Skip to main content

Mechanically Interlaced and Interlocked Donor–Acceptor Foldamers

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 261))

Abstract

The emergence of a class of organic oligomers and polymers that lie at the intersection of the fields of mechanically interlocked molecules (MIMs) and synthetic foldamers is described in this review. These macromolecules are based on 4,4′-bipyridinium (BIPY2+) and 1,5-dioxynaphthalene (DNP) recognition units incorporated into linear oligo- or polymeric chains (threads) and macrocycles (rings), where the threads fold their way through a series of rings in a serpentine-like fashion. The well-defined geometries of these polyelectrolytes are rendered by the [C–H ⋯ O] hydrogen bonding interactions that transpire between the polyether chains appended to DNP and the acidic protons of BIPY2+, as well as the π–π and donor–acceptor (D–A) charge transfer interactions that cause DNP and BIPY2+ units to pack into extended mixed stacks. The unique folding motif of these pseudorotaxanes and rotaxanes makes them attractive candidates for novel multiferroic and mechanically tunable materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gan Q, Ferrand Y, Bao C, Kauffmann B, Grélard A, Jiang H, Huc I (2011) Science 331:1172

    CAS  Google Scholar 

  2. Zhang K-D, Zhao X, Wang G-T, Liu Y, Zhang Y, Lu H-J, Jiang X-K, Li Z-T (2011) Angew Chem Int Ed 50:9866

    CAS  Google Scholar 

  3. Zhang K-D, Zhao X, Wang G-T, Liu Y, Zhang Y, Lu H-J, Jiang X-K, Li Z-T (2012) Tetrahedron 68:4517

    CAS  Google Scholar 

  4. Gellman SH (1998) Acc Chem Res 31:173

    CAS  Google Scholar 

  5. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) Chem Rev 101:3893

    CAS  Google Scholar 

  6. Licini G, Prins LJ, Scrimin P (2005) Eur J Org Chem 2005:969

    Google Scholar 

  7. Li X, Yang D (2006) Chem Commun 2006 (32): 3367

    Google Scholar 

  8. Seebach D, Gardiner J (2008) Acc Chem Res 41:1366

    CAS  Google Scholar 

  9. Horne WS, Gellman SH (2008) Acc Chem Res 41:1399

    CAS  Google Scholar 

  10. Li Z-T, Hou J-L, Li C (2008) Acc Chem Res 41:1343

    CAS  Google Scholar 

  11. Pilsl LKA, Reiser O (2011) Amino Acids 41:709

    CAS  Google Scholar 

  12. Martinek TA, Fülöp F (2012) Chem Soc Rev 41:687

    CAS  Google Scholar 

  13. Huc I (2004) Eur J Org Chem 2004:17

    Google Scholar 

  14. Smaldone RA, Moore JS (2008) Chem Eur J 14:2650

    CAS  Google Scholar 

  15. Saraogi I, Hamilton AD (2009) Chem Soc Rev 38:1726

    CAS  Google Scholar 

  16. Haldar D, Schmuck C (2009) Chem Soc Rev 38:363

    CAS  Google Scholar 

  17. Zhang D-W, Zhao X, Hou J-L, Li Z-T (2012) Chem Rev 112:5271

    CAS  Google Scholar 

  18. Cheng RP (2004) Curr Opin Struct Biol 14:512

    CAS  Google Scholar 

  19. Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Nat Chem Biol 3:252

    CAS  Google Scholar 

  20. Guichard G, Huc I (2011) Chem Commun 47:5933

    CAS  Google Scholar 

  21. Roy A, Prabhakaran P, Baruah PK, Sanjayan GJ (2011) Chem Commun 47:11593

    CAS  Google Scholar 

  22. Hecht S, Huc I (eds) (2007) Foldamers: structure, properties, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  23. Sharma GVM, Kunwar AC (2012) Recent research developments in foldamer chemistry. Nova Science, Hauppauge

    Google Scholar 

  24. Stoddart JF (2009) Chem Soc Rev 38:1802

    CAS  Google Scholar 

  25. Olson MA, Botros YY, Stoddart JF (2010) Pure App Chem 82:1569

    CAS  Google Scholar 

  26. Bruns CJ, Stoddart JF (2012) Top Curr Chem 323:19

    CAS  Google Scholar 

  27. Balzani V, Credi A, Raymo F, Stoddart JF (2000) Angew Chem Int Ed 39:3348

    CAS  Google Scholar 

  28. Balzani V, Credi A, Ferrer B, Sgilvi S, Venturi M (2005) Top Curr Chem 262:1

    CAS  Google Scholar 

  29. Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46:72

    CAS  Google Scholar 

  30. Bgalzani V, Credi A, Venturi M (2008) Molecular devices and machines. Wiley-VCH, Weinheim

    Google Scholar 

  31. Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Chem Soc Rev 41:19

    CAS  Google Scholar 

  32. Thordarson P, Bijsterveld EJA, Rowan AE, Nolte RJM (2003) Nature 424:915

    CAS  Google Scholar 

  33. Tachibana Y, Kihara N, Tgakata T (2004) J Am Chem Soc 126:3438

    CAS  Google Scholar 

  34. Suzaki Y, Shimada K, Chihara E, Saito T, Tsuchido Y, Osakada K (2011) [3]Rotaxane-based dinuclear palladium catalysts for ring-closure Mizoroki–Heck reaction. Org Lett 13:3774

    CAS  Google Scholar 

  35. Blanco V, Carlone A, Hänni KD, Leigh DA, Lewandowski B (2012) Angew Chem Int Ed 51:5166

    CAS  Google Scholar 

  36. Cotí KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Nanoscale 1:16

    Google Scholar 

  37. Yui N, Katoono R, Yamashita A (2009) Adv Polym Sci 222:55

    CAS  Google Scholar 

  38. Ambrogio MW, Thomas CR, Zhao Y-L, Zink JI, Stoddart JF (2011) Acc Chem Res 44:903

    CAS  Google Scholar 

  39. Flood AH, Stoddart JF, Steuerman DW, Heath JR (2004) Science 306:2055

    CAS  Google Scholar 

  40. Taniguchi M, Nojima Y, Yokota K, Terao J, Sato K, Kambe N, Kawai T (2006) J Am Chem Soc 128:15062

    CAS  Google Scholar 

  41. Coskun A, Spruell JM, Barin G, Dichtel WR, Flood AH, Botros YY, Stoddart JF (2012) Chem Soc Rev 41:4827

    CAS  Google Scholar 

  42. Gibson HW, Bheda MC, Engen PT (1994) Prog Polym Sci 19:843

    CAS  Google Scholar 

  43. Clarkson GJ, Leigh DA, Smith RA (1998) Curr Opin Solid St M 3:579

    CAS  Google Scholar 

  44. Raymo FM, Stoddart JF (1999) Chem Rev 99:1643

    CAS  Google Scholar 

  45. Takata T, Kihara N, Furusho Y (2004) Adv Polym Sci 171:1

    CAS  Google Scholar 

  46. Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Chem Rev 109:5974

    CAS  Google Scholar 

  47. Fang L, Olson MA, Benítez D, Tkatchouk E, Goddard WA III, Stoddart JF (2010) Chem Soc Rev 39:17

    CAS  Google Scholar 

  48. Du G, Moulin E, Jouault N, Buhler E, Giuseppone N (2012) Angew Chem Int Ed 51:12504

    CAS  Google Scholar 

  49. Piguet C, Bernardinelli G, Hopfgartner G (1997) Chem Rev 97:2005

    CAS  Google Scholar 

  50. Sauvage J (1990) Acc Chem Res 23:319

    CAS  Google Scholar 

  51. Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT (2011) Angew Chem Int Ed 50:9260

    CAS  Google Scholar 

  52. Tanaka Y, Katagiri H, Furusho Y, Yashima E (2005) Angew Chem Int Ed 44:3867

    CAS  Google Scholar 

  53. Hoffart DJ, Tiburcio J, De La Torre A, Knight LK, Loeb SJ (2008) Angew Chem Int Ed 47:97

    CAS  Google Scholar 

  54. Lestini E, Nikitin K, Müller-Bunz H, Fitzmaurice D (2008) Chem Eur J 14:1095

    CAS  Google Scholar 

  55. Barrell MJ, Leigh DA, Lusby PJ, Slawin AMZ (2008) Angew Chem Int Ed 47:8036

    CAS  Google Scholar 

  56. Nakatani Y, Furusho Y, Yashima E (2010) Angew Chem Int Ed 49:5463

    CAS  Google Scholar 

  57. Fyfe MCT, Stoddart JF (1999) Adv Supramol Chem 5:1

    CAS  Google Scholar 

  58. Schalley CA, Weilandt T, Brüggemann J, Vögtle F (2004) Top Curr Chem 248:141

    Google Scholar 

  59. Kay E, Leigh D (2005) Top Curr Chem 262:133

    CAS  Google Scholar 

  60. Zhao Y (2007) Curr Ospin Colloid Interface Sci 12:92

    CAS  Google Scholar 

  61. Nepogodiev S, Stoddart JF (1998) Chem Rev 98:1959

    CAS  Google Scholar 

  62. Kim K (2002) Chem Soc Rev 31:96

    CAS  Google Scholar 

  63. Lankshear MD, Beer PD (2007) Acc Chem Res 40:657

    CAS  Google Scholar 

  64. Vickers MS, Beer PD (2007) Chem Soc Rev 36:211

    CAS  Google Scholar 

  65. Juwarker H, Jeong K-S (2010) Chem Soc Rev 39:3664

    CAS  Google Scholar 

  66. Rambo BM, Gong H-Y, Oh M, Sessler JL (2012) Acc Chem Res 45:1390

    CAS  Google Scholar 

  67. Hunter CA (1993) Angew Chem Int Ed Engl 32:1584

    Google Scholar 

  68. Grimme S (2008) Angew Chem Int Ed 47:3430

    CAS  Google Scholar 

  69. Stoddart JF, Colquhoun HM (2008) Tetrahedron 64:8231

    CAS  Google Scholar 

  70. Griffiths KE, Stoddart JF (2008) Pure App Chem 80:485

    CAS  Google Scholar 

  71. Lokey RS, Iverson BL (1995) Nature 375:303

    CAS  Google Scholar 

  72. Nguyen JQ, Iverson BL (1999) J Am Chem Soc 121:2639

    CAS  Google Scholar 

  73. Zych AJ, Iverson BL (2000) J Am Chem Soc 122:8898

    CAS  Google Scholar 

  74. Gabriel GJ, Iverson BL (2002) J Am Chem Soc 124:15174

    CAS  Google Scholar 

  75. Ghosh S, Ramakrishnan S (2004) Angew Chem Int Ed 43:3264

    CAS  Google Scholar 

  76. Zhao X, Jia M-X, Jiang X-K, Wu L-Z, Li Z-T, Chen G-J (2004) J Org Chem 69:270

    CAS  Google Scholar 

  77. Ghosh S, Ramakrishnan S (2005) Angew Chem Int Ed 44:5441

    CAS  Google Scholar 

  78. Ghosh S, Ramakrishnan S (2005) Macromolecules 38:676

    CAS  Google Scholar 

  79. Gabriel GJ, Sorey S, Iverson BL (2005) J Am Chem Soc 127:2637

    CAS  Google Scholar 

  80. Petitjean A, Cuccia LA, Schmutz M, Lehn J-M (2008) J Org Chem 73:2481

    CAS  Google Scholar 

  81. De S, Ramakrishnan S (2009) Macromolecules 42:8599

    CAS  Google Scholar 

  82. Ramkumar SG, Ramakrishnan S (2010) Macromolecules 43:2307

    CAS  Google Scholar 

  83. Colquhoun HM, Zhu Z (2004) Angew Chem Int Ed 43:5040

    CAS  Google Scholar 

  84. Colquhoun HM, Zhu Z, Cardin CJ, Gan Y (2004) Chem Commun 2004(23):2650

    Google Scholar 

  85. Colquhoun HM, Zhu Z, Cardin CJ, Gan Y, Drew MGB (2007) J Am Chem Soc 129:16163

    CAS  Google Scholar 

  86. Colquhoun HM, Zhu Z, Cardin CJ, Drew MGB, Gan Y (2009) Faraday Discuss 143:205

    CAS  Google Scholar 

  87. Zhu Z, Cardin CJ, Gan Y, Colquhoun HM (2010) Nature Chem 2:653

    Google Scholar 

  88. Zhu Z, Cardin CJ, Gan Y, Murray CA, White AJP, Williams DJ, Colquhoun HM (2011) J Am Chem Soc 133:19442

    CAS  Google Scholar 

  89. Ferraris J, Cowan DO, Walatka V, Perlstein JH (1973) J Am Chem Soc 95:948

    CAS  Google Scholar 

  90. Torrance JB (1979) Acc Chem Res 12:79

    CAS  Google Scholar 

  91. Alves H, Molinari AS, Xie H, Morpurgo AF (2008) Nature Mater 7:574

    CAS  Google Scholar 

  92. Peumans P, Yakggimov A, Forrest SR (2003) J Appl Phys 93:3693

    CAS  Google Scholar 

  93. Torrance JB, Vazquez JE, Mayerle JJ, Lee VY (1981) Phys Rev Lett 46:253

    CAS  Google Scholar 

  94. Horiuchi S, Tokura Y (2008) Nat Mater 7:357

    CAS  Google Scholar 

  95. Kobayashi K, Horiuchi S, Kumai R, Kagawa F, Murakami Y, Tokura Y (2012) Phys Rev Lett 108:237601

    Google Scholar 

  96. Tayi AS, Shveyd AK, Sue ACH, Szarko JM, Rolczynski BS, Cao D, Kennedy TJ, Sarjeant AA, Stern CL, Paxton WF, Wu W, Dey SK, Fahrenbach AC, Guest JR, Mohseni H, Chen LX, Wang KL, Stoddart JF, Stupp SI (2012) Nature 488:485

    CAS  Google Scholar 

  97. Ortholand J-Y, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1989) Angew Chem Int Ed Engl 28:1394

    Google Scholar 

  98. Asakawa M, Dehaen W, L'abbé G, Menzer S, Nouwen J, Raymo FM, Stoddart JF, Williams DJ (1996) J Org Chem 61:9591

    CAS  Google Scholar 

  99. Ashton PR, Chrystal EJT, Mathias JP, Parry KP, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1987) Tetrahedron Lett 28:6367

    Google Scholar 

  100. Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1991) J Chem Soc Chem Commun 1991(9):630

    Google Scholar 

  101. Ashton PR, Brown CL, Chrystal EJT, Goodnow TT, Kaifer AE, Parry KP, Philp D, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ (1991) J Chem Soc Chem Commun 1991(9):634

    Google Scholar 

  102. Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411

    CAS  Google Scholar 

  103. Raymo F, Bartberger MD, Houk KN, Stoddart JF (2001) J Am Chem Soc 123:9264

    CAS  Google Scholar 

  104. Houk KN, Menzer S, Newton SP, Raymo FM, Stoddart JF, Williams DJ (1999) J Am Chem Soc 121:1479

    CAS  Google Scholar 

  105. Castro R, Nixon KR, Evanseck JD, Kaifer AE (1996) J Org Chem 61:7298

    CAS  Google Scholar 

  106. Ashton PR, Philp D, Spencer N, Stoddart JF, Williams DJ (1994) J Chem Soc Chem Commun 1994(2):181

    Google Scholar 

  107. Basu S, Coskun A, Friedman DC, Olson MA, Benítez D, Tkatchouk E, Barin G, Yang J, Fahrenbach AC, Goddard I, William A, Stoddart JF (2011) Chem Eur J 17:2107

    CAS  Google Scholar 

  108. Colquhoun HM, Williams DJ (2000) Acc Chem Res 33:189

    CAS  Google Scholar 

  109. Zhu Z, Li H, Liu Z, Lei J, Zhang H, Botros YY, Stern CL, Sarjeant AA, Stoddart JF, Colquhoun HM (2012) Angew Chem Int Ed 51:7231

    CAS  Google Scholar 

  110. Hägnni K, Leigh D (2010) Chem Soc Rev 39:1240

    Google Scholar 

  111. Fahrenbach AC, Stoddart JF (2011) Chem Asian J 6:2660

    CAS  Google Scholar 

  112. Owen GJ, Hodge P (1997) Chem Commun 1997(1):11

    Google Scholar 

  113. Hodge P, Monvisade P, Owen GJ, Heatley F, Pang Y (2000) New J Chem 24:703

    CAS  Google Scholar 

  114. Zhu Z, Bruns CJ, Li H, Lei J, Ke C, Liu Z, Shafaie S, Colquhoun HM, Stoddart JF (2013) Chem Sci 4:1470

    CAS  Google Scholar 

  115. Schill G, Rissler K, Fritz H, Vetter W (1981) Angew Chem Int Ed Engl 20:187

    Google Scholar 

  116. Klosterman JK, Yamauchi Y, Fujita M (2009) Chem Soc Rev 38:1714

    CAS  Google Scholar 

  117. Belowich ME, Valente C, Stoddart JF (2010) Angew Chem Int Ed 49:7208

    Google Scholar 

  118. Benítez D, Tkatchouk E, Yoon I, Stoddart JF, Goddard WA III (2008) J Am Chem Soc 130:14928

    Google Scholar 

  119. Franco I, Ratner MA, Schatz GC (2011) J Phys Chem B 115:247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fraser Stoddart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruns, C.J., Stoddart, J.F. (2013). Mechanically Interlaced and Interlocked Donor–Acceptor Foldamers. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize I. Advances in Polymer Science, vol 261. Springer, Cham. https://doi.org/10.1007/12_2013_245

Download citation

Publish with us

Policies and ethics