Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 266))

Abstract

Thermoplastic polymers (such as polypropylene, polyethylene, polyvinyl chloride, polystyrene, etc.) are major constituents of municipal solid waste. Millions of tons of plastic waste are discarded each year, most of which is either incinerated or dumped in landfills. As an alternative, methods using these wastes as feeds for the production of value-added products such as fuels, carbon nanotubes, and porous carbons have been proposed by various researchers. In recent years there has been considerable research in the area of activated carbon production from plastic wastes and products with high surface areas and pore volumes have been produced. However, no literature survey has yet summarized the findings. Thus, herein, the studies pertaining to the production of porous carbon (such as activated carbon) from plastic wastes are reviewed for the first time. This review is organized on the basis of the type of plastic polymer used as the precursor. The first part covers various thermoplastics, whereas the second focuses more deeply on poly(ethylene terephthalate) (PET). This is because the majority of research in this area has used PET. The low carbon yield may make the production of porous carbons from plastic waste impractical. Hence, the authors suggest an alternative integrated approach for future studies so that porous carbons can be produced as a byproduct during the conversion of plastics to gaseous and liquid products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Activated carbon

HDPE:

High density polyethylene

LDPE:

Low density polyethylene

PE:

Polyethylene

PET:

Poly(ethylene terephthalate)

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

References

  1. ACCR (2004) Good practices guide on waste plastics recycling: a guide by and for local and regional authorities. Association of Cities and Regions for Recycling, Brussels

    Google Scholar 

  2. PlasticsEurope (2012) Plastics – the facts 2012. PlasticsEurope, Association of Plastics Manufacturers, Brussels

    Google Scholar 

  3. Williams PT (2006) Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In: Scheirs J, Kaminsky W (eds) Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Wiley, Chichester, pp 285–314

    Google Scholar 

  4. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67(8):675–692

    Article  CAS  Google Scholar 

  5. Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegradation 49(4):245–252

    Article  CAS  Google Scholar 

  6. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage 29(10):2625–2643

    Article  CAS  Google Scholar 

  7. Nnamchi CI, Obeta JAN, Ezeogu LI (2006) Isolation and characterization of some polycyclic aromatic hydrocarbon degrading bacteria from Nsukka soils in Nigeria. Int J Environ Sci Technol 3(2):181–190

    Article  CAS  Google Scholar 

  8. Kumar S, Panda AK, Singh RK (2011) A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recycl 55(11):893–910

    Article  Google Scholar 

  9. Buekens AG, Schoeters JG (1998) Technical methods in plastics pyrolysis. Macromol Symp 135(1):63–81

    Article  CAS  Google Scholar 

  10. Blaszo M (2005) Pyrolysis oils of plastic wastes. In: Müller-Hagedorn M, Bockhorn H (eds) Feedstock recycling of plastics. Selected papers presented at the third international symposium on feedstock recycling of plastics, Karlsruhe, Sept, 2005. Universitätsverlag Karlsruhe, Karlsruhe, pp 11–17

    Google Scholar 

  11. Grause G, Buekens A, Sakata Y, Okuwaki A, Yoshioka T (2011) Feedstock recycling of waste polymeric material. J Mater Cycles Waste Manag 13(4):265–282

    Article  Google Scholar 

  12. Ranzi EM, Dente M, Faravelli T, Bozzano G, Fabini S, Nava R, Cozzani V, Tognotti L (1997) Kinetic modeling of polyethylene and polypropylene thermal degradation. J Anal Appl Pyrolysis 40–41:305–319

    Article  Google Scholar 

  13. Buekens A (2006) Introduction to feedstock recycling of plastics. In: Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Wiley, Chichester, pp 3–41

    Google Scholar 

  14. Ding W, Liang J, Anderson LL (1997) Hydrocracking of waste plastics to clean liquid fuels. ACS Division Fuel Chem Preprints 42(4):1008–1010

    CAS  Google Scholar 

  15. Cho M-H, Jung S-H, Kim J-S (2010) Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy Fuels 24(2):1389–1395

    Article  CAS  Google Scholar 

  16. Bazargan A, McKay G (2012) A review – synthesis of carbon nanotubes from waste plastics. Chem Eng J 195–196:377–391

    Article  Google Scholar 

  17. Mays TJ (2007) A new classification of pore sizes. In: Llewellyn P, RodríguezReinoso F, Rouqerol J, Seaton N (eds) Studies in surface science and catalysis, vol 160. Elsevier, Amsterdam, pp 57–62

    Google Scholar 

  18. Rafsanjani HH, Jamshidi E (2008) Kinetic study and mathematical modeling of coal char activation. Chem Eng J 140(1–3):1–5

    Article  CAS  Google Scholar 

  19. Keypour J, Haghighi Asl A, Rashidi A (2012) Synthesis of hybrid nano-adsorbent for separation of hydrogen from methane. Chem Eng J 183:510–514

    Article  CAS  Google Scholar 

  20. Valix M, Cheung WH, Zhang K (2008) Role of chemical pre-treatment in the development of super-high surface areas and heteroatom fixation in activated carbons prepared from bagasse. Micropor Mesopor Mater 116(1–3):513–523

    Article  CAS  Google Scholar 

  21. Cerino-Córdova FJ, Díaz-Flores PE, García-Reyes RB, Soto-Regalado E, Gómez-González R, Garza-González MT, Bustamante-Alcántara E (2013) Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains. Int J Envir Sci Technol 10(3):611–622

    Article  Google Scholar 

  22. Saka C, Şahin O, Küçük MM (2012) Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol 9(2):379–394

    Article  CAS  Google Scholar 

  23. Zhu Y, Zhang H, Zeng H, Liang M, Lu R (2012) Adsorption of chromium (VI) from aqueous solution by the iron (III)-impregnated sorbent prepared from sugarcane bagasse. Int J Environ Sci Technol 9(3):463–472

    Article  CAS  Google Scholar 

  24. Fallah RN, Azizian S (2012) Rapid and facile desulphurization of liquid fuel by carbon nanoparticles dispersed in aqueous phase. Fuel 95(1):93–96

    Article  CAS  Google Scholar 

  25. Mui E, Ko D, McKay G (2004) Production of active carbons from waste tyres – a review. Carbon 42(14):2789–2805

    Article  CAS  Google Scholar 

  26. Stavropoulos GV (2005) Precursor materials suitability for super activated carbons production. Fuel Process Technol 85:1165–1173

    Article  Google Scholar 

  27. Alcañiz-Monge J, Illán-Gómez MJ (2008) Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption 14(1):93–100

    Article  Google Scholar 

  28. Mahvi AH (2008) Application of agricultural fibers in pollution removal from aqueous solution. Int J Environ Sci Technol 5(2):275–285

    Article  CAS  Google Scholar 

  29. Hussein M, Amer AA, Sawsan II (2008) Oil spill sorption using carbonized pith bagasse: trial for practical application. Int J Environ Sci Technol 5(2):233–242

    Article  CAS  Google Scholar 

  30. Stavropoulos GG, Zabaniotou AA (2009) Minimizing activated carbons production cost. Fuel Process Technol 90(7–8):952–957

    Article  CAS  Google Scholar 

  31. Qiao W, Yoon SH, Korai Y, Mochida I, Inoue SI, Sakurai T, Shimohara T (2004) Preparation of activated carbon fibers from polyvinyl chloride. Carbon 42(7):1327–1331

    Article  CAS  Google Scholar 

  32. Almazán-Almazán MC, Pérez-Mendoza MJ, López-Domingo FJ, Fernández-Morales I, Domingo-García M, López-Garzón FJ (2007) A new method to obtain microporous carbons from PET: characterisation by adsorption and molecular simulation. Micropor Mesopor Mater 106(1–3):219–228

    Article  Google Scholar 

  33. Lian F, Xing B, Zhu L (2011) Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J Colloid Interface Sci 360(2):725–730

    Article  CAS  Google Scholar 

  34. Lian F, Chang C, Du Y, Zhu L, Xing B, Liu C (2012) Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes. J Environ Sci 24(9):1549–1558

    Article  CAS  Google Scholar 

  35. Abbasi M, Salarirad MM, Ghasemi I (2010) Selective separation of PVC from PET/PVC mixture using floatation by tannic acid depressant. Iran Polym J (Engl Ed) 19(7):483–489

    CAS  Google Scholar 

  36. Liu H (2000) Carbon materials based on poly(phenylene oxide): preparation, characterization and application in electrochemical devices. State University of New York, New York

    Google Scholar 

  37. Kakuta N, Shimizu A, Ohkita H, Mizushima T (2009) Dehydrochlorination behavior of polyvinyl chloride and utilization of carbon residue: effect of plasticizer and inorganic filler. J Mater Cycles Waste Manag 11:23–26

    Article  CAS  Google Scholar 

  38. Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes VG (2005) Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. J Colloid Interface Sci 281(2):437–443

    Article  CAS  Google Scholar 

  39. Lu C, Xu S, Liu C (2010) The role of K2CO3 during the chemical activation of petroleum coke with KOH. J Anal Appl Pyrolysis 87(2):282–287

    Article  CAS  Google Scholar 

  40. Kadirova Z, Kameshima Y, Nakajima A, Okada K (2006) Preparation and sorption properties of porous materials from refuse paper and plastic fuel (RPF). J Hazard Mater 137(1):352–358

    Article  CAS  Google Scholar 

  41. Wang H, Liu Y, Li Z, Zhang X, Zhang S, Zhang Y (2009) Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. Eur Polymer J 45(5):1535–1544

    Article  CAS  Google Scholar 

  42. Marzec M, Tryba B, Kaleńczuk RJ, Morawski AW (1999) Poly(ethylene terephthalate) as a source for activated carbon. Polym Adv Technol 10(10):588–595

    Article  CAS  Google Scholar 

  43. Mourao PAM, Cansado IPP, Carrott PJM, Carrott MMLR (2010) Designing activated carbons from natural and synthetic raw materials for pollutants adsorption. Mater Sci Forum 636-637:1404–1409. doi:10.4028/www.scientific.net/MSF.636-637.1404

    Google Scholar 

  44. Cansado IPP, Galacho C, Nunes AS, Carrott MLR, Carrott PJM (2010) Adsorption properties of activated carbons prepared from recycled PET in the removal of organic pollutants from aqueous solutions. Adsorpt Sci Technol 28(8–9):807–821

    Google Scholar 

  45. Swiatkowski A, Padee A (2007) Possibility of preparation of activated carbons from poly(ethylene terephtalate) waste. Ecol Chem Eng-Chemia I Inzynieria Ekologiczna 14(S2):199–206

    CAS  Google Scholar 

  46. Ciesinska W, Makomaski G, Zielinski J, Brzozowska T (2011) Preparation of sorbents from selected polymers. Polish J Chem Technol 13(1):51–54

    Article  Google Scholar 

  47. Bratek W, Świątkowski A, Pakuła M, Biniak S, Bystrzejewski M, Szmigielski R (2013) Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J Anal Appl Pyrolysis 100:192–198

    Google Scholar 

  48. Lorenc-Grabowska E, Gryglewicz G, Machnikowski J, Díez MA, Barriocanal C (2009) Activated carbons from coal/pitch and polyethylene terephthalate blends for the removal of phenols from aqueous solutions. Energy Fuels 23(5):2675–2683

    Article  CAS  Google Scholar 

  49. Barriocanal C, Díez MA, Álvarez R (2005) PET recycling for the modification of precursors in carbon materials manufacture. J Anal Appl Pyrolysis 73(1):45–51

    Article  CAS  Google Scholar 

  50. Hirogaki K, Tabata I, Hisada K, Hori T (2010) Preparation of a porous polyester fiber by foaming with supercritical carbon dioxide. Sen-I Gakkaishi 繊維学会誌 66(7):163–167

    CAS  Google Scholar 

  51. Zhang FS, Itoh H (2003) Adsorbents made from waste ashes and post-consumer PET and their potential utilization in wastewater treatment. J Hazard Mater 101(3):323–337

    Article  CAS  Google Scholar 

  52. Bach C, Dauchy X, Severin I, Munoz J-F, Etienne S, Chagnon M-C (2013) Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and potential toxicity. Food Chem 139(1–4):672–680

    Article  CAS  Google Scholar 

  53. Cheng X, Shi H, Adams CD, Ma Y (2010) Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments. Environ Sci Pollut Res 17(7):1323–1330

    Article  CAS  Google Scholar 

  54. Bhaskar T, Mitan NM, Onwudili J, Muto A, Williams P, Sakata Y (2010) Effect of polyethylene terephthalate (PET) on the pyrolysis of brominated flame retardant-containing high-impact polystyrene (HIPS-Br). J Mater Cycles Waste Manage 10(4):332–340

    Article  Google Scholar 

  55. Bóta A, László K, Nagy LGCT (1997) Comparative study of active carbons from different precursors. Langmuir 13(24):6502–6509

    Article  Google Scholar 

  56. László K, Bóta A, Nagy LG (2000) Comparative adsorption study on carbons from polymer precursors. Carbon 38(14):1965–1976

    Article  Google Scholar 

  57. László K, Tombácz E, Josepovits K (2001) Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39(8):1217–1228

    Article  Google Scholar 

  58. László K, Szűcs A (2001) Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3,4-trichlorophenol solutions. Carbon 39(13):1945–1953

    Article  Google Scholar 

  59. Podkościelny P, László K (2007) Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions. Appl Surf Sci 253(21):8762–8771

    Article  Google Scholar 

  60. László K, Bota A, Dekany I (2003) Effect of heat treatment on synthetic carbon precursors. Carbon 41(6):1205–1214

    Article  Google Scholar 

  61. László K (2005) Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry. Colloids Surfaces A Physicochem Eng Aspects 265:32–39

    Article  Google Scholar 

  62. László K, Marthi K, Rochas C, Ehrburger-Dolle F, Livet F, Geissler E (2004) Morphological investigation of chemically treated poly(ethylene terephthalate)-based activated carbons. Langmuir 20(4):1321–1328

    Article  Google Scholar 

  63. Tóth A, Novák C, László K (2009) The effect of ionic environment on the TG response of phenol loaded PET-based porous carbons. J Therm Anal Calorim 97:273–280

    Article  Google Scholar 

  64. Sych NV, Kartel NT, Tsyba NN, Strelko VV (2006) Effect of combined activation on the preparation of high porous active carbons from granulated post-consumer polyethyleneterephthalate. Appl Surf Sci 252(23):8062–8066

    Article  CAS  Google Scholar 

  65. Kartel N, Gerasimenko N, Tsyba N, Nikolaychuk A, Kovtun G (2001) Obtaining and investigation of carbon adsorbent from polyethyleneterephthalate. Russ J Appl Chem 74(10):1711–1713

    Article  Google Scholar 

  66. Kartel MT, Sych NV, Tsyba MM, Strelko VV (2006) Preparation of porous carbons by chemical activation of polyethyleneterephthalate. Carbon 44(5):1019–1022

    Article  CAS  Google Scholar 

  67. Tamon H, Nakagawa K, Suzuki T, Nagano S (1999) Improvement of mesoporosity of activated carbons from PET by novel pre-treatment for steam activation. Carbon 37(10):1643–1645

    Article  CAS  Google Scholar 

  68. Nakagawa K, Mukai SR, Suzuki T, Tamon H (2003) Gas adsorption on activated carbons from PET mixtures with a metal salt. Carbon 41(4):823–831

    Article  CAS  Google Scholar 

  69. Nakagawa K, Namba A, Mukai SR, Tamon H, Ariyadejwanich P, Tanthapanichakoon W (2004) Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Res 38(7):1791–1798

    Article  CAS  Google Scholar 

  70. Almazán-Almazán MC, Pérez-Mendoza M, Domingo-García M, Fernández-Moralesa I, López FJ, López-Garzón FJ (2010) The influence of the process conditions on the characteristics of activated carbons obtained from PET de-polymerisation. Fuel Process Technol 91(2):236–242

    Article  Google Scholar 

  71. Almazán-Almazán MC, Paredes JI, Pérez-Mendoza M, Domingo-García M, Fernández-Morales I, Martínez-Alonso A, López-Garzón FJ (2006) Surface characteristics of activated carbons obtained by pyrolysis of plasma pretreated PET. J Phys Chem B 110(23):11327–11333

    Article  Google Scholar 

  72. Domingo-García M, Fernández JA, Almazán-Almazán MC, López-Garzón FJ, Stoeckli F, Centeno TA (2010) Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors. J Power Sources 195(12):3810–3813

    Article  Google Scholar 

  73. Parra JB, Ania CO, Arenillas A, Pís JJ (2002) Textural characterisation of activated carbons obtained from poly(ethylene terephthalate) by carbon dioxide activation. Stud Surf Sci Catal 144:537–543

    Article  CAS  Google Scholar 

  74. Parra JB, Ania CO, Arenillas A, Rubiera F, Pís JJ, Palacios JM (2006) Structural changes in polyethylene terephthalate (PET) waste materials caused by pyrolysis and CO2 activation. Adsorpt Sci Technol 24(5):439–449

    Article  CAS  Google Scholar 

  75. Arenillas A, Rubiera F, Parra JB, Ania CO, Pís JJ (2005) Surface modification of low cost carbons for their application in the environmental protection. Appl Surf Sci 252(3):619–624

    Article  CAS  Google Scholar 

  76. Cansado IPP, Mourão PAM, Falcão AI, Ribeiro Carrott MML, Carrott PJM (2012) The influence of the activated carbon post-treatment on the phenolic compounds removal. Fuel Process Technol 103:64–70

    Google Scholar 

  77. Fernández-Morales I, Almazán-Almazán MC, Pérez-Mendoza MJ, Domingo-García M, López-Garzón FJ (2005) PET as precursor of microporous carbons: preparation and characterization. Micropor Mesopor Mater 80(1–3):107–115

    Article  Google Scholar 

  78. Marco-Lozar J, Kunowsky M, Suárez-García F, Carruthers J, Linares-Solano A (2012) Activated carbon monoliths for gas storage at room temperature. Energy Environ Sci 5:9833–9842

    Article  CAS  Google Scholar 

  79. Parra JB, Ania CO, Arenillas A, Rubiera F, Pís JJ (2004) High value carbon materials from PET recycling. Appl Surf Sci 238(1–4):304–308

    Article  CAS  Google Scholar 

  80. Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pís JJ (2004) Textural development and hydrogen adsorption of carbon materials from PET waste. J Alloys Compd 379:280–289

    Article  CAS  Google Scholar 

  81. Mestre AS, Pires J, Nogueira JMF, Parra JB, Carvalho AP, Ani CO (2009) Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresour Technol 100(5):1720–1726

    Article  CAS  Google Scholar 

  82. Montes-Moran MA, Menendez JA, Fuente E, Suarez D (1998) Contribution of the basal planes to carbon basicity: an ab-initio study of the H3O+ −pi interaction in cluster models. J Phys Chem B 102:5595–5601

    Article  CAS  Google Scholar 

  83. Esfandiari A, Kaghazchi T, Soleimani M (2011) Preparation of high surface area activated carbon from polyethyleneterephthalate (PET) waste by physical activation. Res J Chem Environ 15(2):433–437

    Google Scholar 

  84. Esfandiari A, Kaghazchi T, Soleimani M (2012) Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. J Taiwan Inst Chem Eng 43:631–637

    Google Scholar 

  85. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  86. Li Z, Song D, Zhi J, Hu A (2011) Synthesis of ultrathin ordered porous carbon through Bergman cyclization of enediyne self-assembled monolayers on silica nanoparticles. J Phys Chem C 115(32):15829–15833

    Article  CAS  Google Scholar 

  87. Morishita T, Tsumura T, Toyoda M, Przepiorski J, Morawski AW, Konno H, Inagaki M (2010) A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48(10):2690–2707

    Article  CAS  Google Scholar 

  88. Morishita T, Soneda Y, Tsumura T, Inagaki M (2006) Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon 44(12):2360–2367

    Article  CAS  Google Scholar 

  89. Morishita T, Wang L, Tsumura T, Toyoda M, Konno H, Inagaki M (2010) Pore structure and application of MgO-templated carbons. TANSO 2010(242):60–68

    Google Scholar 

  90. Seredych M, Bandosz TJ (2007) Surface properties of porous carbons obtained from polystyrene-based polymers within inorganic templates: role of polymer chemistry and inorganic template pore structure. Micropor Mesopor Mater 100(1–3):45–54

    Article  CAS  Google Scholar 

  91. Walendziewski J (2006) Thermal and catalytic conversion of polyolefins. In: Scheirs J, Kaminsky W (eds) Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Wiley, Chichester, pp 111–127

    Google Scholar 

  92. Pol VG, Pol SV, Calderon-Moreno J, Gedanken A (2006) High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures. Carbon 44(15):3285–3292

    Article  CAS  Google Scholar 

  93. Pol VG, Pol SV, Gedanken A, Sung M-G, Asai S (2004) Magnetic field guided formation of long carbon filaments (sausages). Carbon 42(12–13):2738–2741

    Article  CAS  Google Scholar 

  94. Pol VG, Pol SV, Calderon-Moreno JM, Sung M-G, Asai S, Gedanken A (2006) The dependence of the oriented growth of carbon filaments on the intensity of a magnetic field. Carbon 44(10):1913–1918

    Article  CAS  Google Scholar 

  95. Pol VG, Pol SV, Thackeray MM (2011) Autogenic pressure reactions for battery materials manufacture. US Patent 2011/0,104,553 A1

    Google Scholar 

  96. Pol VG (2010) Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environ Sci Technol 44(12):4753–4759

    Google Scholar 

  97. Inagaki M, Park KC, Endo M (2010) Carbonization under pressure. New Carbon Mater 25(6):409–420

    Article  CAS  Google Scholar 

  98. Inagaki M, Kuroda K, Sakai M (1981) Formation of carbon spherules from polyethylene under pressure. High Temp High Press 13:207–213

    Google Scholar 

  99. Inagaki M, Kuroda K, Sakai M (1983) Pressure carbonization of polyethylene-polyvinylchloride mixtures. Carbon 21(3):231–235

    Article  CAS  Google Scholar 

  100. Inagaki M, Urata M, Sakai M (1989) Morphology change in carbons prepared from pitch-polyvinylchoride mixtures under pressure. J Mater Sci 24:2781–2786

    Article  CAS  Google Scholar 

  101. Inagaki M, Washiyama M, Sakai M (1988) Production of carbon spherules and their graphitization. Carbon 26(2):169–172

    Article  CAS  Google Scholar 

  102. Ayache J, Oberlin A (1990) Mechanism of carbonization under pressure, part II: influence of impurities. Carbon 28(2–3):353–362

    Article  CAS  Google Scholar 

  103. Murata K, Sato K, Sakata Y (2004) Effect of pressure on thermal degradation of polyethylene. J Anal Appl Pyrolysis 71(2):569–589

    Article  CAS  Google Scholar 

  104. Onwudili JA, Insura N, Williams PT (2009) Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J Anal Appl Pyrolysis 86(2):293–303

    Article  CAS  Google Scholar 

  105. Wei L, Yan N, Chen Q (2011) Converting poly(ethylene terephthalate) waste into carbon microspheres in a supercritical CO2 System. Environ Sci Technol 45(2):534–539

    Article  CAS  Google Scholar 

  106. Jia Z, Peng K, Li Y, Zhu R (2011) Preparation and application of novel magnetically separable γ-Fe2O3/activated carbon sphere adsorbent. Mater Sci Eng B 176(11):861–865

    Article  CAS  Google Scholar 

  107. Nieto-Márquez A, Romero R, Romero A, Valverde JL (2011) Carbon nanospheres: synthesis, physicochemical properties and applications. J Mater Chem 21:1664–1672

    Article  Google Scholar 

  108. Yuan D, Chen JX, Zeng J, Tan S (2008) Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem Commun 10(7):1067–1070

    Article  CAS  Google Scholar 

  109. Li M, Li W, Liu S (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr Res 346(8):999–1004

    Article  CAS  Google Scholar 

  110. Song X, Gunawan P, Jiang R, Leong SSJ, Wang K, Xu R (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168

    Article  CAS  Google Scholar 

  111. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mecha nisms for process engineering. Biofuels Bioporducs Biorefining 4:160–177

    Article  CAS  Google Scholar 

  112. Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Google Scholar 

  113. Pol VG, Thackeray MM (2011) Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells. Energy Environ Sci 4:1904–1912

    Article  CAS  Google Scholar 

  114. Zhang JH, Li J, Cao J, Qian YT (2008) Synthesis and characterization of larger diameter carbon nanotubes from catalytic pyrolysis of polypropylene. Mater Lett 62(12–13):1839–1842

    Article  CAS  Google Scholar 

  115. Li H, Sang J, Zhao J, Fu A, Liu H, Xu M, Pang G, Zhao XS (2012) Preparation of magnetically separable mesoporous Co@carbon/silica composites by the RAPET method. New J Chem 36:2308–2315

    Article  CAS  Google Scholar 

  116. Zhao JH, Li HL, Lin Q, Li KX, Peng Z, Zhao XS (2010) Mesoporous carbon preparation by in-situ carbonization via a reaction under autogenic pressure at elevated temperature. Gaodeng Xuexiao Huaxue Xuebao/Chem J Chin Univ 31(6):1088–1092

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Bazargan or Gordon McKay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bazargan, A., Hui, C.W., McKay, G. (2013). Porous Carbons from Plastic Waste. In: Long, T., Voit, B., Okay, O. (eds) Porous Carbons – Hyperbranched Polymers – Polymer Solvation. Advances in Polymer Science, vol 266. Springer, Cham. https://doi.org/10.1007/12_2013_253

Download citation

Publish with us

Policies and ethics