth T, Mey I, Diezemann G, Marszalek PE, Gauss J, Böhmer V, Janshoff A (2009) Nat Nanotechnol 4:225Google Scholar
  96. 96.
    Sauvage J-P, Dietrich-Buchecker C (1999) Molecular catenanes, rotaxanes, and knots. Wiley-VCH, WeinheimGoogle Scholar
  97. 97.
    Wang L, Vyotsky M, Bogdan A, Bolte M, Böhmer V (2004) Science 304:1312Google Scholar
  98. 98.
    Schlesier T, Metzroth T, Jahnshoff A, Gauss J, Diezemann G (2011) J Phys Chem B 115:6445Google Scholar
  99. 99.
    Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) J Comput Chem 25:1656Google Scholar
  100. 100.
    Schlesier T, Diezemann G (2013) J Phys Chem B 117:1862Google Scholar
  101. 101.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225Google Scholar
  102. 102.
    Cornell WD et al (1995) J Am Chem Soc 117:5179Google Scholar
  103. 103.
    Bell GI (1978) Science 200:618Google Scholar
  104. 104.
    Dudko OK, Hummer G, Szabo A (2008) Proc Natl Acad Sci USA 105:15755Google Scholar
  105. 105.
    Seifert U (2002) Europhys Lett 58:792Google Scholar
  106. 106.
    Li F, Leckband D (2006) J Chem Phys 125:194702Google Scholar
  107. 107.
    Diezemann G, Janshoff A (2008) J Chem Phys 129:084904Google Scholar
  108. 108.
    Diezemann G, Schlesier T, Geil B, Janshoff A (2010) Phys Rev E 82:051132Google Scholar
  109. 109.
    Diezemann G, Janshoff A (2009) J Chem Phys 130:041101Google Scholar
  110. 110.
    Arakawa T, Timasheff SN (1983) Arch Biochem Biophys 224:169Google Scholar
  111. 111.
    Arakawa T, Timasheff SN (1985) Biophys J 47:411Google Scholar
  112. 112.
    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217:1214Google Scholar
  113. 113.
    Santoro MM, Liu Y, Khan SMA, Hou LX, Bolen DW (1992) Biochemistry-US 31:5278Google Scholar
  114. 114.
    Galinski EA, Pfeiffer H-P, Trüper HG (1985) Eur J Biochem 149:135Google Scholar
  115. 115.
    Galinski EA (1995) Adv Microb Physiol 37:273Google Scholar
  116. 116.
    Knapp S, Ladenstein R, Galinski EA (1999) Extremophiles 3:191Google Scholar
  117. 117.
    Timasheff SN (1992) In water and life. Springer, BerlinGoogle Scholar
  118. 118.
    Janshoff A, Neitzert M, Oberdörfer Y, Fuchs H (2000) Angew Chem Int Ed 39:3212Google Scholar
  119. 119.
    Bizzarri AR, Cannistraro S (2010) Chem Soc Rev 39:734Google Scholar
  120. 120.
    Puchner EM, Gaub HE (2009) Curr Opin Struct Biol 19:605Google Scholar
  121. 121.
    Fisher TE, Carrion-Vazquez M, Oberhauser AF, Li H, Marszalek PE, Fernandez JM (2000) Neuron 27:435Google Scholar
  122. 122.
    Noy A (ed) (2008) Handbook of molecular force spectroscopy. Springer, BerlinGoogle Scholar
  123. 123.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Science 276:1109Google Scholar
  124. 124.
    Rief M, Grubmüller H (2002) ChemPhysChem 3:255Google Scholar
  125. 125.
    Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998) Nature 393:181Google Scholar
  126. 126.
    Rief M, Pascual J, Saraste M, Gaub HE (1999) J Mol Biol 286:553Google Scholar
  127. 127.
    Oberdörfer Y, Fuchs H, Janshoff A (2000) Langmuir 16:9955Google Scholar
  128. 128.
    Müller DJ, Baumeister W, Engel A (1999) Proc Natl Acad Sci USA 96:13170Google Scholar
  129. 129.
    Kedrov A, Janovjak H, Sapra KT, Müller DJ (2007) Annu Rev Biophys Biomol Struct 36:233Google Scholar
  130. 130.
    Yamada KM (1983) Annu Rev Biochem 52:761Google Scholar
  131. 131.
    Oberdörfer Y, Schrot S, Fuchs H, Galinski E, Janshoff A (2003) Phys Chem Chem Phys 5:1876Google Scholar
  132. 132.
    Evans E, Ritchie K (1999) Biophys J 76:2439Google Scholar
  133. 133.
    Bustamante C, Liphardt J, Ritort F (2005) Phys Today 58:43 doi:10.1063/1.2012462Google Scholar
  134. 134.
    Hummer G, Szabo A (2010) Proc Natl Acad Sci USA 107:21441Google Scholar
  135. 135.
    Hummer G, Szabo A (2001) Proc Natl Acad Sci USA 98:3658Google Scholar
  136. 136.
    Crooks GE (2000) Phys Rev E 61:2361Google Scholar
  137. 137.
    Jarzynski C (1997) Phys Rev Lett 78:2690Google Scholar
  138. 138.
    Harris NC, Song Y, Kiang C-H (2007) Phys Rev Lett 99:068101Google Scholar
  139. 139.
    Neuman KC, Nagy A (2008) Nat Methods 5:491Google Scholar
  140. 140.
    Stigler J, Ziegler F, Gieseke A, Gebhardt JCM, Rief M (2011) Sci Signal 334:512Google Scholar
  141. 141.
    Alemany A, Ribezzi-Crivellari M, Ritort F (2013) Recent progress in fluctuation theorems and free energy recovery. In: Klages R, Just W, Jarzynski C, Schuster HG (eds) Nonequilibrium statistical physics of small systems: fluctuation relations and beyond. Wiley-VCH, Weinheim, p 155Google Scholar
  142. 142.
    Janke M (2008) Atomic force microscopy of biomimetic systems. Ph.D. thesis, MainzGoogle Scholar
  143. 143.
    Vysotsky MO, Bolte M, Thondorf I, Bšhmer V (2003) Chem Eur J 9:3375Google Scholar
  144. 144.
    Schlierf M, Rief M (2005) J Mol Biol 354:497Google Scholar
  145. 145.
    Onoa B, Dumont S, Liphardt J, Smith SB, Tinoco I, Bustamante C (2003) Science 299:1892Google Scholar
  146. 146.
    Friedsam C, Wehle AK, KŸhner F, Gaub HE (2003) J Phys Condens Matter 15:S1709Google Scholar
  147. 147.
    Thormann E, Hansen PL, Simonsen AC, Mouritsen OG (2006) Colloids Surf B 53:149Google Scholar
  148. 148.
    Lee G, Khadar A, Yong J, Peter A, Vann B, Marszalek PE (2006) Proc Natl Acad Sci USA 104:20719Google Scholar
  149. 149.
    Hummer G, Szabo A (2003) Biophys J 85:5Google Scholar
  150. 150.
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Nature 397:50Google Scholar
  151. 151.
    Rothemund PWK (2006) Nature 440:297Google Scholar
  152. 152.
    Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) Proc Natl Acad Sci USA 96:11277Google Scholar
  153. 153.
    Neupane K, Yu H, Foster DA, Wang F, Woodside MT (2011) Nucleic Acids Res 39:7677Google Scholar
  154. 154.
    Ling L, Butt HJ, Berger R (2004) J Am Chem Soc 126:13992Google Scholar
  155. 155.
    Ling L, Butt H-J, Berger R (2006) Appl Phys Lett 89:113902Google Scholar
  156. 156.
    Nguyen T-H, Steinbock L, Butt HJ, Helm M, Berger R (2011) J Am Chem Soc 133:2025Google Scholar
  157. 157.
    Lin CH, Patel D (1997) J Chem Biol 4:817Google Scholar
  158. 158.
    Nonin-Lecomte S, Lin HC, Patel JD (2001) Biophys J 81:3422Google Scholar
  159. 159.
    Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KWJ (2006) J Am Chem Soc 128:3138Google Scholar
  160. 160.
    Liu J, Lu Y (2006) Angew Chem Int Ed 45:90Google Scholar
  161. 161.
    Neves MAD, Reinstein O, Saad M, Johnson PE (2010) Biophys Chem 153:9Google Scholar
  162. 162.
    Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY, Heeger AJ, Plaxco KW, Soh HT (2009) J Am Chem Soc 131:4262Google Scholar
  163. 163.
    Nguyen T-H (2013) Rupture forces of split aptamers. Ph.D. thesis, MainzGoogle Scholar
  164. 164.
    Niazi JH, Lee SJ, Kim YS, Gu MB (2008) Bioorg Med Chem 16:1254Google Scholar
  165. 165.
    Müller M, Weigand JE, Weichenrieder O, Suess B (2006) Nucleic Acids Res 34:2607Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Berger
    • 1
  • K. Binder
    • 2
  • G. Diezemann
    • 3
    Email author
  • J. Gauss
    • 3
  • M. Helm
    • 4
  • H.-P. Hsu
    • 2
  • A. Janshoff
    • 3
    • 5
  • T. Metzroth
    • 3
  • I. Mey
    • 3
    • 5
  • A. Milchev
    • 2
    • 6
  • W. Paul
    • 2
    • 7
  • V. G. Rostiashvili
    • 1
  • T. A. Vilgis
    • 1
  1. 1.Max-Planck-Institut für PolymerforschungMainzGermany
  2. 2.Institut für PhysikJohannes Gutenberg Universität MainzMainzGermany
  3. 3.Institut für Physikalische ChemieJohannes Gutenberg Universität MainzMainzGermany
  4. 4.Institut für Pharmazie und BiochemieJohannes Gutenberg Universität MainzMainzGermany
  5. 5.Institut für Physikalische ChemieGöttingenGermany
  6. 6.Institute for Physical ChemistryAcademy of SciencesSofiaBulgaria
  7. 7.Institut für PhysikMartin Luther Universität HalleHalleGermany

Personalised recommendations