Skip to main content

Aqueous Supramolecular Polymers Based on Aromatic Amphiphiles: Rational Design, Complexity, and Functional Materials

  • Chapter
  • First Online:
Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 262))

Abstract

Self-assembled polymeric nanoscale systems that are robust yet adaptive are of primary importance for fabricating multifunctional stimuli-responsive nanomaterials. Noncovalent interactions in water can be strong, and biological systems exhibit excellent robustness and adaptivity. Synthetic amphiphiles can also result in robust assemblies in water. Can we rationally design water-based noncovalent polymers? Can we program them to perform useful functions that rival covalent materials? We review here advancements related to these questions, focusing on aromatic self-assembly in aqueous media. Regarding functional materials, we present examples from our work on water-based recyclable noncovalent membranes, which can be used for size-selective separations of nanoparticles and biomolecules. These systems introduce the paradigm of noncovalent nanomaterials as a versatile and environmentally friendly alternative to covalent materials. We also address emerging rational design principles for creating 1D, 2D, and 3D functional nanoarrays hierarchically assembled from well-defined molecular units in aqueous media, enabling new synthetic strategies for fabricating complex water-based materials.

I dedicate this review to the memory of my friend and colleague, Prof. Michael Bendikov, whose untimely passing is a great loss to those who knew and loved him, and to the entire Chemistry Community. Michael was a great man and a great scientist. His passion for chemistry will always be an inspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See for example technical specifications of Koch Membrane Systems HFM-100/180, HFK-131, or GE Osmonics KN1CP04700.

References

  1. Aida T, Meijer EW, Stupp SI (2012) Science 335:813–8177

    Article  CAS  Google Scholar 

  2. Krieg E, Rybtchinski B (2011) Chem Eur J 17:9016–9026

    Article  CAS  Google Scholar 

  3. Oshovsky GV, Reinhoudt DN, Verboom W (2007) Angew Chem Int Ed 46:2366–2393

    Article  CAS  Google Scholar 

  4. Capito RM, Azevedo HS, Velichko YS et al (2008) Science 319:1812–1816

    Article  CAS  Google Scholar 

  5. Wang Q, Mynar JL, Yoshida M et al (2010) Nature 463:339–343

    Article  CAS  Google Scholar 

  6. Ling XY, Reinhoudt DN, Huskens J (2009) Pure Appl Chem 81:2225–2233

    Article  CAS  Google Scholar 

  7. Mal P, Breiner B, Rissanen K et al (2009) Science 324:1697–1699

    Article  CAS  Google Scholar 

  8. Cui HG, Webber MJ, Stupp SI (2010) Biopolymers 94:1–18

    Article  CAS  Google Scholar 

  9. Steed JW (2011) Chem Commun 47:1379–1383

    Article  CAS  Google Scholar 

  10. Holder SJ, Sommerdijk NAJM (2011) Polym Chem 2:1018–1028

    Article  CAS  Google Scholar 

  11. Spicer PT (2005) Curr Opin Colloid In 10:274–279

    Article  CAS  Google Scholar 

  12. Rosen BM, Wilson CJ, Wilson DA et al (2009) Chem Rev 109:6275–6540

    Article  CAS  Google Scholar 

  13. Rybtchinski B (2011) ACS Nano 5:6791–6818

    Article  CAS  Google Scholar 

  14. Prins LJ, De Jong F, Timmerman P et al (2000) Nature 408:181–184

    Article  CAS  Google Scholar 

  15. Prins LJ, Neuteboom EE, Paraschiv V et al (2002) J Org Chem 67:4808–4820

    Article  CAS  Google Scholar 

  16. Lohr A, Würthner F (2008) Angew Chem Int Ed 47:1232–1236

    Article  CAS  Google Scholar 

  17. Korevaar PA, George SJ, Markvoort AJ et al (2012) Nature 481:492–496

    Google Scholar 

  18. Percec V, Wilson DA, Leowanawat P et al (2010) Science 328:1009–1014

    Article  CAS  Google Scholar 

  19. Chandler D (2005) Nature 437:640–647

    Article  CAS  Google Scholar 

  20. Meyer EE, Rosenberg KJ, Israelachvili J (2006) Proc Natl Acad Sci USA 103:15739–15746

    Article  CAS  Google Scholar 

  21. Grimme S (2008) Angew Chem Int Ed 47:3430–3434

    Article  CAS  Google Scholar 

  22. Song XD, Geiger C, Farahat M et al (1997) J Am Chem Soc 119:12481–12491

    Article  CAS  Google Scholar 

  23. Whitten DG, Chen LH, Geiger HC et al (1998) J Phys Chem B 102:10098–10111

    Article  CAS  Google Scholar 

  24. Kim HJ, Kim T, Lee M (2011) Acc Chem Res 44:72–82

    Article  CAS  Google Scholar 

  25. Peterca M, Percec V, Leowanawat P et al (2011) J Am Chem Soc 133:20507–20520

    Article  CAS  Google Scholar 

  26. Wall BD, Tovar JD (2012) Pure Appl Chem 84:1039–1045

    Article  CAS  Google Scholar 

  27. Faul CFJ, Antonietti M (2003) Adv Mater 15:673–683

    Article  CAS  Google Scholar 

  28. Diegelmann SR, Gorham JM, Tovar JD (2008) J Am Chem Soc 130:13840–13841

    Article  CAS  Google Scholar 

  29. Shao H, Nguyen T, Romano NC et al (2009) J Am Chem Soc 131:16374

    Google Scholar 

  30. Guan Y, Yu SH, Antonietti M et al (2005) Chem Eur J 11:1305–1311

    Article  CAS  Google Scholar 

  31. Zhang G, Jin W, Fukushima T et al (2007) J Am Chem Soc 129:719–722

    Article  CAS  Google Scholar 

  32. Görl D, Zhang X, Würthner F (2012) Angew Chem Int Ed 51:6328–6348

    Article  Google Scholar 

  33. Shirman E, Ustinov A, Ben-Shitrit N et al (2008) J Phys Chem B 112:8855–8858

    Article  CAS  Google Scholar 

  34. Baram J, Shirman E, Ben-Shitrit N et al (2008) J Am Chem Soc 130:14966–14967

    Article  CAS  Google Scholar 

  35. Golubkov G, Weissman H, Shirman E et al (2009) Angew Chem Int Ed 48:926–930

    Article  CAS  Google Scholar 

  36. Zhou Y, Shimizu T (2008) Chem Mater 20:625–633

    Article  CAS  Google Scholar 

  37. Yam VW-W, Wong KM-C, Zhu N (2002) J Am Chem Soc 124:6506–6507

    Article  CAS  Google Scholar 

  38. Tidhar Y, Weissman H, Wolf SG et al (2011) Chem Eur J 17:6068–6075

    Article  CAS  Google Scholar 

  39. Zimmerman SC, Zeng F, Reichert DEC et al (1996) Science 271:1095–1098

    Article  CAS  Google Scholar 

  40. De Greef TFA, Smulders MMJ, Wolffs M et al (2009) Chem Rev 109:5687–5754

    Article  Google Scholar 

  41. Brunsveld L, Folmer BJB, Meijer EW et al (2001) Chem Rev 101:4071–4097

    Article  CAS  Google Scholar 

  42. Castellano RK, Rudkevich DM, Rebek J (1997) Proc Natl Acad Sci USA 94:7132–7137

    Article  CAS  Google Scholar 

  43. Rehm TH, Schmuck C (2010) Chem Soc Rev 39:3597–3611

    Article  CAS  Google Scholar 

  44. Chen Z, Lohr A, Saha-Moller CR et al (2009) Chem Soc Rev 38:564–584

    Article  CAS  Google Scholar 

  45. Harada A (2006) J Polym Sci A Polym Chem 44:5113–5119

    Article  CAS  Google Scholar 

  46. Zayed JM, Nouvel N, Rauwald U et al (2010) Chem Soc Rev 39:2806–2816

    Article  CAS  Google Scholar 

  47. Besenius P, Portale G, Bomans PHH et al (2010) Proc Natl Acad Sci USA 107:17888–17893

    Article  CAS  Google Scholar 

  48. Neelakandan PP, Pan ZZ, Hariharan M et al (2010) J Am Chem Soc 132:15808–15813

    Article  CAS  Google Scholar 

  49. Arnaud A, Belleney J, Boue F et al (2004) Angew Chem Int Ed 43:1718–1721

    Article  CAS  Google Scholar 

  50. Obert E, Bellot M, Bouteiller L et al (2007) J Am Chem Soc 129:15601–15605

    Article  CAS  Google Scholar 

  51. Kilway KV, Siegel JS (2001) Tetrahedron 57:3615–3627

    Article  CAS  Google Scholar 

  52. Hennrich G, Anslyn EV (2002) Chem Eur J 8:2219–2224

    Google Scholar 

  53. Auletta T, Dordi B, Mulder A et al (2004) Angew Chem Int Ed 43:369–373

    Article  CAS  Google Scholar 

  54. Badjic JD, Nelson A, Cantrill SJ et al (2005) Acc Chem Res 38:723–732

    Article  CAS  Google Scholar 

  55. Ustinov A, Weissman H, Shirman E et al (2011) J Am Chem Soc 133:16201–16211

    Article  CAS  Google Scholar 

  56. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford

    Google Scholar 

  57. Shahar C, Baram J, Tidhar Y et al (2013) ACS Nano 7:3547–3556

    Article  CAS  Google Scholar 

  58. Estroff LA, Hamilton AD (2004) Chem Rev 104:1201–1218

    Article  CAS  Google Scholar 

  59. Krieg E, Shirman E, Weissman H et al (2009) J Am Chem Soc 131:14365–14373

    Article  CAS  Google Scholar 

  60. Jong J, Feringa B, Esch J (2006) Responsive molecular gels. Molecular gels. Springer, Dordrecht, pp 895–927

    Book  Google Scholar 

  61. Krieg E, Weissman H, Shirman E et al (2011) Nat Nanotechnol 6:141–146

    Article  CAS  Google Scholar 

  62. Baker R (2004) Membrane technology and applications. Wiley, New York

    Google Scholar 

  63. Vandezande P, Gevers LEM, Vankelecom IFJ (2008) Chem Soc Rev 37:365–405

    Article  CAS  Google Scholar 

  64. Benfer S, Árki P, Tomandl G (2004) Adv Eng Mater 6:495–500

    Article  CAS  Google Scholar 

  65. Ulbricht M (2006) Polymer 47:2217–2262

    Article  CAS  Google Scholar 

  66. Shannon MA, Bohn PW, Elimelech M et al (2008) Nature 452:301–310

    Article  CAS  Google Scholar 

  67. Krieg E, Albeck S, Weissman H et al (2013) PLoS One 8:e63188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to my group members and collaborators who worked on the projects described in this review. This research was supported by the Israel Science Foundation, the Minerva Foundation, the US-Israel Binational Science Foundation, the Gerhardt M. J. Schmidt Minerva Center for Supramolecular Architectures, the Helen and Martin Kimmel Center for Molecular Design, and the Yeda Sela Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rybtchinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rybtchinski, B. (2013). Aqueous Supramolecular Polymers Based on Aromatic Amphiphiles: Rational Design, Complexity, and Functional Materials. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_250

Download citation

Publish with us

Policies and ethics