Advertisement

Methylaluminoxane: Key Component for New Polymerization Catalysts

  • Walter Kaminsky
  • Hansjörg Sinn
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 258)

Abstract

The use of methylaluminoxane (MAO) as cocatalyst for the polymerization of olefins and some other vinyl compounds has widely increased the possibilities for more precisely controlling the polymer composition, polymer structure, tacticity, and special properties. Highly active catalysts are obtained by different transition metal complexes such as metallocenes, half-sandwich complexes, and bisimino complexes combined with MAO. These catalysts allow the synthesis of polyolefins with different tacticities and stereoregularities, new cycloolefins and other copolymers, and polyolefin composite materials of a purity that cannot be obtained by Ziegler–Natta catalysts. The single-site character of metallocene/MAO or other transition metal/MAO catalysts leads to a better understanding of the mechanism of olefin polymerization.

Keywords

Metallocene catalysts Methylaluminoxane Olefin polymerization Single-site catalysts 

Abbreviations

Ac

Acetyl

Bu

Butyl

CNF

Carbon nanofiber

Cp

Cyclopentadienyl

Cp*

Pentamethyl cyclopentadienyl

En

Ethylidene

Et

Ethyl

Flu

Fluorenyl

Ind

Indenyl

IndH4

Tetrahydro indenyl

MAO

Methylaluminoxan

Me

Methyl

Mw/Mn

Molecular weight distribution

MWCNT

Multiwalled carbon nanotube

Naph

Naphthyl

NmCp

Neomenthyl cyclopentadienyl

NMR

Nuclear magnetic resonance

PE

Polyethylene

Ph

Phenyl

PP

Polypropylene

tBu

Tertiary-butyl

TEM

Transmission electron microscopy

TIBA

Triisobuthyl aluminum

TMA

Trimethylaluminum

References

  1. 1.
    Ziegler K, Holzkamp E, Breil H, Martin H (1955) Angew Chem 67:541Google Scholar
  2. 2.
    Breslow DS, Newburg NR (1957) J Am Chem Soc 79:5072Google Scholar
  3. 3.
    Natta G, Pino P, Mazzanti G, Longi P (1957) Gazz Chim Ital 87:549Google Scholar
  4. 4.
    Patat F, Sinn H (1958) Angew Chem 70:496Google Scholar
  5. 5.
    Shilov AE (1960) Dok Akad Nauk SSS 132:599Google Scholar
  6. 6.
    Henrici-Olivé G, Olivé S (1969) J Organomet Chem 16:339Google Scholar
  7. 7.
    Reichert KH, Schoetter E (1968) Z Phys Chem 57:74Google Scholar
  8. 8.
    Fink G, Rottler R (1981) Angew Makromol Chem 94:2Google Scholar
  9. 9.
    Waters JA, Mortimer GA (1972) J Polym Sci A1 10:895–907Google Scholar
  10. 10.
    Chien JCW (1959) J Am Chem Soc 81:86Google Scholar
  11. 11.
    Fink G, Schnell D (1982) Angew Makromol Chem 105:39Google Scholar
  12. 12.
    Sinn H, Patat F (1963) Angew Chem 75:805Google Scholar
  13. 13.
    Sinn H, Hinck H, Bandermann F, Grützmacher HF (1968) Angew Chem 80:190Google Scholar
  14. 14.
    Kaminsky W, Sinn H (1975) Justus Liebigs Ann Chem 1975:424Google Scholar
  15. 15.
    Kaminsky W, Vollmer HJ, Heins E, Sinn H (1974) Makromol Chem 175:443Google Scholar
  16. 16.
    Sinn H, Kolk E (1966) J Organomet Chem 6:373Google Scholar
  17. 17.
    Kaminsky W, Kopf J, Sinn H, Vollmer HJ (1976) Angew Chem Int Ed Engl 15:629Google Scholar
  18. 18.
    Sinn H (1974) Chem Ing Technol 46:579Google Scholar
  19. 19.
    Sinn H, Kaminsky W, Janning J (1976) Angew Chem 88:737Google Scholar
  20. 20.
    Heins E, Hinck H, Kaminsky W, Oppermann G, Raulinat P, Sinn H (1970) Makromol Chem 134:125Google Scholar
  21. 21.
    Mottweiler R (1975) Thesis. University of Hamburg, HamburgGoogle Scholar
  22. 22.
    Andresen A, Cordes HG, Herwig J, Kaminsky W, Merck A, Mottweiler R, Pein J, Sinn H, Vollmer HJ (1976) Angew Chem Int Ed Engl 15:630Google Scholar
  23. 23.
    Sinn H, Kaminsky W (1980) Ziegler–Natta catalysis. Adv Organomet Chem 18:99Google Scholar
  24. 24.
    Kaminsky W (2004) J Polym Sci A Polym Chem 42:3911Google Scholar
  25. 25.
    Kaminsky W (2012) Macromolecules 45:3289Google Scholar
  26. 26.
    Reichert KH, Meyer KR (1973) Makromol Chem 169:163Google Scholar
  27. 27.
    Long WP, Breslow DS (1975) Justus Liebigs Ann Chem 1975:463Google Scholar
  28. 28.
    Lehmkuhl H, Ziegler K (1970) In: Houben J, Weyl T (eds) Methoden der organische Chemie (Houben-Weyl) vol XIII, part 4. Thieme, Stuttgart, p 76Google Scholar
  29. 29.
    Storr A, Jones K, Laubengayer AW (1968) J Am Chem Soc 90:3173Google Scholar
  30. 30.
    Bähr G (1946) Fiat review of German Science. Inorganic chemistry, Part II, p 161Google Scholar
  31. 31.
    Herwig J, Kaminsky W (1983) Polym Bull 9:464Google Scholar
  32. 32.
    Sinn H, Bliemeister J, Clausnitzer D, Tikwe L, Winter H, Zarncke O (1988) In: Kaminsky W, Sinn H (eds) Transition metals and organometallics as catalysts for olefin polymerization. Springer, Berlin, p 257Google Scholar
  33. 33.
    Bliemeister J, Hagendorf W, Harder A, Heitmann B, Schimmel I, Schmedt E, Schnuchel W, Sinn H, Tikwe L, vThienen N, Urlass K, Winter H, Zarncke O (1995) In: Fink G, Mülhaupt P, Brintzinger HH (eds) Ziegler catalysts. Springer, Berlin, p 57Google Scholar
  34. 34.
    Sinn H, Schimmel I, Ott M, vThienen N, Harder A, Hagendorf W, Heitmann B, Haupt E (1999) In: Kaminsky W (ed) Metalorganic catalysts for synthesis and polymerization. Springer, Berlin, p 105Google Scholar
  35. 35.
    Sinn H, Namyslo J (2012) Colloquium at Chemistry Department, University Hamburg, 30 May 2012Google Scholar
  36. 36.
    Smith GM, Palmaka SW, Rogers JS, Malpass DB, Monfiston DJ (1998) US Patent 5,831,109 to Akzo NobelGoogle Scholar
  37. 37.
    Malpass DB, Palmaka SW, Smith GM, Rogers JS (1997) Int Patent Appl WO 9,723,288, A1 19,970,703 to Akzo NobelGoogle Scholar
  38. 38.
    Sinn H (1995) Macromol Symp 97:27Google Scholar
  39. 39.
    Eilertsen JL, Rytter E, Ystenes (1999) In: Kaminsky W (ed) Metalorganic catalysts for synthesis and polymerization. Springer, Berlin, p 136Google Scholar
  40. 40.
    Mason MR, Smith JM, Bott SG, Barron R (1993) J Am Chem Soc 115:4971Google Scholar
  41. 41.
    Koide Y, Bott SG, Barron AR (1996) Organometallics 15:2213Google Scholar
  42. 42.
    Kaminsky W, Miri M, Sinn H, Woldt R (1983) Makromol Chem Rapid Commun 4:417Google Scholar
  43. 43.
    Sinn H, Kaminsky W, Vollmer HJ, Woldt R (1980) DE Patent 3,007,725Google Scholar
  44. 44.
    Dyachkovskii FS, Shilova AK, Shilov AE (1967) Polym Sci C 16:2333Google Scholar
  45. 45.
    Eisch JJ, Pombrick SI, Zheng GX (1993) Organometallics 12:3856Google Scholar
  46. 46.
    Jordon RF, Dasher WE, Echols SF (1968) J Am Chem Soc 108:1718Google Scholar
  47. 47.
    Bochmann M, Wilson LM (1986) J Chem Soc Chem Commun 1610Google Scholar
  48. 48.
    Yang X, Stern CL, Marks TJ (1991) Organometallics 10:840Google Scholar
  49. 49.
    Sishta C, Hathorn RM, Marks TJ (1992) J Am Chem Soc 114:1112Google Scholar
  50. 50.
    Hlatky GG, Turner HW, Eckmann RR (1989) J Am Chem Soc 111:2728Google Scholar
  51. 51.
    Chien JCW, Tsai WM, Rausch MD (1991) J Am Chem Soc 113:8570Google Scholar
  52. 52.
    Bochmann M, Lancaster SJ (1993) Organometallics 12:633Google Scholar
  53. 53.
    Zambelli A, Longo P, Grassi A (1989) Macromolecules 22:2186Google Scholar
  54. 54.
    Shiono T (2013) Trialkylaluminum-free modified methylaluminoxane as a cocatalyst for living polymerization of olefins. Adv Polym Sci. doi: 10.1007/12_2013_211 Google Scholar
  55. 55.
    Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth R (1995) Angew Chem 107:1255, Angew Chem Int Ed Engl 34:1143Google Scholar
  56. 56.
    Scheirs J, Kaminsky W (eds) (2000) Metallocene-based polyolefins: preparation, properties, and technology, vols 1 and 2. Wiley, ChichesterGoogle Scholar
  57. 57.
    Coates GW (2000) Chem Rev 100:1223Google Scholar
  58. 58.
    Rieger B, Baugh LS, Kacker S, Striegler S (eds) (2003) Late transition metal polymerization catalysis. Wiley-VCH, WeinheimGoogle Scholar
  59. 59.
    Keii T (2004) Heterogeneous kinetics: theory of Ziegler–Natta–Kaminsky polymerization, vol 77, Springer series in chemical physics. Springer, BerlinGoogle Scholar
  60. 60.
    Razavi A, Thewalt U (2006) Coord Chem Rev 250:155Google Scholar
  61. 61.
    Kaminsky W (ed) (2005) Olefin polymerization. Macromol Symp 236Google Scholar
  62. 62.
    Chum PS, Swogger KW (2008) Prog Polym Sci 33:797Google Scholar
  63. 63.
    Baugh LS, Canich JAM (eds) (2008) Stereoselective polymerization with single-site catalysts. CRC, Boca RatonGoogle Scholar
  64. 64.
    Busico V (2009) Dalton Trans 41:8794Google Scholar
  65. 65.
    Severn J, Robert L (2010) In: Hoff R, Mathers RT (eds) Handbook of transition metal polymerization catalysts. Wiley, New York, p 157Google Scholar
  66. 66.
    Nomura K, Liu KJ (2011) Dalton Trans 40:7666Google Scholar
  67. 67.
    Heurtefen B, Bouilhac C, Cloutet E, Taton D, Deffieux A, Cramail H (2011) Prog Polym Sci 36:89Google Scholar
  68. 68.
    Delferro M, Marks TJ (2011) Chem Rev 111:2450Google Scholar
  69. 69.
    Tait P (1988) In: Kaminsky W, Sinn H (eds) Transition metals and organometallics as catalysts for olefin polymerization. Springer, Berlin, p 309Google Scholar
  70. 70.
    Chien JCW, Wang BP (1989) J Polym Sci A 27:139Google Scholar
  71. 71.
    Kaminsky W, Engehausen R, Zoumis K, Spaleck W, Rohrmann J (1992) Makromol Chem 193:1643Google Scholar
  72. 72.
    Kaminsky W (1996) Macromol Chem Phys 197:3907Google Scholar
  73. 73.
    Alt GH, Milius W, Palackal SJ (1994) J Organomet Chem 472:113Google Scholar
  74. 74.
    Kaminsky W, Lüker H (1989) Makromol Chem Rapid Commun 5:225Google Scholar
  75. 75.
    Erker JKG, Fröhlich R (1997) J Am Chem Soc 119:11165Google Scholar
  76. 76.
    Kawai K, Fujita T (2009) Top Organomet Chem 26:3–41Google Scholar
  77. 77.
    Shiono T (2011) Polym J 43:331Google Scholar
  78. 78.
    Stevens (1993) Proceedings worldwide metallocene conference, MetCon 93, Houston, 26–28 May 1993. Catalyst Consultants, Houston, p 157Google Scholar
  79. 79.
    Hlatky GG (2000) Chem Rev 100:1347Google Scholar
  80. 80.
    Pino P, Mühlhaupt R (1980) Angew Chem 92:869Google Scholar
  81. 81.
    Wild FR, Zsolnai L, Huttner G, Brintzinger HH (1982) J Organomet Chem 232:233Google Scholar
  82. 82.
    Kaminsky W, Külper K, Brintzinger HH, Wild FR (1985) Angew Chem Int Ed Engl 24:507Google Scholar
  83. 83.
    Ewen JA (1984) J Am Chem Soc 106:6355Google Scholar
  84. 84.
    Spaleck W, Aulbach M, Bachmann B, Kueber F, Winter A (1995) Macromol Symp 89:237Google Scholar
  85. 85.
    Ewen JA, Jones RL, Razavi A, Ferrara JP (1988) J Am Chem Soc 110:6255Google Scholar
  86. 86.
    Kaminsky W, Buschermöhle M (1987) In: Fontanille M, Guyot A (eds) Recent advances in mechanistic and synthetic aspects of polymerization. Reidel, Dordrecht, p 503Google Scholar
  87. 87.
    Brintzinger HH, Fischer D (2013) Development of ansa-metallocenes for isotactic olefin polymerization. Adv Polym Sci. doi: 10.1007/12_2013_215 Google Scholar
  88. 88.
    Razavi A (2013) Syndiotactic polypropene: discovery, development, and industrialization via bridged metallocene catalysts. Adv Polym Sci. doi: 10.1007/12_2013_220 Google Scholar
  89. 89.
    Kaminsky W, Spiehl R (1989) Makromol Chem 190:515Google Scholar
  90. 90.
    Collins S, Kelly WM (1992) Macromolecules 25:233Google Scholar
  91. 91.
    Tritto I, Boggioni L, Ferro DR (2006) Coord Chem Rev 250:212Google Scholar
  92. 92.
    Schäfer A, Karl E, Zsolnai L, Huttner G, Brintzinger HH (1987) J Organomet Chem 328:87Google Scholar
  93. 93.
    Kaminsky W, Ahlers A, Möller-Lindenhof N (1989) Angew Chem Int Ed Engl 28:1216Google Scholar
  94. 94.
    Kaminsky W, Ahlers A, Rabe O, König W (1992) In: Enders D, Gais H-J, Keim W (eds) Organic synthesis via organometallics. Vieweg, Braunschweig, p 151Google Scholar
  95. 95.
    Kaminsky W, Miri M (1985) J Polym Sci A Polym Chem 23:2151Google Scholar
  96. 96.
    Kaminsky W, Schlobohm M (1986) Makromol Chem Rapid Symp 4:103Google Scholar
  97. 97.
    Kaminsky W (1994) Catal Today 20:257Google Scholar
  98. 98.
    Jüngling S, Mülhaupt R, Fischer D, Langhauser F (1995) Angew Makromol Chem 229:93Google Scholar
  99. 99.
    Kaminsky W (2000) Catal Today 62:23Google Scholar
  100. 100.
    Frediani M, Bianchini C, Kaminsky W (2006) Kinet Catal 47:207Google Scholar
  101. 101.
    Arikan B, Stadler FJ, Kaschta J, Münstedt H, Kaminsky W (2007) Macromol Rapid Commun 28:1472Google Scholar
  102. 102.
    Stadler FJ, Arikan-Conley B, Kaschta J, Kaminsky W, Münstedt H (2011) Macromolecules 44:5053Google Scholar
  103. 103.
    Kaminsky W, Boggioni L, Tritto I (2012) In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 3. Elsevier, Amsterdam, p 843Google Scholar
  104. 104.
    Kaminsky W, Bark A, Arndt M (1991) Makromol Chem Macromol Symp 47:83Google Scholar
  105. 105.
    Cherdron H, Brekner MJ, Osan F (1994) Angew Makromol Chem 223:121Google Scholar
  106. 106.
    Boggioni L, Tritto I (2013) Polyolefins with cyclic comonomers. Adv Polym Sci. doi: 10.1007/12_2013_217 Google Scholar
  107. 107.
    Dong M, Wang L, Jiang G, Sun T, Zhao Y, Yu H, Chen T (2006) J Appl Polym Sci 101:1291Google Scholar
  108. 108.
    Alexandre M, Martin E, Dubois P, Garcia-Marti M, Jerome R (2000) Macromol Rapid Commun 21:931Google Scholar
  109. 109.
    Xalter R, Halbach TS, Muelhaupt R (2006) Macromol Symp 236:145Google Scholar
  110. 110.
    Funck A, Kaminsky W (2007) Compos A Technol 67:906Google Scholar
  111. 111.
    Guo N, Benedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ (2010) Chem Mater 22:1567Google Scholar
  112. 112.
    Xalter R, Mülhaupt R (2010) Macromol Reaction Eng 4:25Google Scholar
  113. 113.
    Etcheverry M, Ferreira ML, Capiati NJ, Pegoretti A, Barbosa SE (2008) Compos A Appl Sci 39:1915Google Scholar
  114. 114.
    Stürzel M, Kurek A, Anselm M, Halbach T, Mülhaupt R (2013) Polyolefin nanocomposites and hybrid catalysts. Adv Polym Sci. doi: 10.1007/12_2013_219 Google Scholar
  115. 115.
    Tarte NH, Cui L, Woo S (2013) Polyolefin/layered silicate nanocomposites prepared by in-situ polymerization. Adv Polym Sci. doi: 10.1007/12_2013_228 Google Scholar
  116. 116.
    Meyer RSA, Luinstra GA (2013) Iron catalyst in the preparation of polyolefin composites. Adv Polym Sci. doi: 10.1007/12_2013_223 Google Scholar
  117. 117.
    Kaminsky W (2008) Macromol Chem Phys 209:459Google Scholar
  118. 118.
    Kaminsky W, Funck A, Klinke C (2008) Top Catal 48:84Google Scholar
  119. 119.
    Klapper M, Jang YJ, Bieber K, Nemnich T, Nenov N, Müllen K (2004) Macromol Symp 213:131Google Scholar
  120. 120.
    Busico V, Cipullo R, Corradini P (1993) Macromol Chem Rapid Commun 117:195Google Scholar
  121. 121.
    Stadler FJ, Arikan B, Kaschta J, Kaminsky W (2010) Macromol Chem Phys 211:1472Google Scholar
  122. 122.
    Malmberg A, Kokko E, Lehmus P, Löfgren B, Seppälä JV (1998) Macromolecules 31:8448Google Scholar
  123. 123.
    Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169Google Scholar
  124. 124.
    Mecking S (2007) Colloid Polym Sci 285:605Google Scholar
  125. 125.
    Möller HM, Baier MC, Mecking S, Talsi EP, Bryliakov KP (2012) Chem A Eur J 18:848Google Scholar
  126. 126.
    Zhang D, Guironnet D, Goettker-Schnetmann I, Mecking S (2009) Organometallics 28:4072Google Scholar
  127. 127.
    Kaminsky W (2009) J Chem Soc Dalton Trans 2009:8003Google Scholar
  128. 128.
    Heinemann J, Muelhaupt R, Brinkmann P, Luinstra GA (1999) Macromol Chem Phys 200:384Google Scholar
  129. 129.
    Lipponen S, Seppälä J (2011) Organometallics 30:528Google Scholar
  130. 130.
    Seppälä J, Kokko E, Lehmus P, Pakkanen A, Hakala K, Lipponen S, Löfgren B (2013) Functional polyolefins through polymerizations by using bis(indenyl)zirconium catalysts. Adv Polym Sci. doi: 10.1007/12_2013_210 Google Scholar
  131. 131.
    Chung TCM (2013) Functional polyolefins: synthesis and energy storage applications. Adv Polym Sci. doi: 10.1007/12_2013_209 Google Scholar
  132. 132.
    Saito J, Mitani M, Matsui S, Kashiwa T, Fujita T (2000) Macromol Rapid Commun 21:1333Google Scholar
  133. 133.
    Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Science 312:714Google Scholar
  134. 134.
    Kaminsky W (1986) In: Seymour RB, Cheng T (eds) History of polyolefins. Reidel, New York, p 257Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany
  2. 2.Guest at the Technical University Clausthal, Institute for Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations