Skip to main content

The Slurry Polymerization Process with Super-Active Ziegler-Type Catalyst Systems: From the 2 L Glass Autoclave to the 200 m3 Stirred Tank Reactor

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 257))

Abstract

Since the discovery of the ethene polymerization with transition metal catalysts of group IV of the periodic table in combination with aluminum alkyl compounds as cocatalysts at low pressures and moderately high temperatures by Ziegler and colleagues in 1953, this catalytic polymerization process has been developed over six decades in an outstanding way and is now a mature technology for the production of high-density polyethylene grades with excellent properties for wide fields of application. Today, super-active heterogeneous catalysts are available. The catalyst must be designed to achieve high activity over a long polymerization time, be able to control average molecular mass over a wide range using hydrogen, to copolymerize ethene with higher 1-olefins, and to produce an unimodal polymer with a relative narrow molecular mass distribution. It is of greatest importance to avoid overheating of the growing polymer particle, especially when the polymerization starts at the virgin catalyst particle. This is not easy to achieve because the polymerization process is highly exothermic. The transformation of a catalyst particle into a polymer grain can be described and is well understood by the microreactor model. The technical process can be divided into three clear distinguishable levels: the microscale, the mesoscale, and the macroscale. The microscale level comprises all processes inside and at the surface of the growing polymer particle, i.e., the microreactor behavior. The mesoscale level deals with all processes inside the three-phase reactor content comprising gas bubbles, hydrocarbon diluent and the solid growing polymer particles. It is important to achieve reproducible and stable conditions on the basis of a detailed chemical engineering on this mesoscale level throughout the reactor. If this is the case, then this polymerization process can be well controlled on the macroscale level, comprising the polymerization vessel as a whole. By controlling a limited number of process data, the slurry polymerization process can be operated with excellent stability over a long time and can be controlled within narrow ranges. The modern slurry technology process is very flexible in controlling product properties by using the cascaded reactor technology. This technology involves two or even three reactors operated in series under different process conditions. The catalyst is only introduced into the first reactor. The polymerizing particle then passes through all reactors, producing different types of macromolecules to form a polymer blend within each polymer grain. A further enormous advantage of this cascade technology is the high flexibility in product change and product development. Just by changing process parameters of the different reactors, products with different average molecular mass, different molecular mass distributions, different copolymer compositions, and different comonomer distributions can be produced without changing the catalyst system.

In former time the author L.L. Böhm was working with Hoechst AG (Frankfurt (M), Germany), Hostalen Polyethylen GmbH (Frankfurt (M), Germany), Elenac GmbH (Kehl, Germany) and Basell Polyolefins (Wesseling, Germany).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ziegler K, Holzkamp E, Breil H, Martin H (1955) Angew Chem 67:426

    Article  CAS  Google Scholar 

  2. Ziegler K (1964) Angew Chem 76:545

    Article  CAS  Google Scholar 

  3. Ziegler K, Breil H, Holzkamp E, Martin H (1953) Patent DE 973,626 [Chem Abstr 54:14794 (1960)]

    Google Scholar 

  4. Martin H (1995) In: Fink G, Mülhaupt R, Brintzinger HH (eds) Ziegler catalysts. Springer, Berlin, pp 15–34

    Chapter  Google Scholar 

  5. Grams E, Gaube E (1955) Angew Chem 67:548

    Article  CAS  Google Scholar 

  6. Schulz G, Mehnert K (1955) Kunststoffe 45:410, 589

    CAS  Google Scholar 

  7. Neumann IA, Bockhoff FJ (1955) Plastics 32:117

    Google Scholar 

  8. Richard K (1955) Kunststoffe 45:10

    Google Scholar 

  9. Kneip W (1955) Chem Ind 7:297

    Google Scholar 

  10. Sommer S, Wagener S, Ebner H (1959) Kunststoffe 49:500

    CAS  Google Scholar 

  11. Galli P, Susa E, Di Drusco G (1970) (Montecatini Edison S.p.A.), Patent DE 2,000,585 [Chem Abstr 73:53566 (1970)]

    Google Scholar 

  12. Mayr A, Susa E, Di Brusco G (1970) (Montecatini Edison S.p.A.) Patent DE 2,013,730 [Chem Abstr 73:121062 (1970)]

    Google Scholar 

  13. Galli P, Luciani L, Cecchin G (1981) Angew Makromol Chem 94:63

    Article  CAS  Google Scholar 

  14. Barbé PC, Cecchin G, Noristi L (1986) Adv Polym Sci 81:1

    Article  Google Scholar 

  15. Luciani L, Kashiwa N, Barbé P, Toyota A (1975) (Montedison, Mitsui Petrochemical) Patent US 4,226,714 [Chem Abstr 87:68693 (1977)]

    Google Scholar 

  16. Kashiwa N (1980) Polym J 12:603

    Article  CAS  Google Scholar 

  17. Kashiwa N, Yoshitake J, Tsutsui T (1988) In: Kaminsky W, Sinn HJ (eds) Transition metals and orgnometallics as catalysts for olefin polymerization. Springer, Berlin, p 33

    Chapter  Google Scholar 

  18. Ferraris M, Rosati F, Gianetti E, Motroni G, Albizzati E (1980) (Montedison S.p.A.) Patent DE 2,933,997 [Chem Abstr 92:199055 (1980)]

    Google Scholar 

  19. Thum G (1987) (Hoechst AG) Patent DE 3,620,060 [Chem Abstr 108:205257 (1988)]

    Google Scholar 

  20. Böhm L (1990) (Hoechst AG) Patent DE 4,017,661 [Chem Abstr 116:84398 (1992)]

    Google Scholar 

  21. Breuers W, Lecht R, Böhm L (1994) (Hoechst AG) Patent EP 0,613,909 [Chem Abstr 122:134146 (1995)]

    Google Scholar 

  22. Ray WH (1986) Ber Bunsenges Phys Chem 90:947

    Article  CAS  Google Scholar 

  23. Cossee P (1964) J Catal 3:80

    Article  CAS  Google Scholar 

  24. Arlman EJ (1964) J Catal 3:89

    Article  CAS  Google Scholar 

  25. Arlman EJ, Cossee P (1964) J Catal 3:99

    Article  CAS  Google Scholar 

  26. Böhm LL (1978) Polymer 19:545

    Article  Google Scholar 

  27. Böhm LL, Franke R, Thum G (1988) In: Kaminsky W, Sinn HJ (eds) Transition metal and organometallics as catalysts for olefin polymerization. Springer, Berlin, p 391

    Chapter  Google Scholar 

  28. Mc Kenna T, Mattioli V (2001) Macromol Symp 173:149

    Article  CAS  Google Scholar 

  29. Wicke E, Padberg G (1968) Chem Ing Techn 40:1033

    Article  CAS  Google Scholar 

  30. Fieguth P, Wicke E (1971) Chem Ing Techn 43:604

    Article  CAS  Google Scholar 

  31. Wicke E (1974) Chem Ing Techn 46:365

    Article  CAS  Google Scholar 

  32. Böhm LL (2003) Angew Chem 115:5162

    Article  Google Scholar 

  33. Böhm LL (2003) Angew Chem Int Ed 42:5010

    Article  Google Scholar 

  34. Kipke K (1979) Chem Ing Techn 51:430

    Article  CAS  Google Scholar 

  35. Himmelbach W, Houlton D, Ortlieb D, Lavallo M (2006) Chem Eng Sci 61:3044

    Article  Google Scholar 

  36. Himmelbach W, Houlton D, Keller W (2007) New advances in HDPE reactor technology in PEPP. Maack Business Services, Zürich

    Google Scholar 

  37. Böhm LL, Goebel P, Schöneborn P-R (1990) Angew Makromol Chem 174:189

    Article  Google Scholar 

  38. Böhm LL, Göbel P, Schöneborn P-R, Tauchnitz T (1992) In: Proceedings of the 4th world congress of chemical engineering (Karlsruhe, 16–21 June 1991). DECHEMA, Frankfurt am Main, pp 605–619

    Google Scholar 

  39. Böhm LL, Göbel P, Lorenz O, Tauchnitz T (1992) DECHEMA Monographien 127:257

    Google Scholar 

  40. Böhm LL, Enderle HF, Fleißner M (1992) Adv Mater 4:234

    Article  Google Scholar 

  41. Böhm LL, Bilda D, Breuers W, Enderle HF, Lecht R (1995) In: Fink G, Mülhaupt R, Brintzinger HH (eds) Ziegler catalysts. Springer, Berlin, p 387

    Chapter  Google Scholar 

  42. Scheirs J, Böhm LL, Boot JC, Leevers PS (1996) Trends Polym Sci 4:408

    CAS  Google Scholar 

  43. Berthold J, Böhm LL, Enderle H-J, Göbel P, Lüker H, Lecht R, Schulte U (1996) Plast Rubber Compos Proc Appl 25:368

    CAS  Google Scholar 

  44. Böhm LL, Enderle HF, Fleissner M (1998) Plast Rubber Compos Proc Appl 27:25

    Google Scholar 

  45. Böhm L, Fischer D (2000) Kunststofftechnik. VDI Verlag GmbH, Düsseldorf, p 205

    Google Scholar 

  46. Böhm LL (2001) Macromol Symp 173:53

    Article  Google Scholar 

  47. Alt P, Böhm LL, Enderle H-F, Berthold J (2001) Macromol Symp 163:135

    Article  CAS  Google Scholar 

  48. Schulte U (2006) Kunststoffe 96:46

    CAS  Google Scholar 

  49. Sattel R (2008) Kunststoffe 9:115

    Google Scholar 

  50. Müller W, Damm E (2009) Kunststoffe Int 2009(10):28

    Google Scholar 

  51. Auriemma F, Talarico G, Corradini P (2000) In: Sano T, Uozumi T, Nakatani H, Terano M (eds) Progress and development of catalytic olefin polymerization. Technology and Education, Tokyo, p 7

    Google Scholar 

  52. Böhm LL (1978) Polymer 19:553

    Article  Google Scholar 

  53. International Organization for Standardization (1981) ISO 1133:1981. Plastics – determination of the melt flow rate of thermoplastics. ISO, Geneva

    Google Scholar 

  54. Fleissner M (1988) Int Polym Process II:229

    Google Scholar 

  55. Fleißner M (1982) Angew Makromol Chem 105:167

    Article  Google Scholar 

  56. Schmitt-Rohr K, Spieß HW (1991) Macromolecules 24:5288

    Article  Google Scholar 

  57. Richard K, Gaube E, Diedrich G (1959) Kunststoffe 49:516

    Google Scholar 

  58. Schulte U (1997) Kunststoffe 87:203

    CAS  Google Scholar 

  59. Brömstrup H (ed) (2006) Wiesbadener Kunststoffrohrtage. Vulkan, Essen

    Google Scholar 

  60. Keim W (ed) (2006) Polyolefine in Kunststoffe. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

This article summarizes the development over many years. I want to express my thanks to all colleagues who contributed to this development. I have also to thank DI Elke Damm for her very appreciated advice and help in writing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Böhm, L.L. (2013). The Slurry Polymerization Process with Super-Active Ziegler-Type Catalyst Systems: From the 2 L Glass Autoclave to the 200 m3 Stirred Tank Reactor. In: Kaminsky, W. (eds) Polyolefins: 50 years after Ziegler and Natta I. Advances in Polymer Science, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2013_214

Download citation

Publish with us

Policies and ethics