Advertisement

Synthesis, Characteristics, and Applications of Intrinsically Light-Emitting Polymer Nanostructures

  • Young Ki Hong
  • Dong Hyuk Park
  • Seok Ho Lee
  • Jinsoo JooEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 259)

Abstract

Light-emitting π-conjugated polymers and their nanostructures have been intensively studied from the viewpoints of both fundamental research and optoelectronic applications. The characteristics of light-emitting polymer nanostructures, such as light absorption and emission efficiencies, can be tuned through chemical processing and by varying their physical dimensions. In this review article, recent progress in the synthesis, characterization, modification, and applications of light-emitting polymer-based nanostructures is presented. Various synthetic methods for light-emitting polymer nanostructures are introduced, and their intrinsic optical properties at a nanoscale level are summarized. Post-synthetic treatments for modification of the characteristics related to the morphologies and doping states are discussed. Finally, potential applications of these nanostructures to barcode/quasi-superlattice nanowires, biosensors, and nano-optoelectronics are presented.

Keywords

π-Conjugation Barcode Biosensor Doping Electron beam Hybridization Hydrothermal Light-emitting polymer Nanoscale optical property Nanostructure Optoelectronics 

Abbreviations

1D

One-dimensional

2D

Two-dimensional

3D

Three-dimensional

c-AFM

Conducting atomic force microscope

CCD

Charge-coupled device

CV

Cyclic voltammetry

DBSA

Dodecylbenzenesulfonic acid

E-beam

Electron-beam

HDL

Hybrid double-layered

HR

High-resolution

IV

Current–voltage

LCM

Laser confocal microscope

LECB

Light-emitting color barcode

MEH-PPV

Poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylenevinylene]

NP

Nanoparticle

NT

Nanotube

NW

Nanowire

P3BT

Poly(3-butylthiophene)

P3HT

Poly(3-hexylthiophene)

P3MT

Poly(3-methylthiophene)

PCBM

[6,6]-Phenyl C61-butyric acid methyl ester

PEDOT

Poly(3,4-ethylenedioxythiophene)

PL

Photoluminescence

PTh

Polythiophene

SEM

Scanning electron microscope

SPR

Surface plasmon resonance

TEM

Transmission electron microscope

UV–vis

Ultraviolet–visible

Notes

Acknowledgments

This work was partially supported from the National Research Foundation (NRF) grant funded by the Korean government (MEST) (No. 2012R1A2A2A01045102).

References

  1. 1.
    MacDiarmid AG (2001) Rev Mod Phys 73:701–712Google Scholar
  2. 2.
    Shirakawa H (2001) Rev Mod Phys 73:713–718Google Scholar
  3. 3.
    Heeger AJ (2001) Rev Mod Phys 73:681–700Google Scholar
  4. 4.
    Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Dekker, New YorkGoogle Scholar
  5. 5.
    Perepichka IF, Perepichka DF, Meng H, Wudl F (2005) Adv Mater 17:2281–2305Google Scholar
  6. 6.
    Park DH, Kim MS, Joo J (2010) Chem Soc Rev 39:2439–2452Google Scholar
  7. 7.
    Roth S, Carroll DL (2004) One-dimensional metals, 2nd edn. Wiley, WeinheimGoogle Scholar
  8. 8.
    Heeger AJ (2002) Synth Met 125:23–42Google Scholar
  9. 9.
    Su WP, Schrieffer JR, Heeger AJ (1979) Phys Rev Lett 42:1698–1701Google Scholar
  10. 10.
    Su WP, Schrieffer JR, Heeger AJ (1980) Phys Rev B 22:2099–2111Google Scholar
  11. 11.
    Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Rev Mod Phys 60:781–850Google Scholar
  12. 12.
    Roothaan CCJ (1951) Rev Mod Phys 23:69–89Google Scholar
  13. 13.
    Anderson PW (1975) Phys Rev Lett 34:953–955Google Scholar
  14. 14.
    Brédas JL, Chance RR, Baughman RH, Silbey R (1982) J Chem Phys 76:3673–3678Google Scholar
  15. 15.
    Brédas JL, Thémans B, André JM (1982) J Chem Phys 78:6137–6148Google Scholar
  16. 16.
    Brédas JL, Elsenbaumer RL, Chance RR, Silbey R (1983) J Chem Phys 78:5656–5662Google Scholar
  17. 17.
    Brédas JL, Thémans B, André JM (1983) Phys Rev B 27:7827–7830Google Scholar
  18. 18.
    Fesser K, Bishop AR, Campbell DK (1983) Phys Rev B 27:4804–4825Google Scholar
  19. 19.
    Brédas JL, Scott JC, Yakushi K, Street GB (1984) Phys Rev B 30:1023–1025Google Scholar
  20. 20.
    Kaufman JH, Colaneri N, Scott JC, Street GB (1984) Phys Rev Lett 53:1005–1008Google Scholar
  21. 21.
    Brédas JL, Street GB (1985) Acc Chem Res 18:309–315Google Scholar
  22. 22.
    Vardeny Z, Ehrenfreund E, Brafman O, Nowak M, Schaffer H, Heeger AJ, Wudl F (1986) Phys Rev Lett 56:671–674Google Scholar
  23. 23.
    Sum U, Fesser K, Büttner H (1988) Phys Rev B 38:6166–6173Google Scholar
  24. 24.
    Sun ZW, Frank AJ (1991) J Chem Phys 94:4600–4608Google Scholar
  25. 25.
    Martin CR (1994) Science 266:1961–1966Google Scholar
  26. 26.
    Feng S, Xu R (2001) Acc Chem Res 34:239–247Google Scholar
  27. 27.
    Joo J, Kim BH, Park DH, Sung JH, Choi HJ (2008) Conducting polymer nanotubes, nanowires, and nanocomposites: synthesis, characteristics, and applications. In: Nalwa HS (ed) Handbook of organic electronics and photonics, vol 1. American Scientific, California, pp 51–83Google Scholar
  28. 28.
    Long YZ, Li MM, Gu C, Wan M, Duvail JL, Liu Z, Fan Z (2011) Prog Polym Sci 36:1415–1442Google Scholar
  29. 29.
    Jones MR, Osberg KD, MacFarlane RJ, Langille MR, Mirkin CA (2011) Chem Rev 111:3736–3827Google Scholar
  30. 30.
    Kim FS, Ren G, Jenekhe SA (2011) Chem Mater 23:682–732Google Scholar
  31. 31.
    Joo J, Kim BH, Park DH, Kim HS, Seo DS, Shim JH, Lee SJ, Ryu KS, Kim K, Jin JI, Lee TJ, Lee CJ (2005) Synth Met 153:313–316Google Scholar
  32. 32.
    Kim BH, Park DH, Joo J, Yu SG, Lee SH (2005) Synth Met 150:279–284Google Scholar
  33. 33.
    Park DH, Kim BH, Jang MK, Bae KY, Lee SJ, Joo J (2005) Synth Met 153:341–344Google Scholar
  34. 34.
    Park JG, Lee SH, Kim B, Park YW (2002) Appl Phys Lett 81:4625–4627Google Scholar
  35. 35.
    Huang J, Kaner RB (2004) J Am Chem Soc 126:851–855Google Scholar
  36. 36.
    Tran HD, Kaner RB (2006) Chem Commun 2006:3915–3917Google Scholar
  37. 37.
    Dan LI, Huang J, Kaner RB (2009) Acc Chem Res 42:135–145Google Scholar
  38. 38.
    Kim K, Jin JI (2001) Nano Lett 1:631–636Google Scholar
  39. 39.
    Sadki S, Schottland P, Brodie N, Sabouraud G (2000) Chem Soc Rev 29:283–293Google Scholar
  40. 40.
    Park DH, Kim BH, Jang MG, Bae KY, Joo J (2005) Appl Phys Lett 86:113116Google Scholar
  41. 41.
    Park DH, Kim M, Kim MS, Kim DC, Song H, Kim J, Joo J (2008) Electrochem Solid State Lett 11:K69–K72Google Scholar
  42. 42.
    Lee SH, Park DH, Kim K, Joo J, Kim DC, Kim HJ, Kim J (2007) Appl Phys Lett 91:263102Google Scholar
  43. 43.
    Park DH, Kim HS, Lee YB, Ko JM, Lee JY, Kim HJ, Kim DC, Kim J, Joo J (2008) Synth Met 158:90–94Google Scholar
  44. 44.
    Parthasarathy RV, Martin CR (1994) Chem Mater 6:1627–1632Google Scholar
  45. 45.
    Horn D, Rieger J (2001) Angew Chem Int Ed 40:4330–4361Google Scholar
  46. 46.
    Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) Jpn J Appl Phys 31:L1132–L1134Google Scholar
  47. 47.
    Kong F, Sun YM, Yuan RK (2007) Nanotechnology 18:265707Google Scholar
  48. 48.
    Shimizu H, Yamada M, Wada R, Okabe M (2008) Polym J 40:33–36Google Scholar
  49. 49.
    Landfester K, Montenegro R, Scherf U, GüNTNER R, Asawapirom U, Patil S, Neher D, Kietzke T (2002) Adv Mater 14:651–655Google Scholar
  50. 50.
    Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U (2003) Nat Mater 2:408–412Google Scholar
  51. 51.
    Kim MS, Park DH, Cho EH, Kim KH, Park QH, Song H, Kim DC, Kim J, Joo J (2009) ACS Nano 3:1329–1334Google Scholar
  52. 52.
    Lee YB, Lee SH, Kim K, Lee JW, Han KY, Kim J, Joo J (2012) J Mater Chem 22:2485–2490Google Scholar
  53. 53.
    Reneker DH, Chun I (1996) Nanotechnology 7:216–223Google Scholar
  54. 54.
    Li D, Xia Y (2004) Adv Mater 16:1151–1170Google Scholar
  55. 55.
    Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670–5703Google Scholar
  56. 56.
    Reneker DH, Yarin AL (2008) Polymer 49:2387–2425Google Scholar
  57. 57.
    Lu X, Wang C, Wei Y (2009) Small 5:2349–2370Google Scholar
  58. 58.
    Kim JS, Reneker DH (1999) Polym Eng Sci 39:849–854Google Scholar
  59. 59.
    Li D, Xia Y (2004) Nano Lett 4:933–938Google Scholar
  60. 60.
    Laforgue A (2011) J Power Sources 196:559–564Google Scholar
  61. 61.
    Kim HJ, Kim DC, Kim R, Kim J, Park DH, Kim HS, Joo J, Suh YD (2007) J Appl Phys 101:053514Google Scholar
  62. 62.
    Hong YK, Park DH, Jo SG, Koo MH, Kim DC, Kim J, Kim JS, Jang SY, Joo J (2011) Angew Chem Int Ed 50:3734–3738Google Scholar
  63. 63.
    Kim DC, Kim R, Kim HJ, Kim J, Park DH, Kim HS, Joo J (2007) Jpn J Appl Phys 46:5556–5559Google Scholar
  64. 64.
    Joo J, Park DH, Jeong MY, Lee YB, Kim HS, Choi WJ, Park QH, Kim HJ, Kim DC, Kim J (2007) Adv Mater 19:2824–2829Google Scholar
  65. 65.
    Park DH, Kim HS, Jeong MY, Lee YB, Kim HJ, Kim DC, Kim J, Joo J (2008) Adv Funct Mater 18:2526–2534Google Scholar
  66. 66.
    Yassar A, Roncali J, Garnier F (1989) Macromolecules 22:804–809Google Scholar
  67. 67.
    Hong YK, Park DH, Park SK, Song H, Kim DC, Kim J, Han YH, Park OK, Lee BC, Joo J (2009) Adv Funct Mater 19:567–572Google Scholar
  68. 68.
    Louarn G, Trznadel M, Buisson JP, Laska J, Pron A, Lapkowski M, Lefrant S (1996) J Phys Chem 100:12532–12539Google Scholar
  69. 69.
    Jin S, Xue G (1997) Macromolecules 30:5753–5757Google Scholar
  70. 70.
    Brédas JL, Thémans B, Fripiat JG, André JM, Chance RR (1984) Phys Rev B 29:6761–6773Google Scholar
  71. 71.
    Li Y, Qian R (1988) Synth Met 26:139–151Google Scholar
  72. 72.
    Li Y, Qian R (1993) Synth Met 53:149–154Google Scholar
  73. 73.
    Padmanaban G, Ramakrishnan S (2000) J Am Chem Soc 122:2244–2251Google Scholar
  74. 74.
    Szymanski C, Wu C, Hooper J, Salazar MA, Perdomo A, Dukes A, McNeill J (2005) J Phys Chem B 109:8543–8546Google Scholar
  75. 75.
    Liu C, Kwon YK, Heo J (2008) Chem Phys Lett 452:281–284Google Scholar
  76. 76.
    Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L, Stabile R, Cingolani R, Pisignano D (2008) Nat Nanotechnol 3:614–619Google Scholar
  77. 77.
    Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Science 297:983–987Google Scholar
  78. 78.
    Kim HS, Park DH, Lee YB, Kim DC, Kim HJ, Kim J, Joo J (2007) Synth Met 157:910–913Google Scholar
  79. 79.
    Santos MJL, Brolo AG, Girotto EM (2007) Electrochim Acta 52:6141–6145Google Scholar
  80. 80.
    Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) Macromolecules 32:6807–6812Google Scholar
  81. 81.
    Colaneri N, Nowak M, Spiegel D, Hotta S, Heeger AJ (1987) Phys Rev B 36:7964–7968Google Scholar
  82. 82.
    Kros A, Van Hövell SWFM, Sommerdijk NAJM, Nolte RJM (2001) Adv Mater 13:1555–1557Google Scholar
  83. 83.
    Cho SI, Kwon WJ, Choi SJ, Kim P, Park SA, Kim J, Son SJ, Xiao R, Kim SH, Lee SB (2005) Adv Mater 17:171–175Google Scholar
  84. 84.
    Abidian MR, Kim DH, Martin DC (2006) Adv Mater 18:405–409Google Scholar
  85. 85.
    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481–494Google Scholar
  86. 86.
    Hong YK, Park DH, Park SK, Joo J (2008) J Korean Phys Soc 53:2627–2631Google Scholar
  87. 87.
    Hong YK, Park DH, Park SH, Park SK, Joo J (2009) Appl Phys Lett 94:053111Google Scholar
  88. 88.
    Kiriy N, Jähne E, Adler HJ, Schneider M, Kiriy A, Gorodyska G, Minko S, Jehnichen D, Simon P, Fokin AA, Stamm M (2003) Nano Lett 3:707–712Google Scholar
  89. 89.
    Cui CX, Kertesz M (1989) Phys Rev B 40:9661–9670Google Scholar
  90. 90.
    Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim JS, Ramsdale CM, Sirringhaus H, Friend RH (2003) Phys Rev B 67:642031–6420316Google Scholar
  91. 91.
    Yu J, Wang W, Cheng B, Su BL (2009) J Phys Chem C 113:6743–6750Google Scholar
  92. 92.
    Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Chem Mater 21:2950–2956Google Scholar
  93. 93.
    Jung JS, Lee JW, Kim K, Cho MY, Jo SG, Joo J (2010) Chem Mater 22:2219–2225Google Scholar
  94. 94.
    Lee SH, Lee YB, Park DH, Kim MS, Cho EH, Joo J (2011) Sci Technol Adv Mater 12:025002Google Scholar
  95. 95.
    Penn RL, Banfield JF (1999) Geochim Cosmochim Acta 63:1549–1557Google Scholar
  96. 96.
    Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F (1987) Macromolecules 20:212–215Google Scholar
  97. 97.
    Sundberg M, Inganäs O, Stafström S, Gustafsson G, Sjögren B (1989) Solid State Commun 71:435–439Google Scholar
  98. 98.
    Yoshino K, Nakao K, Onoda M (1989) Jpn J Appl Phys 28:323–324Google Scholar
  99. 99.
    Hess BC, Kanner GS, Vardeny ZV, Baker GL (1991) Synth Met 41:1285–1288Google Scholar
  100. 100.
    Clark J, Silva C, Friend RH, Spano FC (2007) Phys Rev Lett 98:206406Google Scholar
  101. 101.
    Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824–830Google Scholar
  102. 102.
    Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Chem Soc Rev 35:1084–1094Google Scholar
  103. 103.
    Park DH, Kim MS, Cho EH, Park SH, Song H, Kim DC, Kim J, Joo J (2009) Electrochem Solid State Lett 12:K5–K8Google Scholar
  104. 104.
    Park DH, Lee YB, Kim HS, Kim DC, Kim J, Joo J (2009) Synth Met 159:22–25Google Scholar
  105. 105.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346Google Scholar
  106. 106.
    Tseng RJ, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Nano Lett 5:1077–1080Google Scholar
  107. 107.
    Quinn BM, Dekker C, Lemay SG (2005) J Am Chem Soc 127:6146–6147Google Scholar
  108. 108.
    Wildgoose GG, Banks CE, Compton RG (2006) Small 2:182–193Google Scholar
  109. 109.
    Dong SK, Lee T, Geckeler KE (2006) Angew Chem Int Ed 45:104–107Google Scholar
  110. 110.
    Zhu J, Brink M, McEuen PL (2008) Nano Lett 8:2399–2404Google Scholar
  111. 111.
    Chiu NF, Lin CW, Lee JH, Kuan CH, Wu KC, Lee CK (2007) Appl Phys Lett 91:083114Google Scholar
  112. 112.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mater 7:442–453Google Scholar
  113. 113.
    Kim SS, Na SI, Jo J, Kim DY, Nah YC (2008) Appl Phys Lett 93:073307Google Scholar
  114. 114.
    Park DH, Hong YK, Kim MS, Cho EH, Choi WJ, Kim KH, Park QH, Kim DC, Song H, Kim J, Joo J (2010) Synth Met 160:604–608Google Scholar
  115. 115.
    Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Phys Rev Lett 94:017402Google Scholar
  116. 116.
    Genet C, Ebbesen T (2007) Nature 445:39–46Google Scholar
  117. 117.
    Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Hales NR (2008) Nano Lett 8:1212–1218Google Scholar
  118. 118.
    Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137–141Google Scholar
  119. 119.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Nature 415:617–620Google Scholar
  120. 120.
    Tsu R (2005) Superlattice to nanoelectronics. Elsevier, AmsterdamGoogle Scholar
  121. 121.
    Williams BS (2007) Nat Photonics 1:517–525Google Scholar
  122. 122.
    Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nano Lett 7:3849–3853Google Scholar
  123. 123.
    Yan R, Gargas D, Yang P (2009) Nat Photonics 3:569–576Google Scholar
  124. 124.
    Wade A, Fedorov G, Smirnov D, Kumar S, Williams BS, Hu Q, Reno JL (2009) Nat Photonics 3:41–45Google Scholar
  125. 125.
    Björ MT, Ohlsson BJ, Sass T, Persson AI, Thelander C, Magnusson MH, Deppert K, Wallenberg LR, Samuelson L (2002) Nano Lett 2:87–89Google Scholar
  126. 126.
    Choi JR, Oh SJ, Ju H, Cheon J (2005) Nano Lett 5:2179–2183Google Scholar
  127. 127.
    Lee JH, Wu JH, Liu HL, Cho JU, Cho MK, An BH, Min JH, Noh SJ, Kim YK (2007) Angew Chem Int Ed 46:3663–3667Google Scholar
  128. 128.
    Algra RE, Verheijen MA, Borgström MT, Feiner LF, Immink G, Van Enckevort WJP, Vlieg E, Bakkers EPAM (2008) Nature 456:369–372Google Scholar
  129. 129.
    Bulbarello A, Sattayasamitsathit S, Crevillen AG, Burdick J, Mannino S, Kanatharana P, Thavarungkul P, Escarpa A, Wang J (2008) Small 4:597–600Google Scholar
  130. 130.
    Caroff P, Dick KA, Johansson J, Messing ME, Deppert K, Samuelson L (2009) Nat Nanotechnol 4:50–55Google Scholar
  131. 131.
    Park DH, Hong YK, Cho EH, Kim MS, Kim DC, Bang J, Kim J, Joo J (2010) ACS Nano 4:5155–5162Google Scholar
  132. 132.
    Krasheninnikov AV, Banhart F (2007) Nat Mater 6:723–733Google Scholar
  133. 133.
    Krasheninnikov AV, Nordlund K (2010) J Appl Phys 107:071301Google Scholar
  134. 134.
    Shi G, Xu J, Fu M (2002) J Phys Chem B 106:288–292Google Scholar
  135. 135.
    Chen F, Shi G, Zhang J, Fu M (2003) Thin Solid Films 424:283–290Google Scholar
  136. 136.
    Devoret MH, Grabert H (1992) Single charge tunneling: coulomb blockade phenomena in nanostructures. Plenum, New YorkGoogle Scholar
  137. 137.
    Delsing P, Claeson T, Likharev KK, Kuzmin LS (1990) Phys Rev B 42:7439–7449Google Scholar
  138. 138.
    Aleshin AN, Lee HJ, Jhang SH, Kim HS, Akagi K, Park YW (2005) Phys Rev B 72:1532021–1532024Google Scholar
  139. 139.
    Park DH, Kim N, Cui C, Hong YK, Kim MS, Yang DH, Kim DC, Lee H, Kim J, Ahn DJ, Joo J (2011) Chem Commun 47:7944–7946Google Scholar
  140. 140.
    Facchetti A (2011) Chem Mater 23:733–758Google Scholar
  141. 141.
    Kim K, Shin JW, Lee YB, Cho MY, Lee SH, Park DH, Jang DK, Lee CJ, Joo J (2010) ACS Nano 4:4197–4205Google Scholar
  142. 142.
    Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Nature 449:885–889Google Scholar
  143. 143.
    Briseno AL, Holcombe TW, Boukai AI, Garnett EC, Shelton SW, Fréchet JJM, Yang P (2010) Nano Lett 10:334–340Google Scholar
  144. 144.
    Kim K, Lee JW, Lee SH, Lee YB, Cho EH, Noh HS, Jo SG, Joo J (2011) Org Electron 12:1695–1700Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Young Ki Hong
    • 1
  • Dong Hyuk Park
    • 1
  • Seok Ho Lee
    • 1
  • Jinsoo Joo
    • 1
    Email author
  1. 1.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations