Advertisement

Optical Properties of Assemblies of Molecules and Nanoparticles

  • Thomas BaschéEmail author
  • Andreas Köhn
  • Jürgen Gauss
  • Klaus Müllen
  • Harald Paulsen
  • Rudolf Zentel
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 260)

Abstract

Organic dye molecules, colloidal semiconductor quantum dots, and light-harvesting complexes have been employed as optically active building blocks to create complex molecular assemblies via covalent and non-covalent interactions. Taking advantage of the chemical flexibility of the dye and quantum dot components, as well as recombinant protein expression and the ordering capability of cholesteric phases, specific optical function could be implemented. Photophysical phenomena that have been addressed include light-harvesting, electronic excitation energy transfer (EET), and lasing. Optical single-molecule experiments allow control of energy transfer processes in individual molecular dyads and triads. Quantitative insights into the mechanism of EET have been provided by combining the results from single-molecule spectroscopy and quantum chemistry.

Keywords

Cholesteric phases Energy transfer Fluorophores Light-harvesting complex Organic dye molecules Quantum chemistry Semiconductor quantum dots Single-molecule spectroscopy 

Notes

Acknowledgement

The contributions of our co-workers Burkhard Fückel, Long Chen, Gregor Diezemann, Gerald Hinze, Ting Ren, Daniel Wenzlik, Mara Werwie and Xiangxing Xu are gratefully acknowledged.

References

  1. 1.
    Hübner CG, Ksenofontov V, Nolde F, Müllen K, Basché T (2004) Three-dimensional orientational colocalization of individual donor–acceptor pairs. J Chem Phys 120:10867Google Scholar
  2. 2.
    Metivier R, Nolde F, Müllen K, Basché T (2007) Electronic excitation energy transfer between two single molecules embedded in a polymer host. Phys Rev Lett 98:047802Google Scholar
  3. 3.
    Fückel B, Köhn A, Harding ME, Diezemann G, Hinze G, Basché T, Gauss J (2008) Theoretical investigation of electronic excitation energy transfer in bichromophoric assemblies. J Chem Phys 128:074505Google Scholar
  4. 4.
    Fückel B, Hinze G, Nolde F, Müllen K, Basché T (2009) Control of the electronic excitation energy transfer pathway between two single fluorophores by dual pulse excitation. Phys Rev Lett 103:103003Google Scholar
  5. 5.
    Tour JM (1994) Soluble oligo- and polyphenylenes. Adv Mater 6:190Google Scholar
  6. 6.
    Wicklein A, Lang A, Muth M, Thelakkat M (2009) Swallow-tail substituted liquid crystalline perylene bisimides: synthesis and thermotropic properties. J Am Chem Soc 131:14442Google Scholar
  7. 7.
    Nolde F, Qu J, Kohl C, Pschirer NG, Reuther E, Müllen K (2005) Synthesis and modification of terrylenediimides as high-performance fluorescent dyes. Chem Eur J 11:3959Google Scholar
  8. 8.
    Hinze G, Haase M, Nolde F, Müllen K, Basché T (2005) Time-resolved measurements of intramolecular energy transfer in single donor/acceptor dyads. J Phys Chem A 109:6725Google Scholar
  9. 9.
    Hinze G, Metivier R, Nolde F, Müllen K, Basché T (2008) Intramolecular electronic excitation energy transfer in donor/acceptor dyads studied by time and frequency resolved single molecule spectroscopy. J Chem Phys 128:124516Google Scholar
  10. 10.
    Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166Google Scholar
  11. 11.
    Förster T (1948) Zwischenmolekulare Energiewandlung und Fluoreszenz. Ann Phys 2:55Google Scholar
  12. 12.
    Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry, part III: Action of light and organic crystals. Academic, New York, p 93Google Scholar
  13. 13.
    Curutchet C, Feist FA, Van Averbeke B, Mennucci B, Jacob J, Müllen K, Basché T, Beljonne D (2010) Superexchange-mediated electronic energy transfer in a model dyad. Phys Chem Chem Phys 12:7378Google Scholar
  14. 14.
    Zhou G, Baumgarten M, Müllen K (2007) Arylamine-substituted oligo(ladder-type pentaphenylene)s: electronic communication between bridged redox centers. J Am Chem Soc 129:12211Google Scholar
  15. 15.
    Fückel B, Hinze G, Nolde F, Müllen K, Basché T (2010) Quantification of the singlet–singlet annihilation times of individual bichromophoric molecules by photon coincidence measurements. J Phys Chem A 114:7671Google Scholar
  16. 16.
    Fischer M, Vögtle F (1999) Dendrimers: from design to application—a progress report. Angew Chem Int Ed 38:884Google Scholar
  17. 17.
    Pollak KW, Leon JW, Fréchet JMJ, Maskus M, Abruña HD (1998) Effects of dendrimer generation on site isolation of core moieties: electrochemical and fluorescence quenching studies with metalloporphyrin core dendrimers. Chem Mater 10:30Google Scholar
  18. 18.
    Matos MS, Hofkens J, Verheijen W, De Schryver FC, Hecht S, Pollak KW et al (2000) Effect of core structure on photophysical and hydrodynamic properties of porphyrin dendrimers. Macromolecules 33:2967Google Scholar
  19. 19.
    Gilat SL, Adronov A, Frechet JMJ (1999) Light harvesting and energy transfer in novel convergently constructed dendrimers. Angew Chem Int Ed 38:1422Google Scholar
  20. 20.
    Adronov A, Gilat SL, Frechet JMJ, Ohta K, Neuwahl FVR, Fleming GR (2000) Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers. J Am Chem Soc 122:1175Google Scholar
  21. 21.
    Devadoss C, Bharathi P, Moore JS (1996) Energy transfer in dendritic macromolecules: molecular size effects and the role of an energy gradient. J Am Chem Soc 118:9635Google Scholar
  22. 22.
    Jiang D-L, Aida T (1997) Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 388:454–456Google Scholar
  23. 23.
    Jiang D-L, Aida T (1998) Morphology-dependent photochemical events in aryl ether dendrimer porphyrins: cooperation of dendron subunits for singlet energy transduction. J Am Chem Soc 120:10895Google Scholar
  24. 24.
    Saito T, Jiang D-L, Aida T (1999) A blue-luminescent dendritic rod: poly(phenyleneethynylene) within a light-harvesting dendritic envelope. J Am Chem Soc 121:10658Google Scholar
  25. 25.
    Choi M-S, Aida T, Yamazaki T, Yamazaki I (2001) A large dendritic multiporphyrin array as a mimic of the bacterial light-harvesting antenna complex: molecular design of an efficient energy funnel for visible photons. Angew Chem Int Ed 40:3194Google Scholar
  26. 26.
    Metivier R, Kulzer F, Weil T, Müllen K, Basché T (2004) Energy transfer rates and pathways of single donor chromophores in a multichromophoric dendrimer built around a central acceptor core. J Am Chem Soc 126:14364Google Scholar
  27. 27.
    Gronheid R, Hofkens J, Köhn F, Weil T, Reuther E, Müllen K, De Schryver F (2002) Intramolecular Förster energy transfer in a dendritic system at the single molecule level. J Am Chem Soc 124:2418Google Scholar
  28. 28.
    Christ T, Kulzer F, Weil T, Müllen K, Basché T (2003) Frequency selective excitation of single chromophores within shape-persistent multichromophoric dendrimers. Chem Phys Lett 372:878Google Scholar
  29. 29.
    Hofkens J, Maus M, Gensch T, Vosch T, Cotlet M, Köhn F, Herrmann A, Müllen K, De Schryver F (2000) Probing photophysical processes in individual multichromophoric dendrimers by single-molecule spectroscopy. J Am Chem Soc 122:9278Google Scholar
  30. 30.
    Weil T, Wiesler UM, Herrmann A, Bauer R, Hofkens J, De Schryver FC, Müllen K (2001) Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery. J Am Chem Soc 123:8101Google Scholar
  31. 31.
    Maus M, Mitra S, Lor M, Hofkens J, Weil T, Herrmann A, Müllen K, De Schryver FC (2001) Intramolecular energy hopping in polyphenylene dendrimers with an increasing number of peryleneimide chromophores. J Phys Chem A 105:3961Google Scholar
  32. 32.
    Vosch T, Hofkens J, Cotlet M, Köhn F, Fujiwara H, Gronheid R, Van Der Biest K, Weil T, Herrmann A, Müllen K, Mukamel S, der Auweraer V, De Schryver F (2001) Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules. Angew Chem Int Ed 40:4643Google Scholar
  33. 33.
    Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293:1119Google Scholar
  34. 34.
    Grimsdale AC, Müllen K (2005) The chemistry of organic nanomaterials. Angew Chem Int Ed 44:5592Google Scholar
  35. 35.
    Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718Google Scholar
  36. 36.
    Wu J, Watson MD, Zhang L, Wang Z, Müllen K (2003) Hexakis(4-iodophenyl)-peri-hexabenzocoronene- a versatile building block for highly ordered discotic liquid crystalline materials. J Am Chem Soc 126:177Google Scholar
  37. 37.
    Wu J, Qu J, Tchebotareva N, Müllen K (2005) Hexa-peri-hexabenzocoronene/perylenedicarboxymonoimide and diimide dyads as models to study intramolecular energy transfer. Tetrahedron Lett 46:1565Google Scholar
  38. 38.
    Fückel B, Hinze G, Wu J, Müllen K, Basché T (2012) Probing the electronic state of a single coronene molecule by the emission from proximate fluorophores. ChemPhysChem 13:938Google Scholar
  39. 39.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425Google Scholar
  40. 40.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630Google Scholar
  41. 41.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435Google Scholar
  42. 42.
    Schmelz O, Mews A, Basché T, Herrmann A, Müllen K (2001) Supramolecular complexes from CdSe nanocrystals and organic fluorophores. Langmuir 17:2861Google Scholar
  43. 43.
    Potapova I, Mruk R, Hübner C, Zentel R, Basché T, Mews A (2005) CdSe/ZnS nanocrystals with dye-functionalised multi-anchor polymer-ligands. Angew Chemie 44:2437Google Scholar
  44. 44.
    Willard, DM, Carillo LL, Jung J, Van Orden A (2001) CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein–protein binding assay. Nano Lett 1:469Google Scholar
  45. 45.
    Baer R, Rabani EJ (2008) Theory of resonance energy transfer involving nanocrystals: the role of high multipoles. Chem Phys 128:184710Google Scholar
  46. 46.
    Fernandez-Arguelles M, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Sanz Medel A, Mallet JM, Borchon JC, Feltz A, Oheim M, Parak WJ (2007) Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett 7:2613Google Scholar
  47. 47.
    Clapp AR, Medintz LR, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. Chem Phys Chem 7:47Google Scholar
  48. 48.
    Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301Google Scholar
  49. 49.
    Dayal S, Lou Y, Samia ACS, Berlin JC, Kenney ME, Burda C (2006) Observation of non-förster-type energy-transfer behavior in quantum dot−phthalocyanine conjugates. J Am Chem Soc 128:13974Google Scholar
  50. 50.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CDE (E=S, SE, TE) semiconductor nanocrystallites. J Am Chem Soc 115:8706Google Scholar
  51. 51.
    Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J Phys Chem 100:468Google Scholar
  52. 52.
    Xie R, Kolb U, Li J, Basché T, Mews A (2005) Synthesis and characterisation of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multi shell nanocrystals. J Am Chem Soc 127:7480Google Scholar
  53. 53.
    Kim S, Fisher B, Eisler H-J, Bawendi MG (2003) Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J Am Chem Soc 125:11466Google Scholar
  54. 54.
    Xie R, Zhong X, Basché T (2005) Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores. Adv Mater 17:2741Google Scholar
  55. 55.
    Xie R, Kolb U, Basché T (2006) Design and synthesis of colloidal nanocrystal heterostructures with tetrapod morphology. Small 2:1454Google Scholar
  56. 56.
    Liu Y, Kim M, Wang Y, Wang YA, Peng X (2006) Highly luminescent, stable, and water-soluble CdSe/CdS core−shell dendron nanocrystals with carboxylate anchoring groups. Langmuir 22:6341Google Scholar
  57. 57.
    Ren T, Mandal PK, Erker W, Liu Z, Avlasevich Y, Puhl L, Müllen K, Basché T (2008) A simple and versatile route to stable quantum dot−dye hybrids in nonaqueous and aqueous solutions. J Am Chem Soc 130:17242Google Scholar
  58. 58.
    Xu X, Stöttinger S, Battagliarin G, Hinze G, Mugnaioli E, Li C, Müllen K, Basché T (2011) Assembly and separation of semiconductor quantum dot dimers and trimers. J Am Chem Soc 133:18062Google Scholar
  59. 59.
    Gomez DE, Califano M, Mulvaney P (2006) Optical properties of single semiconductor nanocrystals. Phys Chem Chem Phys 8:4989Google Scholar
  60. 60.
    Koole R, Liljeroth P, Donega CD, Vanmaekelbergh D, Meijerink A (2006) Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J Am Chem Soc 128:10436Google Scholar
  61. 61.
    Antelman J, Wilking-Chang C, Weiss S, Michalet X (2009) Nanometer distance measurements between multicolor quantum dots. Nano Lett 9:2199Google Scholar
  62. 62.
    Peng XG, Wilson TE, Alivisatos AP, Schultz PG (1997) Synthesis and isolation of a homodimer of cadmium selenide nanocrystals. Angew Chem Int Ed 36:145Google Scholar
  63. 63.
    Smith AW, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190Google Scholar
  64. 64.
    Govorov AO (2008) Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: the role of Förster transfer. Adv Mater 20(22):4330Google Scholar
  65. 65.
    Nabiev I, Rakovich A, Sukhanova A, Lukashev E, Zagidullin V, Pachenko V, Rakovich YP, Donegan JF, Rubin AB, Govorov AO (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew Chem Int Ed 49(40):7217Google Scholar
  66. 66.
    Maksimov EG, Kurashov VN, Mamedov MD et al (2012) Hybrid system based on quantum dots and photosystem 2 core complex. Biochem Mosc 77(6):624Google Scholar
  67. 67.
    Schmitt F (2010) Temperature induced conformational changes in hybrid complexes formed from CdSe/ZnS nanocrystals and the phycobiliprotein antenna of Acaryochloris marina. J Opt 12(8):84008Google Scholar
  68. 68.
    Schmitt F, Maksimov E, Suedmeyer H, Jeyasangar V, Theiss C, Paschenko V, Eichler H, Renger G (2011) Time resolved temperature switchable excitation energy transfer processes between CdSe/ZnS nanocrystals and phycobiliprotein antenna from Acaryochloris marina. Photonic Nanostruct 9(2):190Google Scholar
  69. 69.
    Maksimov EG, Gostev TS, Kuz’minov FI, Sluchanko NN, Stadnichuk IN, Pashchenko VZ, Rubin AB (2010) Hybrid systems of quantum dots mixed with the photosensitive protein phycoerythrin. Nanotechnol Russia 5(7–8):531Google Scholar
  70. 70.
    Schmitt FJ, Maksimov EG, Hatti P, Weissenborn J, Jeyasangar V, Razjivin AP, Pashchenko VZ, Friedrich T, Renger G (2012) Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer. Biochim Biophys Acta Bioenerg 1817(8):1461Google Scholar
  71. 71.
    Erker W, Boggasch S, Xie RG, Grundmann G, Paulsen H, Basché T (2010) Assemblies of semiconductor quantum dots and light-harvesting-complex II. J Lumin 130(9):1624Google Scholar
  72. 72.
    Werwie M, Xu X, Haase M, Basché T, Paulsen H (2012) Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots. Langmuir 28(13):5810Google Scholar
  73. 73.
    Gundlach K, Werwie M, Wiegand S, Paulsen H (2009) Filling the "green gap" of the major light-harvesting chlorophyll a/b complex by covalent attachment of Rhodamine Red. Biochim Biophys Acta Bioenerg 1787(12):1499Google Scholar
  74. 74.
    Peneva K, Gundlach K, Herrmann A, Paulsen H, Müllen K (2010) Site-specific incorporation of perylene into an N-terminally modified light-harvesting complex II. Org Biomol Chem 8(21):4823Google Scholar
  75. 75.
    Wolf-Klein H, Kohl C, Müllen K, Paulsen H (2002) Biomimetic model of a plant photosystem consisting of a recombinant light-harvesting complex and a terrylene dye. Angew Chem Int Ed 41(18):3378Google Scholar
  76. 76.
    Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110:6817Google Scholar
  77. 77.
    Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059Google Scholar
  78. 78.
    John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486Google Scholar
  79. 79.
    Busch K, Lölkes S, Wehrspohn RB, Föll H (2004) Photonic crystals – advances in design. Fabrication and characterization. Wiley-VCH, WeinheimGoogle Scholar
  80. 80.
    Wehrspohn RB, Kitzerow H-S, Busch K (2008) Nanophotonic materials, photonic crystals, plasmonics and metamaterials. Wiley-VCH, WeinheimGoogle Scholar
  81. 81.
    Lange B, Fleischhaker F, Zentel R (2007) Chemical approach to functional artificial opals. Macromol Rapid Commun 28:1291Google Scholar
  82. 82.
    John S, Quang T (1995) Localization of superradiance near a photonic band-gap. Phys Rev Lett 74:3419Google Scholar
  83. 83.
    Müller M, Zentel R, Maka T, Romanov SG, Sotomayor Torres CM (2000) Photonic crystal films with high refractive index contrast. Adv Mater 12:1499Google Scholar
  84. 84.
    Kneubühl FK, Sigrist MW (1999) Laser. Teubner Studienbücher, StuttgartGoogle Scholar
  85. 85.
    Dodabalapur A, Chandross EA, Berggren M, Slusher RE (1997) Applied physics: organic solid-state lasers: past and future. Science 277:1787Google Scholar
  86. 86.
    Müller M, Zentel R, Maka T, Romanov SG, Sotomayor Torres CM (2000) Dye-containing polymer beads as photonic crystals. Chem Mater 12:2508Google Scholar
  87. 87.
    Fleischhaker F, Zentel R (2005) Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem Mater 17:1346Google Scholar
  88. 88.
    Gorelik VS (2008) Optics of globular photonic crystals. Laser Phys 18:1479Google Scholar
  89. 89.
    Romanov SG, Maka T, Sotomayor Torres CM, Müller M, Zentel R (1999) Photonic band-gap effects upon the light emission from a dye-polymer-opal composite. Appl Phys Lett 75:1057Google Scholar
  90. 90.
    Furumi S, Kanai T, Sawada T (2011) Widely tunable lasing in a colloidal crystal gel film permanently stabilized by an ionic liquid. Adv Mater 23:3815Google Scholar
  91. 91.
    Fleischhaker F, Arsenault AC, Kitaev V, Peiris FC, von Freymann G, Manners I, Zentel R, Ozin GA (2005) Photochemically and thermally tunable planar defects in colloidal photonic crystals. J Am Chem Soc 127:9318Google Scholar
  92. 92.
    Fleischhaker F, Arsenault AC, Schmidtke J, Zentel R, Ozin G (2006) Spin-coating of designed functional planar defects in opal film: generalized synthesis. Chem Mater 18:5640Google Scholar
  93. 93.
    Shi LT, Jin F, Zheng ML, Dong XZ, Chen WQ, Zhao ZS, Duan XM (2011) Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser. App Phys Lett 98:093304Google Scholar
  94. 94.
    Goldberg, L.S, Schnur, J.M. (1973) Tunable internal-feedback liquid crystal-dye laser. US patent No. 3,771,065.Google Scholar
  95. 95.
    Ilchishin IP, Tikhonov EA, Tishchenko VG, Shpak MT (1980) Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett 32:24Google Scholar
  96. 96.
    Ilchishin IP, Tikhonov EA, Tolmachev AV, Fedoryako AP, Shpak MT (1988) Harmonic distortion of the nematic liquid crystal structure with induced gyrotropy which manifests in the distributed feedback laser. Ukrainskii Fizicheskii Zhurnal 33:1492Google Scholar
  97. 97.
    Blinov LM, Bartolino R (2010) Liquid crystal microlasers. Transworld Research Network, Kerala, p 1Google Scholar
  98. 98.
    Coles H, Morris S (2010) Liquid-crystal lasers. Nat Photon 4:676Google Scholar
  99. 99.
    Coles H, Morris S, Ford AD, Hands PJW, Wilkinson TD (2010) Red-green-blue 2D tuneable liquid crystal laser devices for displays. In: Blinov LM, Bartolino R (eds) Liquid crystal microlasers. Transworld Research Network, Kerala, p. 241Google Scholar
  100. 100.
    Munoz A, McConney ME, Kosa T, Luchette P, Sukhomlinova L, White TJ, Bunning TJ, Taheri B (2012) Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap. Opt Lett 37:2904Google Scholar
  101. 101.
    Haase W, Podgornov F, Matsuhisa Y, Ozaki M (2008) Lasing in dye-doped chiral liquid crystals: influence of defect modes. In: Wehrspohn RB, Kitzerow H-S, Busch K (eds) Nanophotonic materials: photonic crystals, plasmonics and metamaterials. Wiley-VCH, Weinheim, p 239Google Scholar
  102. 102.
    Ozaki M, Matsuhisa Y, Yoshida H, Ozaki R, Fijii A (2008) Photonic crystals based on chiral liquid crystals. In: Wehrspohn RB, Kitzerow H-S, Busch K (eds) Nanophotonic materials, photonic crystals: plasmonics and metamaterials. Wiley-VCH, Weinheim, p 251Google Scholar
  103. 103.
    Moreira M, Relaix S, Cao W, Taheri B, Palffy-Muhoray P (2010) Mirrorless lasing and lasing thresholds in cholesteric liquid crystals. In: Blinov LM, Bartolino R (eds) Liquid crystal microlasers. Transworld Research Network, Kerala, p 223.Google Scholar
  104. 104.
    Schmidtke J, Stille W (2003) Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment. Eur Phys J B Condensed Matter Complex Syst 31:179Google Scholar
  105. 105.
    Ozaki M, Matsuhisa Y, Yoshida H, Ozaki R, Fujii A (2007). Photonic crystals based on chiral liquid crystal. Phys Status Solidi A Appl Mater Sci 204:3777Google Scholar
  106. 106.
    Kopp VI, Genack AZ (2002) Twist defect in chiral photonic structures. Phys Rev Lett 89:033901Google Scholar
  107. 107.
    Zapotocky M, Ramos L, Poulin P, Lubensky TC, Weitz DA (1999) Particle-stabilized defect gel in cholesteric liquid crystals. Science 283:209Google Scholar
  108. 108.
    Matsui T, Ozaki M, Yoshino K (2004) Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix. Phys Rev E 69:061715Google Scholar
  109. 109.
    Yoshida H, Lee CH, Fujii A, Ozaki M (2007) Tunable chiral photonic defect modes in locally polymerized cholesteric liquid crystals. Mol Cryst Liq Cryst 477:255Google Scholar
  110. 110.
    Ozaki M, Ozaki R, Matsui T, Yoshino K (2003) Twist-defect-mode lasing in photopolymerized cholesteric liquid crystal. J Appl Phys II Lett 42:L472Google Scholar
  111. 111.
    Zentel R, Müller M, Keller H (1997) Solid opalescent films originating from urethanes of cellulose. Adv Mater 9:159Google Scholar
  112. 112.
    Müller M, Zentel R (2000) Cholesteric phases and films from cellulose derivatives. Macromol Chem Phys 201:2055Google Scholar
  113. 113.
    Sato T, Shimizu T, Kasabo F, Teramoto A (2003) Isotropic-cholesteric phase equilibrium in solutions of cellulose tris(phenyl carbamate). Macromolecules 36:2939Google Scholar
  114. 114.
    Norisuye T, Tsuboi A, Sato T, Teramoto A (1997) Solution properties of cellulose tris(3,5-dimethyl-phenylcarbamate). Macromol Symp 120:65Google Scholar
  115. 115.
    Wenzlik D, Zentel R (2013) High optical quality films of liquid crystalline cellulose derivatives in acrylates. Macromol Chem Phys. doi: 10.1002/macp201300354 Google Scholar
  116. 116.
    Wenzlik D. (2013) PhD thesis, Johannes Gutenberg-Universität Mainz, GermanyGoogle Scholar
  117. 117.
    Christ T, Petzke F, Bordat P, Herrmann A, Reuther E, Müllen K, Basché T (2002) Investigation of molecular dimers by ensemble and single molecule spectroscopy. J Lumin 98:23Google Scholar
  118. 118.
    Hettich C, Schmitt C, Zitzmann J, Kuhn S, Gerhardt I, Sandoghdar V (2002) Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298:385Google Scholar
  119. 119.
    Vosch T, Cotlet M, Hofkens J, Van Der Biest K, Lor M, Weston KD, Tinnefeld P, Sauer M, Latterini L, Müllen K, De Schryver FC (2003) Probing Förster type energy pathways in a first generation rigid dendrimer bearing two perylene imide chromophores. J Phys Chem A 107:6920Google Scholar
  120. 120.
    Hübner CG, Zumofen G, Renn A, Herrmann A, Müllen K, Basché T (2003) Photon antibunching and collective effects in the fluorescence of single bichromophoric molecules. Phys Rev Lett 91:093903Google Scholar
  121. 121.
    Lippitz M, Hübner CG, Christ T, Eichner H, Bordat P, Herrmann A, Müllen K, Basché T (2004) Coherent electronic coupling versus localization in individual molecular dimers. Phys Rev Lett 92:103001Google Scholar
  122. 122.
    Hernando J, van der Schaaf M, van Dijk EMHP, Sauer M, Garcia-Parajo MF, van Hulst NF (2003) Excitonic behavior of rhodamine dimers: a single-molecule study. J Phys Chem A 107:43Google Scholar
  123. 123.
    Hernando J, Hoogenboom JP, van Dijk EMHP, García-López JJ, Crego-Calama M, Reinhoudt DN, van Hulst NF, García-Parajó MF (2004) Single molecule photobleaching probes the exciton wave function in a multichromophoric system. Phys Rev Lett 93:236404Google Scholar
  124. 124.
    Fückel B, Hinze G, Diezemann G, Nolde F, Müllen K, Gauss J, Basché T (2006) Flexibility of phenylene oligomers revealed by single molecule spectroscopy. J Chem Phys 125:144903Google Scholar
  125. 125.
    Farmer BL, Chapman BR, Dudis DS, Adams WW (1993) Molecular-dynamics of rigid-rod polymers. Polymer 34:1588Google Scholar
  126. 126.
    Petekidis G, Vlassopoulos D, Galda P, Rehahn M, Ballauff M (1996) Determination of chain conformation of stiff polymers by depolarized Rayleigh scattering in solution. Macromolecules 29:8948Google Scholar
  127. 127.
    Vanhee S, Rulkens R, Lehmann U, Rosenauer C, Schulze M, Köhler W, Wegner G (1996) Synthesis and characterization of rigid rod poly(p-phenylenes). Macromolecules 29:5136Google Scholar
  128. 128.
    Kulzer F, Kummer S, Matzke R, Bräuchle C, Basché T (1997) Single-molecule optical switching of terrylene in p-terphenyl. Nature 387:688Google Scholar
  129. 129.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) A digital fluorescent molecular photoswitch. Nature 420:759Google Scholar
  130. 130.
    Betzig E (1995) Proposed method for molecular optical imaging. Optics Lett 20:237Google Scholar
  131. 131.
    van Oijen AM, Köhler J, Schmidt J, Müller M, Brakenhoff GJ (1998) 3-Dimensional super-resolution by spectrally selective imaging. Chem Phys Lett 292:183Google Scholar
  132. 132.
    Curutchet C, Mennucci B, Scholes GD, Beljonne D (2008) Does Förster theory predict the rate of electronic energy transfer for a model dyad at low temperature? J Phys Chem B 112:3759Google Scholar
  133. 133.
    Chen H-C, You ZQ, Hsu CP (2008) The mediated excitation energy transfer: effects of bridge polarizability. J Chem Phys 129:084708Google Scholar
  134. 134.
    Perrin F (1929) La fluorescence des solutions. Induction moléculaire – polarisation et durée d´émission – photochimie. Annales de physique 12:169Google Scholar
  135. 135.
    May V, Kühn O (2010) Charge and energy transfer dynamics in molecular systems. Wiley-VCH, WeinheimGoogle Scholar
  136. 136.
    Knox RS, van Amerongen H (2002) Refractive index dependence of the Förster resonance excitation transfer rate. J Phys Chem B 106:5289Google Scholar
  137. 137.
    Diehl FP, Roos C, Jankowiak H-C, Berger R, Köhn A, Diezemann G, Basché T (2010) Combined experimental and theoretical study of the vibronic spectra of perylenecarboximides. J Phys Chem B 114:1638Google Scholar
  138. 138.
    Becke A (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372Google Scholar
  139. 139.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571Google Scholar
  140. 140.
    Schäfer A, Huber C, Ahlrichs A (1993) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829Google Scholar
  141. 141.
    Schirmer J (1982) Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 26:2395Google Scholar
  142. 142.
    Hättig C (2005) Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv Quantum Chem 50:37Google Scholar
  143. 143.
    Jankowiak H-C, Stuber JL, Berger R (2007) Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck–Condon factors. J Chem Phys 127:234101Google Scholar
  144. 144.
    Harcourt RD, Scholes GD, Ghiggino KP (1994) Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions. J Chem Phys 101:10521Google Scholar
  145. 145.
    Scholes GD, Harcourt RD (1996) Configuration interaction and the theory of electronic factors in energy transfer and molecular exciton interactions. J Chem Phys 104:5054Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Basché
    • 1
    Email author
  • Andreas Köhn
    • 1
  • Jürgen Gauss
    • 1
  • Klaus Müllen
    • 2
  • Harald Paulsen
    • 3
  • Rudolf Zentel
    • 4
  1. 1.Institut für Physikalische ChemieJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Max Planck-Institut für PolymerforschungMainzGermany
  3. 3.Institut für Allgemeine BotanikJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Institut für Organische ChemieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations