Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 262))

Abstract

This article briefly reviews research developments on “green polymer chemistry” and focuses on the studies recently performed by our group and related work by some other groups. The green character of polymer synthesis has been viewed from the standpoint of starting materials, polymerization catalyst, reaction solvent, and polymer recycling. Starting materials employ biobased renewable resources such as lactic acid (LA), itaconic anhydride (IAn), succinic anhydride, 1,4-butane diol, etc. Green catalysts include enzymes like lipase and protease. Green solvents are water, supercritical carbon dioxide, and ionic liquids; in particular, water is often used for emulsion systems. From LA and IAn, methacyloyl-polymerizable macromonomers were derived and their copolymerization with a (meth)acryroyl monomer in miniemulsion produced a graft copolymer having LA graft chains. The copolymers are classed as bioplastics from their biomass content (≥25 wt%) and are applicable for coatings. LA chain-containing comb polymers and a star-type polymer were prepared, the latter being currently employed as a coating material. The mechanism of catalysis of the enzymes in the oligomerization of LA alkyl esters was examined to reveal direct evidence that a deacylation step determines the enantioselection. Lipase catalysis was utilized for a polymer recycling system

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  2. Vorvath IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107:2169–2173

    Article  Google Scholar 

  3. Narayan R (2006) Biobased and biodegradable polymer materials: rationale, drivers, and technology exemplars. In: Khemani KC, Scholz C (eds) Degradable polymers and materials. ACS Symposium Series vol 939. Chap 18, pp 282–306. American Chemical Society, Washington, D.C.

    Google Scholar 

  4. Coates GW, Hillmyer MA (2009) A virtual issue of macromolecules: polymers from renewable resources. Macromolecules 42:7987–7989

    Article  CAS  Google Scholar 

  5. Bomgardner MM (2012) A summer of start-ups for biobased chemicals. Chem Eng News 90(38):10–15

    Google Scholar 

  6. Kobayashi S (1999) Enzymatic polymerization – polymer synthesis catalyzed by a natural macromolecule. High Polym Jpn 48:124–127

    CAS  Google Scholar 

  7. Kobayashi S (1999) Enzymatic polymerization: a new method of polymer synthesis. J Polym Sci A Polym Chem 37:3041–3056

    Article  CAS  Google Scholar 

  8. Kobayashi S, Uyama H, Takamoto T (2000) Lipase-catalyzed degradation of polyesters in organic solvents. A new methodology of polymer recycling using enzyme as catalyst. Biomacromolecules 1:3–5

    Article  CAS  Google Scholar 

  9. Sakamoto J, Sugiyama J, Kimura S, Imai T, Itoh T, Watanabe T, Kobayashi S (2000) Artificial chitin spherulites composed of single crystalline ribbons of α-chitin via enzymatic polymerization. Mcromolecules 33:4155–4160

    Article  CAS  Google Scholar 

  10. Ikeda R, Tanaka H, Uyama H, Kobayashi S (2000) A new crosslinkable polyphenol from renewable resource. Macromol Rapid Commun 21:496–499

    Article  CAS  Google Scholar 

  11. Higashimura H, Fujisawa K, Moro-oka Y, Namekawa S, Kubota M, Shiga A, Uyama H, Kobayashi S (2000) New crystalline polymers: poly(2,5-dialkyl-1,4-phenylene oxide)s. Macromol Rapid Commun 21:1121–1124

    Article  CAS  Google Scholar 

  12. Ikeda R, Tanaka H, Oyabu H, Uyama H, Kobayashi S (2001) Preparation of artificial urushi via an environmentally benign process. Bull Chem Soc Jpn 74:1067–1073

    Article  CAS  Google Scholar 

  13. Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818

    Article  CAS  Google Scholar 

  14. Kobayashi S, Uyama H, Ohmae M (2001) Enzymatic polymerization for precision polymer synthesis. Bull Chem Soc Jpn 74:613–635

    Article  CAS  Google Scholar 

  15. Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposite from renewable resources: plant oil–clay hybrid materials. Chem Mater 15:2492–2494

    Article  Google Scholar 

  16. Kobayashi S, Uyama H (2003) Enzymatic polymerization. In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York, pp 328–364

    Google Scholar 

  17. Kobayashi S, Ritter H, Kaplan D (eds) (2006) Enzyme-catalyzed synthesis of polymers. Adv Polym Sci 194

    Google Scholar 

  18. Kobayashi S, Ohmae M (2007) Polymer synthesis and modification by enzymatic catalysis. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: precise synthesis, materials properties, applications, vol 10, Wiley-VCH, Weinheim., pp 400–477

    Google Scholar 

  19. Kobayashi S (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30:237–266

    Article  CAS  Google Scholar 

  20. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353

    Article  CAS  Google Scholar 

  21. Kobayashi S (2010) Lipase-catalyzed polyester synthesis − a green polymer chemistry. Proc Jpn Acad Ser B 86:338–365

    Article  CAS  Google Scholar 

  22. Kobayashi S (2011) Green polymer synthesis using enzyme catalysts. In: Misono M, Murahashi S (eds) Green chemistry – chemistry for sustainable society. Kodansha Scientific, Tokyo, pp 192–203

    Google Scholar 

  23. Kobayashi S (2012) Enzymatic polymerization. In: Matyjaszewski K, Moeller M (eds) Polymer science: a comprehensive reference, vol 5. Elsevier, Amsterdam, pp 217-237

    Google Scholar 

  24. Puskas JE, Sen MY, Seo KS (2009) Green polymer chemistry using nature’s catalyst, enzyme. J Polym Sci A Polym Chem 47:2959–2976

    Article  CAS  Google Scholar 

  25. Cheng HN, Gross RA (eds) (2010) Green polymer chemistry: biocatalysis and biomaterials. ACS Symposium Series, vol 1043. American Chemical Society, Washington, D.C.

    Google Scholar 

  26. Werpy T, Petersen G (2004) Top value added chemicals from biomass. The National Renewable Energy Laboratory and DOE National Laboratory, Oak Ridge

    Google Scholar 

  27. Tsuji H, Ikada Y (2000) Properties and morphology of poly(L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-buffered solution. Polym Deg Stab 67:179–189

    Article  CAS  Google Scholar 

  28. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(L-lactic acid). J Polym Sci A Polym Chem 38:1673–1679

    Article  CAS  Google Scholar 

  29. Moon S-I, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymer 42:5059–5062

    Article  CAS  Google Scholar 

  30. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  31. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  32. Fukushima K, Chang YH, Kimura Y (2007) Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(L-lactic acid). Macromol Biosci 7:829–835

    Article  CAS  Google Scholar 

  33. Jiang X, Smith MR III, Baker GL (2008) Water-soluble thermoresponsive polylactides. Macromolecules 41:318–324

    Article  CAS  Google Scholar 

  34. Chuma A, Hom HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BG, Wade CG, Waymouth RM, Hedrick JL, Rice JE (2008) The reaction mechanism for the organocatalytic ring-opening polymerization of L-lactide using a guanidine-based catalyst: hydrogen-bonded or covalently bonded? J Am Chem Soc 130:6749–6759

    Article  CAS  Google Scholar 

  35. Jing F, Hillmyer MA (2008) A bifunctional monomer derived from lactide for toughening polylactide. J Am Chem Soc 130:13826–13827

    Article  CAS  Google Scholar 

  36. Pitet LM, Amendt MA, Hillmyer MA (2010) Nanoporous linear polyethylene from a block polymer precursor. J Am Chem Soc 132:8230–8231

    Article  CAS  Google Scholar 

  37. Nishida H, Andou Y, Watanabe K, Arazoe Y, Ide S, Shirai Y (2011) Poly(tetramethyl glycolide) from renewable carbon, a racemization-free and controlled depolymerizable polyester. Macromolecules 44:12–13

    Article  CAS  Google Scholar 

  38. Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursor. Biomacromolecules 12:523–532

    Article  CAS  Google Scholar 

  39. Stoclet G, Seguela R, Lefebvre JM, Li S, Vert M (2011) Thermal and strain-induced chain ordering in lactic acid stereocopolymers: influence on the composition in stereomers. Macromolecules 44:4961–4969

    Article  CAS  Google Scholar 

  40. Shin EJ, Jones AE, Waymouth RM (2012) Stereocomplexation in cyclic and linear polylactide blends. Macromolecules 45:595–598

    Article  CAS  Google Scholar 

  41. Ishimoto K, Arimoto M, Okuda T, Yamaguchi S, Aso Y, Ohara H, Kobayashi S, Ishii M, Morita K, Yamashita H, Yabuuchi N (2012) Biobased polymers: synthesis of graft copolymers and comb polymers using lactic acid macromonomer and properties of the product polymers. Biomacromolecules 13:3757–3768

    Article  CAS  Google Scholar 

  42. Ishimoto K, Arimoto M, Ohara H, Kobayashi S, Ishii M, Morita K, Yamashita H, Yabuuchi N (2009) Biobased polymer system: miniemulsion of poly(alkyl methacrylate-graft-lactic acid)s. Biomacromolecules 10:2719–2723

    Article  CAS  Google Scholar 

  43. Okuda T, Ishimoto K, Ohara H, Kobayashi S (2012) Renewable biobased polymeric materials: facile synthesis of itaconic anhydride-based copolymers with poly(L-lactic acid) grafts. Macromolecules 45:4166–4174

    Article  CAS  Google Scholar 

  44. Morita K, Yamashita H, Yabuuchi N, Hayata Y, Ishii M, Ishimoto K, Ohara H, Kobayashi S (2011) Application of star-shaped poly(lactic acid)s to two component and UV-curable coatings. J Network Polym Jpn 32:192–196

    CAS  Google Scholar 

  45. Morita K, Yamashita H, Yabuuchi N, Hayata Y, Ishii M, Ishimoto K, Ohara H, Kobayashi S (2011) Synthesis of star-shaped oligomeric lactic acids with reactive double bonds and their application to UV curable coatings. In: Proceedings of RadTech Asia 2011. RadTech Japan, Tokyo, pp 126–129

    Google Scholar 

  46. Palmans ARA, Heise A (eds) (2011) Enzymatic polymerisation. Adv Polym Sci 237

    Google Scholar 

  47. Uyama H, Kobayashi S (1993) Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem Lett 1149–1150

    Google Scholar 

  48. Uyama H, Takeya K, Kobayashi S (1993) Synthesis of polyesters by enzymatic ring-opening copolymerization using lipase catalyst. Proc Jpn Acad B 69:203–207

    Article  CAS  Google Scholar 

  49. Knani D, Gutman AL, Kohn DH (1993) Enzymatic polyesterification in organic media – enzyme-catalyzed synthesis of linear polyesters. 1. Condensation polymerization of linear hydroxyesters. 2. Ring-opening polymerization of ε-caprolactone. J Polym Sci A Polym Chem 31:1221–1232

    Article  CAS  Google Scholar 

  50. Yamaguchi S, Tanha M, Hult A, Okuda T, Ohara H, Kobayashi S (2013) Green polymer chemistry: lipase-catalyzed synthesis of bio-based reactive polyesters employing itaconic anhydride as renewable monomer. Polym J doi:10.1038/pj.2013.62

    Google Scholar 

  51. Kobayashi S, Uyama H (1993) Enzymatic polymerization of cyclic acid anhydrides and glycols by a lipase catalyst. Macromol Chem Rapid Commun 14:841–844

    Article  CAS  Google Scholar 

  52. Bonduelle C, Martin-Vaca B, Bourissou D (2009) Lipase-catalyzed ring-opening polymerization of the O-carboxylic anhydride derived from lactic acid. Biomacromolecules 10:3069–3073

    Article  CAS  Google Scholar 

  53. Ohara H, Onogi A, Yamamoto M, Kobayashi S (2010) Lipase-catalyzed oligomerization and hydrolysis of alkyl lactates: direct evidence in the catalysis mechanism that enantioselection is governed by a deacylation step. Biomacromolecules 11:2008–2015

    Article  CAS  Google Scholar 

  54. Ohara H, Nishioka E, Yamaguchi S, Kawai F, Kobayashi S (2011) Protease-catalyzed oligomerization and hydrolysis of alkyl lactates involving L-enantioselective deacylation step. Biomacromolecules 12:3833–3837

    Article  CAS  Google Scholar 

  55. Hans M, Keul H, Moeller M (2009) Ring-opening polymerization of DD-lactide catalyzed by Novozyme 435. Macromol Biosci 9:239–247

    Article  CAS  Google Scholar 

  56. Ohara H, Yamamoto M, Onogi A, Hirao K, Kobayashi S (2011) Optical resolution of n-butyl D- and L-lactates using immobilized lipase catalyst. J Biosci Bioeng 111:19–21

    Article  CAS  Google Scholar 

  57. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  CAS  Google Scholar 

  58. Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polym Deg Stab 96:1342–1348

    Article  CAS  Google Scholar 

  59. Wilmouth RC, Clifton IJ, Robinson CV, Roach PL, Alpin RT, Westwood NJ, Hajdu J, Schofield CJ (1997) Structure of a specific acyl-enzyme complex formed between β-casomorphin-7 and porcine pancreatic elastase. Nat Struc Biol 4:456–462

    Article  CAS  Google Scholar 

  60. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Vershueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  CAS  Google Scholar 

  61. Borén L, Martín-Matute B, Xu Y, Córdova A, Bäeckvall J-E (2006) (S)-selective kinetic resolution and chemoenzymatic dynamic resolution of secondary alcohols. Chem Eur J 12:225–232

    Article  Google Scholar 

  62. Ebata H, Toshima K, Matsumura S (2000) Lipase-catalyzed transformation of poly(ε-caprolactone) into cyclic dicaprolactone. Biomacromolecules 1:511–551

    Article  CAS  Google Scholar 

  63. Okajima S, Kondo R, Toshima K, Matsumura S (2003) Lipase-catalyzed transformation of poly(butylene adipate) and poly(butylene succinate) into polymerizable cyclic oligomers. Biomacromolecules 4:1514–1519

    Google Scholar 

  64. Takahashi Y, Okajima S, Toshima K, Matsumura S (2004) Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers. Macromol Biosci 4:346–353

    Article  CAS  Google Scholar 

  65. Osanai Y, Toshima K, Matsumura S (2003) Enzymatic degradation of poly(R, S-3-hydroxybutanonoate) to cyclic oligomers under continuous flow. Green Chem 5:567–570

    Article  CAS  Google Scholar 

  66. Matsumura S (2007) Enzymatic synthesis of polyesters via ring-opening polymerization. Adv Polym Sci 194:95–132

    Article  Google Scholar 

  67. Numata K, Srivastava RK, Finne-Wistrand A, Albertsson A-C, Doi Y, Abe H (2007) Branched poly(lactide) synthesized by enzymatic polymerization: effect of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Biomacromolecules 8:3115–3125

    Google Scholar 

  68. Lecomte P, Jerome C (2012) Recent developments in ring-opening polymerization of lactones. Adv Polym Sci 245:173–218

    Article  CAS  Google Scholar 

  69. Namekawa S, Uyama H, Kobayashi S (1998) Lipase-catalyzed ring-opening polymerization of lactones in water. Polym J 30:269–271

    Article  CAS  Google Scholar 

  70. Kobayashi S, Uyama H, Namekawa S (1998) In vitro biosynthesis of polyesters with isolated enzymes in aqueous systems and organic solvents. Polym Deg Stab 59:195–201

    Article  CAS  Google Scholar 

  71. Uyama H, Takeya K, Kobayashi S (1995) Enzymatic ring-opening polymerization of lactones to polyesters by lipase catalyst: unusually high reactivity of macrolides. Bull Chem Soc Jpn 68:56–61

    Article  CAS  Google Scholar 

  72. Taden A, Antonietti M, Landfester K (2003) Enzymatic polymerization toward biodegradable polyester nanoparticles. Macromol Rapid Commun 24:512–516

    Article  CAS  Google Scholar 

  73. Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-Polymers 4:1–6

    Google Scholar 

  74. Loeker FC, Duxbury CJ, Kumar R, Gao W, Gross RA, Howdle SM (2004) Enzyme-catalyzed ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 37:2450–2453

    Article  CAS  Google Scholar 

  75. Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed degradation of polyester in supercritical carbon dioxide. Macromol Biosci 1:215–218

    Article  CAS  Google Scholar 

  76. Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci A Polym Chem 43:4675–4683

    Article  CAS  Google Scholar 

  77. Uyama H, Takamoto T, Kobayashi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J 34:94–96

    Article  CAS  Google Scholar 

  78. Marcilla R, de Jeus M, Mecerreyes D, Duxbury CJ, Koning CE, Heise A (2006) Enzymatic polyester synthesis in ionic liquids. Eur Polym J 42:1215–1221

    Article  CAS  Google Scholar 

  79. Yoshizawa-Fujita M, Saito C, Takeoka Y, Rikukawa M (2008) Lipase-catalyzed polymerization of L-lactide in ionic liquids. Polym Adv Technol 19:1396–1400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kobayashi, S. (2013). Green Polymer Chemistry: Recent Developments. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_236

Download citation

Publish with us

Policies and ethics