Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 262))

Abstract

Amphiphilic polymers have the ability to self-assemble into supramolecular structures of great complexity and utility. Nowadays, molecular dynamics simulations can be employed to investigate the self-assembly of modestly sized natural and synthetic macromolecules into structures, such as micelles, worms (cylindrical micelles), or vesicles composed of membrane bilayers organized as single or multilamellar structures. This article presents a perspective on the use of large-scale computer simulation studies that have been used to understand the formation of such structures and their interaction with nanoscale solutes. Advances in this domain of research have been possible due to relentless progress in computer power plus the development of so-called coarse-grained intermolecular interaction models that encode the basic architecture of the amphiphilic macromolecules of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chemical Heritage Foundation (2010) Chemistry in history: Gilbert Newton Lewis. Chemical Heritage Foundation, Philadelphia. http://www.chemheritage.org/discover/online-resources/chemistry-in-history/themes/molecular-synthesis-structure-and-bonding/lewis.aspx.

  2. Deußing G, Weber M (2012) Topic of the month: The life and work of Hermann Staudinger. Guido Deußing, Neuss. http://www.k-online.de/cipp/md_k/custom/pub/content,oid,35205/lang,2/ticket,g_u_e_s_t/~/February_2012_Life_and_work_of_Hermann_Staudinger_part_1.html.

  3. Nobelprize.org (2013) The Nobel Prize in Chemistry 1953. Nobel Media AB, Stockholm. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/.

  4. Nobelprize.org (2013) Jean-Marie Lehn – biographical. Nobel Media AB, Stockholm. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/lehn-bio.html.

  5. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids – a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  Google Scholar 

  6. Seeman NC (2014) Another important 60th anniversary. Covalent and supramolecular macromolecules with complex architecture. Adv Polym Sci. doi:10.1007/12_2013_243

  7. Metropolis N et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  8. Percec V et al (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981):1009–1014

    Article  CAS  Google Scholar 

  9. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  10. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    Article  CAS  Google Scholar 

  11. Klein ML, Shinoda W (2008) Large-scale molecular dynamics simulations of self-assembling systems. Science 321(5890):798–800

    Article  CAS  Google Scholar 

  12. Andersen HC (1980) Molecular-dynamics simulations at constant pressure and-or temperature. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  13. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076

    Article  Google Scholar 

  14. Nosé S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  15. Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  16. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  17. Cornell WD et al (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  18. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  19. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843

    Article  CAS  Google Scholar 

  20. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313

    Article  CAS  Google Scholar 

  21. Torrie GM, Valleau JP (1977) Monte-Carlo study of a phase-separating liquid-mixture by umbrella sampling. J Chem Phys 66(4):1402–1408

    Article  CAS  Google Scholar 

  22. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151

    Article  CAS  Google Scholar 

  23. Swendsen RH, Wang JS (1986) Replica Monte-Carlo simulation of spin-glasses. Phys Rev Lett 57(21):2607–2609

    Article  Google Scholar 

  24. Shelley JC et al (2001) A coarse grain model for phospholipid simulations. J Phys Chem B 105(19):4464–4470

    Article  CAS  Google Scholar 

  25. Shinoda W, Devane R, Klein ML (2007) Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simul 33(1–2):27–36

    Article  CAS  Google Scholar 

  26. Smit B et al (1990) Computer-simulations of a water oil interface in the presence of micelles. Nature 348(6302):624–625

    Article  CAS  Google Scholar 

  27. Marrink SJ et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    Article  CAS  Google Scholar 

  28. Brannigan G, Brown FLH (2004) Solvent-free simulations of fluid membrane bilayers. J Chem Phys 120(2):1059–1071

    Article  CAS  Google Scholar 

  29. Cooke IR, Kremer K, Deserno M (2005) Tunable generic model for fluid bilayer membranes. Phys Rev E 72(1):011506

    Article  Google Scholar 

  30. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108(17):7397–7409

    Article  CAS  Google Scholar 

  31. Lopez CF et al (2002) Self-assembly of a phospholipid Langmuir monolayer using coarse-grained molecular dynamics simulations. J Phys-Condens Matter 14(40):9431–9444

    Article  CAS  Google Scholar 

  32. Ercolessi F, Adams JB (1994) Interatomic potentials from 1st-principles calculations – the force-matching method. Europhys Lett 26(8):583–588

    Article  CAS  Google Scholar 

  33. Noid WG et al (2008) The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J Chem Phys 128(24):244115

    Article  CAS  Google Scholar 

  34. Noid WG et al (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128(24):244114

    Article  CAS  Google Scholar 

  35. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109(7):2469–2473

    Article  CAS  Google Scholar 

  36. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760

    Article  CAS  Google Scholar 

  37. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  38. Shinoda W, DeVane R, Klein ML (2008) Coarse-grained molecular modeling of non-ionic surfactant self-assembly. Soft Matter 4(12):2454–2462

    Article  CAS  Google Scholar 

  39. Chiu CC et al (2010) Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. J Phys Chem B 114(19):6394–6400

    Article  CAS  Google Scholar 

  40. DeVane R et al (2010) Coarse-grained potential models for phenyl-based molecules: I. Parametrization using experimental data. J Phys Chem B 114(19):6386–6393

    Article  CAS  Google Scholar 

  41. Shinoda W, DeVane R, Klein ML (2010) Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 114(20):6836–6849

    Article  CAS  Google Scholar 

  42. He XB et al (2011) Development of a coarse-grained model for the surfactant family of linear alkylbenzene sulfonates. Biophys J 100(3):147

    Article  Google Scholar 

  43. Jusufi A et al (2011) Nanoscale carbon particles and the stability of lipid bilayers. Soft Matter 7(3):1139–1146

    Article  CAS  Google Scholar 

  44. Shinoda W, DeVane R, Klein ML (2011) Coarse-grained force field for ionic surfactants. Soft Matter 7(13):6178–6186

    Article  CAS  Google Scholar 

  45. Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 22(2):175–186

    Article  CAS  Google Scholar 

  46. Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Patholog Pharmakolog 42(2–4):109–118

    Article  Google Scholar 

  47. Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5(4):495–508

    Article  CAS  Google Scholar 

  48. Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10:343–418

    CAS  Google Scholar 

  49. Sjostrand FS, Anderssoncedergren E, Dewey MM (1958) The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res 1(3):271–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiorin, G., Klein, M.L., DeVane, R., Shinoda, W. (2013). Computer Simulation of Self-Assembling Macromolecules. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_262

Download citation

Publish with us

Policies and ethics