Advertisement

Ordering of Polypeptides in Liquid Crystals, Gels and Micelles

  • Chunhua Cai
  • Jiaping LinEmail author
  • Zeliang Zhuang
  • Wenjie Zhu
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 259)

Abstract

Ordered structures assembled from polypeptides have attracted a great deal of attention over the past few decades. Both α-helix and β-sheet conformations of polypeptides support the formation of ordered structures during the assembly process. For polypeptides with α-helix conformation, the ordered structures are formed mainly by side-by-side packing of α-helix rods. For polypeptides with β-sheet conformation, ordering of the chains can be achieved by parallel or antiparallel packing. The ordering characteristic of polypeptide chains gives rise to fascinating assembly behaviors of polypeptide homopolymers and copolymers in solution. Usually, a decrease in polymer concentration is accompanied by the assembly of polypeptides into liquid crystals (LCs), gels, and micelles. This review describes the ordering structures of polypeptides in these assemblies. In LC structures, polypeptide homopolymer chains are packed in a highly ordered fashion with smectic, nematic, and cholesteric phases. Both polypeptide homopolymers and copolymers support the formation of gels in solution. The dislocated side-by-side packing of polypeptide helices is the basic ordering characteristic of the polypeptides in gels. Compared with the α-helix conformation, gels formed from polypeptides with β-sheet conformation show higher stability. In dilute solutions, amphiphilic polypeptide copolymers can self-assemble into micelles that include cylinders, vesicles, and complex hierarchical structures. The ordering nature of the polypeptide chains can be observed in the assemblies. The close relationship with proteins makes polypeptides and their assembly structures ideal models for protein research and promising candidates in biorelated applications.

Keywords

Gels Liquid crystals Micelles Ordered structure Polypeptide Self-assembly 

Abbreviations

AFM

Atomic force microscopy

B

Biphasic region

BD

Brownian dynamics

CDCl3

Deuterated chloroform

CHCl3

Chloroform

DCA

Dichloroacetic acid

DL-PA

Poly(dl-alanine)

DHP

Dendron-helical polypeptide

DMF

N,N′-dimethylformamide

DP

Degree of polymerization

DPD

Dissipative particle dynamics

EDC

Dichloroethane

I

Isotropic phase

LC

Liquid crystal

L-PA

Poly(l-alanine)

LSCM

Confocal laser scanning microscopy

NCA

N-Carboxyanhydride

PArg

Poly(l-arginine)

PBLG

Poly(γ-benzyl l-glutamate)

PClBLA

Poly(β-p-chlorobenzyl l-aspartate)

PDI

Polydispersity index

PDMS

Poly(dimethylsiloxane)

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PFS

Poly(ferrocenylsilane)

PHEG

Poly[N 5-(2-hydroxyethyl) l-glutamine]

PIAA

Poly(isocyano-l-alanine-l-alanine)

PIAH

Poly(isocyano-l-alanine-l-histidine)

PLeu

Poly(l-leucine)

PLGA

Poly(l-glutamic acid)

PLL

Poly(l-lysine)

PMLG

Poly(γ-methyl l-glutamate)

PNIPAm

Poly(N-isopropylacrylamide)

POM

Polarizing optical micrograph

PPLA

Poly(β-phenethyl l-aspartate)

PZLys

Poly(ε-carbobenzoxy l-lysine)

S

Periodicity of cholesteric LC

SAXD

Small-angle X-ray diffraction

SAXS

Small-angle X-ray scattering

SEM

Scanning electron microscopy

SFM

Scanning force microscopy

TCE

Trichloroethylene

TEM

Transmission electron microscopy

TFA

Trifluoroacetic acid

THF

Tetrahydrofuran

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (50925308 and 21234002), Key Grant Project of Ministry of Education (313020), and National Basic Research Program of China (No. 2012CB933600). Support from projects of Shanghai municipality (10GG15 and 12ZR1442500) is also appreciated.

References

  1. 1.
    Deming TJ (1997) Polypeptide materials: new synthetic methods and applications. Adv Mater 9:299–311Google Scholar
  2. 2.
    Mart RJ, Osborne RD, Stevens URV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835Google Scholar
  3. 3.
    Osada K, Kataoka K (2006) Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Adv Polym Sci 202:113–153Google Scholar
  4. 4.
    Schlaad H (2006) Solution properties of polypeptide-based copolymers. Adv Polym Sci 202:53–73Google Scholar
  5. 5.
    Carlsen A, Lecommandoux S (2009) Self-assembly of polypeptide-based block copolymer amphiphiles. Curr Opin Colloid Interface Sci 14:329–339Google Scholar
  6. 6.
    Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875Google Scholar
  7. 7.
    Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A (2009) Rational design and application of responsive α-helical peptide hydrogels. Nat Mater 8:596–600Google Scholar
  8. 8.
    He C, Zhuang X, Tang Z, Tian H, Chen X (2012) Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv Healthc Mater 1:48–78Google Scholar
  9. 9.
    Lowik DWPM, Leunissen EHP, van den Heuvel M, Hansen MB, van Hest JCM (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39:3394–3412Google Scholar
  10. 10.
    Choe U-J, Sun VZ, Tan JKY, Kamei DT (2012) Self-assembly polypeptide and polypeptide hybrid vesicles: from synthesis to application. Top Curr Chem 310:117–134Google Scholar
  11. 11.
    Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A (2008) Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 62:125–155Google Scholar
  12. 12.
    Lim Y-b, Lee E, Lee M (2007) Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. Angew Chem Int Ed 46:3475–3478Google Scholar
  13. 13.
    Kopecek J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51:7396–7417Google Scholar
  14. 14.
    Higashihara T, Ueda M (2011) Block copolymers containing rod segments. In: Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F (eds) Complex macromolecular architectures: synthesis, characterization, and self-assembly. Wiley, Hoboken, pp 395–429Google Scholar
  15. 15.
    Klok H-A (2002) Protein-inspired materials: synthetic concepts and potential applications. Angew Chem Int Ed 41:1509–1513Google Scholar
  16. 16.
    Zhang G, Fournier MJ, Mason TL, Tirrell DA (1992) Biological synthesis of monodisperse derivatives of poly(α, l-glutamic acid): model rodlike polymers. Macromolecules 25:3601–3603Google Scholar
  17. 17.
    Rabotyagova OS, Cebe P, Kaplan DL (2011) Protein-based block copolymers. Biomacromolecules 12:269–289Google Scholar
  18. 18.
    Kiick KL (2002) Genetic methods of polymer synthesis. In: Mark HF (ed) Encyclopedia of polymer science and technology. Wiley, Hoboken, pp 515–522Google Scholar
  19. 19.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154Google Scholar
  20. 20.
    Aliferis T, Iatrou H, Hadjichristidis N (2004) Living polypeptides. Biomacromolecules 5:1653–1656Google Scholar
  21. 21.
    Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev 109:5528–5578Google Scholar
  22. 22.
    Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784Google Scholar
  23. 23.
    Kricheldorf HR (1987) α-aminoacid-N-carboxy-anhydrides and related heterocycles: syntheses, properties, peptide synthesis, polymerization. Springer, BerlinGoogle Scholar
  24. 24.
    Penczek S, Kricheldorf HR (1990) Models of biopolymers by ring opening polymerization. CRC, Boca RatonGoogle Scholar
  25. 25.
    Duran H, Ogura K, Nakao K, Vianna SDB, Usui H (2009) High-vacuum vapor deposition and in situ monitoring of N-carboxy anhydride benzyl glutamate polymerization. Langmuir 25:10711–10718Google Scholar
  26. 26.
    Leuchs H, Geiger W (1908) The anhydrides of alpha-amino-N-carboxylic and alpha-amino acids. Ber Dtsch Chem Ges 41:1721–1726Google Scholar
  27. 27.
    Voet D, Voet JG (eds) (1995) Biochemistry, Solutions Manual. Wiley, HobokenGoogle Scholar
  28. 28.
    Zimm BH, Bragg JK (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 31:526–535Google Scholar
  29. 29.
    Teramoto A, Fujita H (1975) Conformation-dependent properties of synthetic polypeptides in the helix-coil transition region. Adv Polym Sci 18:65–149Google Scholar
  30. 30.
    Parras P, Castelletto V, Hamley IW, Klok H-A (2005) Nanostructure formation in poly(γ-benzyl-l-glutamate)-poly(ethylene glycol)-poly(γ-benzyl-l-glutamate) triblock copolymers in the solid state. Soft Matter 1:284–291Google Scholar
  31. 31.
    Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A (2005) Linear and non-linear triblock terpolymers: synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci 30:725–782Google Scholar
  32. 32.
    Klok H-A, Lecommandoux S (2006) Solid-state structure, organization and properties of peptide-synthetic hybrid block copolymers. Adv Polym Sci 202:75–111Google Scholar
  33. 33.
    Sanchez-Ferrer A, Mezzenga R (2010) Secondary structure-induced micro- and macrophase separation in rod-coil polypeptide diblock, triblock, and star-block copolymers. Macromolecules 43:1093–1100Google Scholar
  34. 34.
    Babin J, Taton D, Brinkmann M, Lecommandoux S (2008) Synthesis and self-assembly in bulk of linear and mikto-arm star block copolymers based on polystyrene and poly(glutamic acid). Macromolecules 41:1384–1392Google Scholar
  35. 35.
    Kopecek J, Yang J (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5:805–816Google Scholar
  36. 36.
    Hermes F, Otte K, Brandt J, Grawert M, Borner HG, Schlaad H (2011) Polypeptide-based organogelators: effects of secondary structure. Macromolecules 44:7489–7492Google Scholar
  37. 37.
    Huang C-J, Chang F-C (2008) Polypeptide diblock copolymers: syntheses and properties of poly(N-isopropylacrylamide)-b-polylysine. Macromolecules 41:7041–7052Google Scholar
  38. 38.
    Gebhardt KE, Ahn S, Venkatachalam G, Savin DA (2008) Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. J Colloid Interface Sci 317:70–76Google Scholar
  39. 39.
    Robinson C (1956) Liquid-crystalline structures in solutions of a polypeptide. Trans Faraday Soc 52:571–592Google Scholar
  40. 40.
    Uematsu I, Uematsu Y (1984) Polypeptide liquid crystals. Adv Polym Sci 59:37–73Google Scholar
  41. 41.
    Flory PJ, Leonard WJ (1965) Thermodynamic properties of solutions of helical polypeptides. J Am Chem Soc 87:2102–2108Google Scholar
  42. 42.
    Tohyama K, Miller WG (1981) Network structure in gels of rod-like polypeptides. Nature 289:813–814Google Scholar
  43. 43.
    Cohen Y (1996) The microfibrillar network in gels of poly(γ-benzyl-l-glutamate) in benzyl alcohol. J Polym Sci, Part B: Polym Phys 34:57–64Google Scholar
  44. 44.
    Kim KT, Park C, Vandermeulen GWM, Rider DA, Kim C, Winnik MA, Manners I (2005) Gelation of helical polypeptide-random coil diblock copolymers by a nanoribbon mechanism. Angew Chem Int Ed 44:7964–7968Google Scholar
  45. 45.
    Rodriguez-Hernandez J, Lecommandoux S (2005) Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J Am Chem Soc 127:2026–2027Google Scholar
  46. 46.
    Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. J Am Chem Soc 127:12423–12428Google Scholar
  47. 47.
    Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3:244–248Google Scholar
  48. 48.
    Kim KT, Park C, Kim C, Winnik MA, Manners I (2006) Self-assembly of dendron-helical polypeptide copolymers: organogels and lyotropic liquid crystals. Chem Commun 1372–1374Google Scholar
  49. 49.
    Yu SM, Conticello VP, Zhang G, Kayser C, Fournier MJ, Mason TL, Tirrell DA (1997) Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length. Nature 389:167–170Google Scholar
  50. 50.
    Schmidtke S, Russo P, Nakamatsu J, Buyuktanir E, Turfan B, Temyanko E, Negulescu I (2000) Thermoreversible gelation of isotropic and liquid crystalline solutions of a “sticky” rodlike polymer. Macromolecules 33:4427–4432Google Scholar
  51. 51.
    Ginzburg B, Siromyatnikova T, Frenkel S (1985) Gelation in the poly(γ-benzyl-l-glutamate)-dimethylformamide system. Polym Bull (Berl) 13:139–144Google Scholar
  52. 52.
    Russo PS, Magestro P, Miller WG (1987) Gelation of poly(γ-benzyl-α,l-glutamate). In: Russo PS (ed) Reversible polymeric gels and related systems. ACS symposium series, vol 350. American Chemical Society, Washington, DC, pp 152–180Google Scholar
  53. 53.
    Kuo S-W, Lee H-F, Huang W-J, Jeong K-U, Chang F-C (2009) Solid state and solution self-assembly of helical polypeptides tethered to polyhedral oligomeric silsesquioxanes. Macromolecules 42:1619–1626Google Scholar
  54. 54.
    Kim EH, Joo MK, Bahk KH, Park MH, Chi B, Lee YM, Jeong B (2009) Reverse thermal gelation of PAF-PLX-PAF block copolymer aqueous solution. Biomacromolecules 10:2476–2481Google Scholar
  55. 55.
    Li T, Lin J, Chen T, Zhang S (2006) Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer 47:4485–4489Google Scholar
  56. 56.
    Cai C, Zhang L, Lin J, Wang L (2008) Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations. J Phys Chem B 112:12666–12673Google Scholar
  57. 57.
    Ueda M, Makino A, Imai T, Sugiyama J, Kimura S (2011) Transformation of peptide nanotubes into a vesicle via fusion driven by stereo-complex formation. Chem Commun 47:3204–3206Google Scholar
  58. 58.
    Cai C, Wang L, Lin J (2011) Self-assembly of polypeptide-based copolymers into diverse aggregates. Chem Commun 47:11189–11203Google Scholar
  59. 59.
    Kim MS, Dayananda K, Choi EY, Park HJ, Kim JS, Lee DS (2009) Synthesis and characterization of poly(l-glutamic acid)-block-poly(l-phenylalanine). Polymer 50:2252–2257Google Scholar
  60. 60.
    Schenck HL, Gellman SH (1998) Use of a designed triple-stranded antiparallel β-sheet to probe β-sheet cooperativity in aqueous solution. J Am Chem Soc 120:4869–4870Google Scholar
  61. 61.
    Ding W, Lin S, Lin J, Zhang L (2008) Effect of chain conformational change on micelle structures: experimental studies and molecular dynamics simulations. J Phys Chem B 112:776–783Google Scholar
  62. 62.
    Lin J, Zhu G, Zhu X, Lin S, Nose T, Ding W (2008) Aggregate structure change induced by intramolecular helix-coil transition. Polymer 49:1132–1136Google Scholar
  63. 63.
    Kotharangannagari VK, Sanchez-Ferrer A, Ruokolainen J, Mezzenga R (2012) Thermoreversible gel–sol behavior of rod-coil-rod peptide-based triblock copolymers. Macromolecules 45:1982–1990Google Scholar
  64. 64.
    Yu SM, Soto CM, Tirrell DA (2000) Nanometer-scale smectic ordering of genetically engineered rodlike polymers: synthesis and characterization of monodisperse derivatives of poly(γ-benzyl α, l-glutamate). J Am Chem Soc 122:6552–6559Google Scholar
  65. 65.
    Sasaki S, Tokuma K, Uematsu I (1983) Phase behavior of poly(γ-benzyl l-glutamate) solutions in benzyl alcohol. Polym Bull (Berl) 10:539–546Google Scholar
  66. 66.
    Watanabe J, Takashina Y (1991) Columnar liquid crystals in polypeptides. 1. A columnar hexagonal liquid crystal observed in poly(γ-octadecyl l-glutamate). Macromolecules 24:3423–3426Google Scholar
  67. 67.
    Robinson C, Ward JC (1957) Liquid-crystalline structures in polypeptides. Nature 180:1183–1184Google Scholar
  68. 68.
    Robinson C (1961) Liquid-crystalline structures in polypeptide solutions. Tetrahedron 13:219–234Google Scholar
  69. 69.
    Robinson C, Ward JC, Beevers RB (1958) Liquid crystalline structure in polypeptide solutions. Part 2. Discuss Faraday Soc 25:29–42Google Scholar
  70. 70.
    Samulski ET, Tobolsky AV (1967) Solid “liquid crystal” films of poly-γ-benzyl-l-glutamate. Nature 216:997Google Scholar
  71. 71.
    Elliott A, Ambrose EJ (1950) Evidence of chain folding in polypeptides and proteins. Discuss Faraday Soc 9:246–251Google Scholar
  72. 72.
    Marx A, Thiele C (2009) Orientational properties of poly-γ-benzyl-l-glutamate: influence of molecular weight and solvent on order parameters of the solute. Chem Eur J 15:254–260Google Scholar
  73. 73.
    Watanabe J, Nagase T (1988) Thermotropic polypeptides. 5. Temperature dependence of cholesteric pitches exhibiting a cholesteric sense inversion. Macromolecules 21:171–175Google Scholar
  74. 74.
    Toriumi H, Kusumi Y, Uematsu I, Uematsu Y (1979) Thermally induced inversion of the cholesteric sense in lyotropic polypeptide liquid crystals. Polym J 11:863–869Google Scholar
  75. 75.
    Toriumi H, Minakuchi S, Uematsu Y, Uematsu I (1980) Helical twisting power of poly(γ-benzyl-l-glutamate) liquid crystals in mixed solvents. Polym J 12:431–437Google Scholar
  76. 76.
    Abe A, Hiraga K, Imada Y, Hiejima T, Furuya H (2005) Screw-sense inversion characteristic of α-helical poly(β-p-chlorobenzyl l-aspartate) and comparison with other related polyaspartates. Peptide Sci 80:249–257Google Scholar
  77. 77.
    Abe A, Furuya H, Okamoto S (1997) Spatial configurations, transformation, and reorganization of mesophase structures of polyaspartates-a highly intelligent molecular system. Peptide Sci 43:405–412Google Scholar
  78. 78.
    Abe A, Imada Y, Furuya H (2010) Mechanism of the screw-sense reversal of tightly hydrogen-bonded α-helical network triggered by the side-chain conformation. Polymer 51:6234–6239Google Scholar
  79. 79.
    Junnila S, Houbenov N, Hanski S, Iatrou H, Hirao A, Hadjichristidis N, Ikkala O (2010) Hierarchical smectic self-assembly of an ABC miktoarm star terpolymer with a helical polypeptide arm. Macromolecules 43:9071–9076Google Scholar
  80. 80.
    Lin J (1997) Re-entrant isotropic transition of polypeptide liquid crystal. Polymer 38:4837–4841Google Scholar
  81. 81.
    Lin J (1998) Reentrant isotropic transition of polypeptide liquid crystal: effect of steric and orientation–dependent interactions. Polymer 39:5495–5500Google Scholar
  82. 82.
    Lin J, Abe A, Furuya H, Okamoto S (1996) Liquid crystal formation coupled with the coil-helix transition in the ternary system poly(γ-benzyl l-glutamate)/dichloroacetic acid/dichloroethane. Macromolecules 29:2584–2589Google Scholar
  83. 83.
    Lin J, Lin S, Liu P, Hiejima T, Furuya H, Abe A (2003) Phase behavior of ternary systems involving a conformationally variable chain and a randomly coiled polymer. Macromolecules 36:6267–6272Google Scholar
  84. 84.
    Flory PJ (1984) Molecular theory of liquid crystals. Adv Polym Sci 59:1–36Google Scholar
  85. 85.
    Abe A, Ballauff M (1991) The Flory lattice model. In: Ciferri A (ed) Liquid crystallinity in polymers: principles and fundamental properties. Wiley-VCH, Weinheim, Chap. 4Google Scholar
  86. 86.
    Lin J, Lin S, Zhang L, Nose T (2009) Microphase separation of rod-coil diblock copolymer in solution. J Chem Phys 130:094907Google Scholar
  87. 87.
    Watanabe J, Imai K, Uematsu I (1978) Light scattering studies of poly(γ-benzyl l-glutamate) solutions and films. Polym Bull 1:67–72Google Scholar
  88. 88.
    Tadmor R, Khalfin RL, Cohen Y (2002) Reversible gelation in isotropic solutions of the helical polypeptide poly(γ-benzyl-l-glutamate): kinetics and formation mechanism of the fibrillar network. Langmuir 18:7146–7150Google Scholar
  89. 89.
    Tipton DL, Russo PS (1996) Thermoreversible gelation of a rodlike polymer. Macromolecules 29:7402–7411Google Scholar
  90. 90.
    Oikawa H, Nakanishi H (2001) Dynamics of probe particles during sol–gel transition of PBLG-DMF solution and the resulting gel structure. J Chem Phys 115:3785–3791Google Scholar
  91. 91.
    Niehoff A, Mantion A, McAloney R, Huber A (2013) Elucidation of the structure of poly(γ-benzyl-l-glutamate) nanofibers and gel networks in a helicogenic solvent. Colloid Polym Sci 291:1353–1363Google Scholar
  92. 92.
    Kishi R, Sisido M, Tazuke S (1990) Liquid-crystalline polymer gels. 1. Cross-linking of poly(γ-benzyl l-glutamate) in the cholesteric liquid-crystalline state. Macromolecules 23:3779–3784Google Scholar
  93. 93.
    Kishi R, Sisido M, Tazuke S (1990) Liquid-crystalline polymer gels. 2. Anisotropic swelling of poly(γ-benzyl l-glutamate) gel crosslinked under a magnetic field. Macromolecules 23:3868–3870Google Scholar
  94. 94.
    Inomata K, Iguchi Y, Mizutani K, Sugimoto H, Nakanishi E (2012) Anisotropic swelling behavior induced by helix-coil transition in liquid crystalline polypeptide gels. ACS Macro Lett 1:807–810Google Scholar
  95. 95.
    Gibson MI, Cameron NR (2008) Organogelation of sheet-helix diblock copolypeptides. Angew Chem Int Ed 47:5160–5162Google Scholar
  96. 96.
    Choi YY, Jeong Y, Joo MK, Jeong B (2009) Reverse thermal organogelation of poly(ethylene glycol)-polypeptide diblock copolymers in chloroform. Macromol Biosci 9:869–874Google Scholar
  97. 97.
    Naik SS, Savin DA (2009) Poly(Z-lysine)-based organogels: effect of interfacial frustration on gel strength. Macromolecules 42:7114–7121Google Scholar
  98. 98.
    Sun J, Chen X, Guo J, Shi Q, Xie Z, Jing X (2009) Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. Polymer 50:455–461Google Scholar
  99. 99.
    You Y, Chen Y, Hua C, Dong C (2010) Synthesis and thermoreversible gelation of dendron-like polypeptide/linear poly(ε-caprolactone)/dendron-like polypeptide triblock copolymers. J Polym Sci A Polym Chem 48:709–718Google Scholar
  100. 100.
    Borner HG, Smarsly BM, Hentschel J, Rank A, Schubert R, Geng Y, Discher DE, Hellweg T, Brandt A (2008) Organization of self-assembled peptide–polymer nanofibers in solution. Macromolecules 41:1430–1437Google Scholar
  101. 101.
    van Bommel KJC, Friggeri A, Shinkai S (2003) Organic templates for the generation of inorganic materials. Angew Chem Int Ed 42:980–999Google Scholar
  102. 102.
    Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41:1705–1709Google Scholar
  103. 103.
    Estroff LA, Addadi L, Weiner S, Hamilton AD (2004) An organic hydrogel as a matrix for the growth of calcite crystals. Org Biomol Chem 2:137–141Google Scholar
  104. 104.
    Shumburo A, Biewer MC (2002) Stabilization of an organic photochromic material by incorporation in an organogel. Chem Mater 14:3745–3750Google Scholar
  105. 105.
    Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35Google Scholar
  106. 106.
    Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953Google Scholar
  107. 107.
    Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428Google Scholar
  108. 108.
    Nowak AP, Breedveld V, Pine DJ, Deming TJ (2003) Unusual salt stability in highly charged diblock co-polypeptide hydrogels. J Am Chem Soc 125:15666–15670Google Scholar
  109. 109.
    Pakstis LM, Ozbas B, Hales KD, Nowak AP, Deming TJ, Pochan D (2003) Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels. Biomacromolecules 5:312–318Google Scholar
  110. 110.
    Oliveira ED, Hirsch SG, Spontak RJ, Gehrke SH (2003) Influence of polymer conformation on the shear modulus and morphology of polyallylamine and poly(α-l-lysine) hydrogels. Macromolecules 36:6189–6201Google Scholar
  111. 111.
    Choi BG, Park MH, Cho S-H, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2011) Thermal gelling polyalanine–poloxamine–polyalanine aqueous solution for chondrocytes 3D culture: initial concentration effect. Soft Matter 7:456–462Google Scholar
  112. 112.
    Chen Y, Pang X, Dong C (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater 20:579–586Google Scholar
  113. 113.
    Cheng Y, He C, Xiao C, Ding J, Zhuang X, Huang Y, Chen X (2012) Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules 13:2053–2059Google Scholar
  114. 114.
    Altunbas A, Pochan D (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Adv Polym Sci 310:135–167Google Scholar
  115. 115.
    Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 98:11857–11862Google Scholar
  116. 116.
    Smeenk JM, Otten MBJ, Thies J, Tirrell DA, Stunnenberg HG, van Hest JCM (2005) Controlled assembly of macromolecular β-Sheet fibrils. Angew Chem Int Ed 44:1968–1971Google Scholar
  117. 117.
    Choi YY, Joo MK, Sohn YS, Jeong B (2008) Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter 4:2383–2387Google Scholar
  118. 118.
    Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B (2010) Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. J Mater Chem 20:3416–3421Google Scholar
  119. 119.
    Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392Google Scholar
  120. 120.
    Eloi J-C, Rider DA, Cambridge G, Whittell GR, Winnik MA, Manners I (2011) Stimulus-responsive self-assembly: reversible, redox-controlled micellization of polyferrocenylsilane diblock copolymers. J Am Chem Soc 133:8903–8913Google Scholar
  121. 121.
    Ho R-M, Chiang Y-W, Lin S-C, Chen C-K (2011) Helical architectures from self-assembly of chiral polymers and block copolymers. Prog Polym Sci 36:376–453Google Scholar
  122. 122.
    Lin J, Zhu J, Chen T, Lin S, Cai C, Zhang L, Zhuang Y, Wang X-S (2009) Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials 30:108–117Google Scholar
  123. 123.
    Fuks G, Mayap Talom R, Gauffre F (2011) Biohybrid block copolymers: towards functional micelles and vesicles. Chem Soc Rev 40:2475–2493Google Scholar
  124. 124.
    Qian J, Zhang M, Manners I, Winnik MA (2010) Nanofiber micelles from the self-assembly of block copolymers. Trends Biotechnol 28:84–92Google Scholar
  125. 125.
    Cauet SI, Lee NS, Lin LY, Wooley KL (2012) Individual nano-objects obtained via hierarchical assembly of polymer building blocks. In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 775–820Google Scholar
  126. 126.
    Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X (2011) Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 40:1282–1295Google Scholar
  127. 127.
    Bian Q, Xiao Y, Lang M (2012) Thermoresponsive biotinylated star amphiphilic block copolymer: synthesis, self-assembly, and specific target recognition. Polymer 53:1684–1693Google Scholar
  128. 128.
    Cai C, Wang L, Lin J, Zhang X (2012) Morphology transformation of hybrid micelles self-assembled from rod-coil block copolymer and nanoparticles. Langmuir 28:4515–4524Google Scholar
  129. 129.
    Cai C, Zhu W, Chen T, Lin J, Tian X (2009) Synthesis and self-assembly behavior of amphiphilic polypeptide-based brush-coil block copolymers. J Polym Sci A Polym Chem 47:5967–5978Google Scholar
  130. 130.
    Koga T, Taguchi K, Kobuke Y, Kinoshita T, Higuchi M (2003) Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation. Chem Eur J 9:1146–1156Google Scholar
  131. 131.
    Tang D, Lin J, Lin S, Zhang S, Chen T, Tian X (2004) Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromol Rapid Commun 25:1241–1246Google Scholar
  132. 132.
    Marsden HR, Handgraaf J-W, Nudelman F, Sommerdijk NAJM, Kros A (2010) Uniting polypeptides with sequence-designed peptides: synthesis and assembly of poly(γ-benzyl l-glutamate)-b-coiled-coil peptide copolymers. J Am Chem Soc 132:2370–2377Google Scholar
  133. 133.
    Huang J, Bonduelle C, Thevenot J, Lecommandoux S, Heise A (2012) Biologically active polymersomes from amphiphilic glycopeptides. J Am Chem Soc 134:119–122Google Scholar
  134. 134.
    Checot F, Lecommandoux S, Gnanou Y, Klok HA (2002) Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angew Chem Int Ed 41:1339–1343Google Scholar
  135. 135.
    Sun J, Chen X, Deng C, Yu H, Xie Z, Jing X (2007) Direct formation of giant vesicles from synthetic polypeptides. Langmuir 23:8308–8315Google Scholar
  136. 136.
    Schatz C, Louguet S, Le Meins J-F, Lecommandoux S (2009) Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew Chem Int Ed 48:2572–2575Google Scholar
  137. 137.
    Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6:52–57Google Scholar
  138. 138.
    Cai C, Lin J, Chen T, Tian X (2010) Aggregation behavior of graft copolymer with rigid backbone. Langmuir 26:2791–2797Google Scholar
  139. 139.
    Zhuang Z, Zhu X, Cai C, Lin J, Wang L (2012) Self-assembly of a mixture system containing polypeptide graft and block copolymers: experimental studies and self-consistent field theory simulations. J Phys Chem B 116:10125–10134Google Scholar
  140. 140.
    Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM (1998) Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 280:1427–1430Google Scholar
  141. 141.
    Cai C, Lin J, Chen T, Wang X, Lin S (2009) Super-helices self-assembled from a binary system of amphiphilic polypeptide block copolymers and polypeptide homopolymers. Chem Commun 2709–2711Google Scholar
  142. 142.
    Bull SR, Palmer LC, Fry NJ, Greenfield M, Messmore B, Meade T, Stupp SI (2008) A templating approach for monodisperse self-assembled organic nanostructures. J Am Chem Soc 130:2742–2743Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chunhua Cai
    • 1
  • Jiaping Lin
    • 1
    Email author
  • Zeliang Zhuang
    • 1
  • Wenjie Zhu
    • 1
  1. 1.Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations