Skip to main content

Synthesis, Characteristics, and Applications of Intrinsically Light-Emitting Polymer Nanostructures

  • Chapter
  • First Online:
Controlled Polymerization and Polymeric Structures

Part of the book series: Advances in Polymer Science ((POLYMER,volume 259))

Abstract

Light-emitting π-conjugated polymers and their nanostructures have been intensively studied from the viewpoints of both fundamental research and optoelectronic applications. The characteristics of light-emitting polymer nanostructures, such as light absorption and emission efficiencies, can be tuned through chemical processing and by varying their physical dimensions. In this review article, recent progress in the synthesis, characterization, modification, and applications of light-emitting polymer-based nanostructures is presented. Various synthetic methods for light-emitting polymer nanostructures are introduced, and their intrinsic optical properties at a nanoscale level are summarized. Post-synthetic treatments for modification of the characteristics related to the morphologies and doping states are discussed. Finally, potential applications of these nanostructures to barcode/quasi-superlattice nanowires, biosensors, and nano-optoelectronics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

c-AFM:

Conducting atomic force microscope

CCD:

Charge-coupled device

CV:

Cyclic voltammetry

DBSA:

Dodecylbenzenesulfonic acid

E-beam:

Electron-beam

HDL:

Hybrid double-layered

HR:

High-resolution

IV :

Current–voltage

LCM:

Laser confocal microscope

LECB:

Light-emitting color barcode

MEH-PPV:

Poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylenevinylene]

NP:

Nanoparticle

NT:

Nanotube

NW:

Nanowire

P3BT:

Poly(3-butylthiophene)

P3HT:

Poly(3-hexylthiophene)

P3MT:

Poly(3-methylthiophene)

PCBM:

[6,6]-Phenyl C61-butyric acid methyl ester

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PL:

Photoluminescence

PTh:

Polythiophene

SEM:

Scanning electron microscope

SPR:

Surface plasmon resonance

TEM:

Transmission electron microscope

UV–vis:

Ultraviolet–visible

References

  1. MacDiarmid AG (2001) Rev Mod Phys 73:701–712

    CAS  Google Scholar 

  2. Shirakawa H (2001) Rev Mod Phys 73:713–718

    CAS  Google Scholar 

  3. Heeger AJ (2001) Rev Mod Phys 73:681–700

    CAS  Google Scholar 

  4. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Dekker, New York

    Google Scholar 

  5. Perepichka IF, Perepichka DF, Meng H, Wudl F (2005) Adv Mater 17:2281–2305

    CAS  Google Scholar 

  6. Park DH, Kim MS, Joo J (2010) Chem Soc Rev 39:2439–2452

    CAS  Google Scholar 

  7. Roth S, Carroll DL (2004) One-dimensional metals, 2nd edn. Wiley, Weinheim

    Google Scholar 

  8. Heeger AJ (2002) Synth Met 125:23–42

    CAS  Google Scholar 

  9. Su WP, Schrieffer JR, Heeger AJ (1979) Phys Rev Lett 42:1698–1701

    CAS  Google Scholar 

  10. Su WP, Schrieffer JR, Heeger AJ (1980) Phys Rev B 22:2099–2111

    CAS  Google Scholar 

  11. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Rev Mod Phys 60:781–850

    CAS  Google Scholar 

  12. Roothaan CCJ (1951) Rev Mod Phys 23:69–89

    CAS  Google Scholar 

  13. Anderson PW (1975) Phys Rev Lett 34:953–955

    Google Scholar 

  14. Brédas JL, Chance RR, Baughman RH, Silbey R (1982) J Chem Phys 76:3673–3678

    Google Scholar 

  15. Brédas JL, Thémans B, André JM (1982) J Chem Phys 78:6137–6148

    Google Scholar 

  16. Brédas JL, Elsenbaumer RL, Chance RR, Silbey R (1983) J Chem Phys 78:5656–5662

    Google Scholar 

  17. Brédas JL, Thémans B, André JM (1983) Phys Rev B 27:7827–7830

    Google Scholar 

  18. Fesser K, Bishop AR, Campbell DK (1983) Phys Rev B 27:4804–4825

    CAS  Google Scholar 

  19. Brédas JL, Scott JC, Yakushi K, Street GB (1984) Phys Rev B 30:1023–1025

    Google Scholar 

  20. Kaufman JH, Colaneri N, Scott JC, Street GB (1984) Phys Rev Lett 53:1005–1008

    CAS  Google Scholar 

  21. Brédas JL, Street GB (1985) Acc Chem Res 18:309–315

    Google Scholar 

  22. Vardeny Z, Ehrenfreund E, Brafman O, Nowak M, Schaffer H, Heeger AJ, Wudl F (1986) Phys Rev Lett 56:671–674

    CAS  Google Scholar 

  23. Sum U, Fesser K, Büttner H (1988) Phys Rev B 38:6166–6173

    Google Scholar 

  24. Sun ZW, Frank AJ (1991) J Chem Phys 94:4600–4608

    CAS  Google Scholar 

  25. Martin CR (1994) Science 266:1961–1966

    CAS  Google Scholar 

  26. Feng S, Xu R (2001) Acc Chem Res 34:239–247

    CAS  Google Scholar 

  27. Joo J, Kim BH, Park DH, Sung JH, Choi HJ (2008) Conducting polymer nanotubes, nanowires, and nanocomposites: synthesis, characteristics, and applications. In: Nalwa HS (ed) Handbook of organic electronics and photonics, vol 1. American Scientific, California, pp 51–83

    Google Scholar 

  28. Long YZ, Li MM, Gu C, Wan M, Duvail JL, Liu Z, Fan Z (2011) Prog Polym Sci 36:1415–1442

    CAS  Google Scholar 

  29. Jones MR, Osberg KD, MacFarlane RJ, Langille MR, Mirkin CA (2011) Chem Rev 111:3736–3827

    CAS  Google Scholar 

  30. Kim FS, Ren G, Jenekhe SA (2011) Chem Mater 23:682–732

    CAS  Google Scholar 

  31. Joo J, Kim BH, Park DH, Kim HS, Seo DS, Shim JH, Lee SJ, Ryu KS, Kim K, Jin JI, Lee TJ, Lee CJ (2005) Synth Met 153:313–316

    CAS  Google Scholar 

  32. Kim BH, Park DH, Joo J, Yu SG, Lee SH (2005) Synth Met 150:279–284

    CAS  Google Scholar 

  33. Park DH, Kim BH, Jang MK, Bae KY, Lee SJ, Joo J (2005) Synth Met 153:341–344

    CAS  Google Scholar 

  34. Park JG, Lee SH, Kim B, Park YW (2002) Appl Phys Lett 81:4625–4627

    CAS  Google Scholar 

  35. Huang J, Kaner RB (2004) J Am Chem Soc 126:851–855

    CAS  Google Scholar 

  36. Tran HD, Kaner RB (2006) Chem Commun 2006:3915–3917

    Google Scholar 

  37. Dan LI, Huang J, Kaner RB (2009) Acc Chem Res 42:135–145

    Google Scholar 

  38. Kim K, Jin JI (2001) Nano Lett 1:631–636

    CAS  Google Scholar 

  39. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) Chem Soc Rev 29:283–293

    Google Scholar 

  40. Park DH, Kim BH, Jang MG, Bae KY, Joo J (2005) Appl Phys Lett 86:113116

    Google Scholar 

  41. Park DH, Kim M, Kim MS, Kim DC, Song H, Kim J, Joo J (2008) Electrochem Solid State Lett 11:K69–K72

    CAS  Google Scholar 

  42. Lee SH, Park DH, Kim K, Joo J, Kim DC, Kim HJ, Kim J (2007) Appl Phys Lett 91:263102

    Google Scholar 

  43. Park DH, Kim HS, Lee YB, Ko JM, Lee JY, Kim HJ, Kim DC, Kim J, Joo J (2008) Synth Met 158:90–94

    CAS  Google Scholar 

  44. Parthasarathy RV, Martin CR (1994) Chem Mater 6:1627–1632

    CAS  Google Scholar 

  45. Horn D, Rieger J (2001) Angew Chem Int Ed 40:4330–4361

    CAS  Google Scholar 

  46. Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) Jpn J Appl Phys 31:L1132–L1134

    CAS  Google Scholar 

  47. Kong F, Sun YM, Yuan RK (2007) Nanotechnology 18:265707

    CAS  Google Scholar 

  48. Shimizu H, Yamada M, Wada R, Okabe M (2008) Polym J 40:33–36

    CAS  Google Scholar 

  49. Landfester K, Montenegro R, Scherf U, GüNTNER R, Asawapirom U, Patil S, Neher D, Kietzke T (2002) Adv Mater 14:651–655

    CAS  Google Scholar 

  50. Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U (2003) Nat Mater 2:408–412

    CAS  Google Scholar 

  51. Kim MS, Park DH, Cho EH, Kim KH, Park QH, Song H, Kim DC, Kim J, Joo J (2009) ACS Nano 3:1329–1334

    CAS  Google Scholar 

  52. Lee YB, Lee SH, Kim K, Lee JW, Han KY, Kim J, Joo J (2012) J Mater Chem 22:2485–2490

    CAS  Google Scholar 

  53. Reneker DH, Chun I (1996) Nanotechnology 7:216–223

    CAS  Google Scholar 

  54. Li D, Xia Y (2004) Adv Mater 16:1151–1170

    CAS  Google Scholar 

  55. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670–5703

    CAS  Google Scholar 

  56. Reneker DH, Yarin AL (2008) Polymer 49:2387–2425

    CAS  Google Scholar 

  57. Lu X, Wang C, Wei Y (2009) Small 5:2349–2370

    CAS  Google Scholar 

  58. Kim JS, Reneker DH (1999) Polym Eng Sci 39:849–854

    CAS  Google Scholar 

  59. Li D, Xia Y (2004) Nano Lett 4:933–938

    CAS  Google Scholar 

  60. Laforgue A (2011) J Power Sources 196:559–564

    CAS  Google Scholar 

  61. Kim HJ, Kim DC, Kim R, Kim J, Park DH, Kim HS, Joo J, Suh YD (2007) J Appl Phys 101:053514

    Google Scholar 

  62. Hong YK, Park DH, Jo SG, Koo MH, Kim DC, Kim J, Kim JS, Jang SY, Joo J (2011) Angew Chem Int Ed 50:3734–3738

    CAS  Google Scholar 

  63. Kim DC, Kim R, Kim HJ, Kim J, Park DH, Kim HS, Joo J (2007) Jpn J Appl Phys 46:5556–5559

    CAS  Google Scholar 

  64. Joo J, Park DH, Jeong MY, Lee YB, Kim HS, Choi WJ, Park QH, Kim HJ, Kim DC, Kim J (2007) Adv Mater 19:2824–2829

    CAS  Google Scholar 

  65. Park DH, Kim HS, Jeong MY, Lee YB, Kim HJ, Kim DC, Kim J, Joo J (2008) Adv Funct Mater 18:2526–2534

    CAS  Google Scholar 

  66. Yassar A, Roncali J, Garnier F (1989) Macromolecules 22:804–809

    CAS  Google Scholar 

  67. Hong YK, Park DH, Park SK, Song H, Kim DC, Kim J, Han YH, Park OK, Lee BC, Joo J (2009) Adv Funct Mater 19:567–572

    CAS  Google Scholar 

  68. Louarn G, Trznadel M, Buisson JP, Laska J, Pron A, Lapkowski M, Lefrant S (1996) J Phys Chem 100:12532–12539

    CAS  Google Scholar 

  69. Jin S, Xue G (1997) Macromolecules 30:5753–5757

    CAS  Google Scholar 

  70. Brédas JL, Thémans B, Fripiat JG, André JM, Chance RR (1984) Phys Rev B 29:6761–6773

    Google Scholar 

  71. Li Y, Qian R (1988) Synth Met 26:139–151

    CAS  Google Scholar 

  72. Li Y, Qian R (1993) Synth Met 53:149–154

    CAS  Google Scholar 

  73. Padmanaban G, Ramakrishnan S (2000) J Am Chem Soc 122:2244–2251

    CAS  Google Scholar 

  74. Szymanski C, Wu C, Hooper J, Salazar MA, Perdomo A, Dukes A, McNeill J (2005) J Phys Chem B 109:8543–8546

    CAS  Google Scholar 

  75. Liu C, Kwon YK, Heo J (2008) Chem Phys Lett 452:281–284

    CAS  Google Scholar 

  76. Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L, Stabile R, Cingolani R, Pisignano D (2008) Nat Nanotechnol 3:614–619

    Google Scholar 

  77. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Science 297:983–987

    CAS  Google Scholar 

  78. Kim HS, Park DH, Lee YB, Kim DC, Kim HJ, Kim J, Joo J (2007) Synth Met 157:910–913

    CAS  Google Scholar 

  79. Santos MJL, Brolo AG, Girotto EM (2007) Electrochim Acta 52:6141–6145

    CAS  Google Scholar 

  80. Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) Macromolecules 32:6807–6812

    CAS  Google Scholar 

  81. Colaneri N, Nowak M, Spiegel D, Hotta S, Heeger AJ (1987) Phys Rev B 36:7964–7968

    CAS  Google Scholar 

  82. Kros A, Van Hövell SWFM, Sommerdijk NAJM, Nolte RJM (2001) Adv Mater 13:1555–1557

    CAS  Google Scholar 

  83. Cho SI, Kwon WJ, Choi SJ, Kim P, Park SA, Kim J, Son SJ, Xiao R, Kim SH, Lee SB (2005) Adv Mater 17:171–175

    CAS  Google Scholar 

  84. Abidian MR, Kim DH, Martin DC (2006) Adv Mater 18:405–409

    CAS  Google Scholar 

  85. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481–494

    CAS  Google Scholar 

  86. Hong YK, Park DH, Park SK, Joo J (2008) J Korean Phys Soc 53:2627–2631

    CAS  Google Scholar 

  87. Hong YK, Park DH, Park SH, Park SK, Joo J (2009) Appl Phys Lett 94:053111

    Google Scholar 

  88. Kiriy N, Jähne E, Adler HJ, Schneider M, Kiriy A, Gorodyska G, Minko S, Jehnichen D, Simon P, Fokin AA, Stamm M (2003) Nano Lett 3:707–712

    CAS  Google Scholar 

  89. Cui CX, Kertesz M (1989) Phys Rev B 40:9661–9670

    CAS  Google Scholar 

  90. Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim JS, Ramsdale CM, Sirringhaus H, Friend RH (2003) Phys Rev B 67:642031–6420316

    Google Scholar 

  91. Yu J, Wang W, Cheng B, Su BL (2009) J Phys Chem C 113:6743–6750

    CAS  Google Scholar 

  92. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Chem Mater 21:2950–2956

    CAS  Google Scholar 

  93. Jung JS, Lee JW, Kim K, Cho MY, Jo SG, Joo J (2010) Chem Mater 22:2219–2225

    CAS  Google Scholar 

  94. Lee SH, Lee YB, Park DH, Kim MS, Cho EH, Joo J (2011) Sci Technol Adv Mater 12:025002

    Google Scholar 

  95. Penn RL, Banfield JF (1999) Geochim Cosmochim Acta 63:1549–1557

    CAS  Google Scholar 

  96. Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F (1987) Macromolecules 20:212–215

    CAS  Google Scholar 

  97. Sundberg M, Inganäs O, Stafström S, Gustafsson G, Sjögren B (1989) Solid State Commun 71:435–439

    CAS  Google Scholar 

  98. Yoshino K, Nakao K, Onoda M (1989) Jpn J Appl Phys 28:323–324

    Google Scholar 

  99. Hess BC, Kanner GS, Vardeny ZV, Baker GL (1991) Synth Met 41:1285–1288

    CAS  Google Scholar 

  100. Clark J, Silva C, Friend RH, Spano FC (2007) Phys Rev Lett 98:206406

    Google Scholar 

  101. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824–830

    CAS  Google Scholar 

  102. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Chem Soc Rev 35:1084–1094

    CAS  Google Scholar 

  103. Park DH, Kim MS, Cho EH, Park SH, Song H, Kim DC, Kim J, Joo J (2009) Electrochem Solid State Lett 12:K5–K8

    CAS  Google Scholar 

  104. Park DH, Lee YB, Kim HS, Kim DC, Kim J, Joo J (2009) Synth Met 159:22–25

    CAS  Google Scholar 

  105. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    CAS  Google Scholar 

  106. Tseng RJ, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Nano Lett 5:1077–1080

    CAS  Google Scholar 

  107. Quinn BM, Dekker C, Lemay SG (2005) J Am Chem Soc 127:6146–6147

    CAS  Google Scholar 

  108. Wildgoose GG, Banks CE, Compton RG (2006) Small 2:182–193

    CAS  Google Scholar 

  109. Dong SK, Lee T, Geckeler KE (2006) Angew Chem Int Ed 45:104–107

    Google Scholar 

  110. Zhu J, Brink M, McEuen PL (2008) Nano Lett 8:2399–2404

    CAS  Google Scholar 

  111. Chiu NF, Lin CW, Lee JH, Kuan CH, Wu KC, Lee CK (2007) Appl Phys Lett 91:083114

    Google Scholar 

  112. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mater 7:442–453

    CAS  Google Scholar 

  113. Kim SS, Na SI, Jo J, Kim DY, Nah YC (2008) Appl Phys Lett 93:073307

    Google Scholar 

  114. Park DH, Hong YK, Kim MS, Cho EH, Choi WJ, Kim KH, Park QH, Kim DC, Song H, Kim J, Joo J (2010) Synth Met 160:604–608

    CAS  Google Scholar 

  115. Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Phys Rev Lett 94:017402

    CAS  Google Scholar 

  116. Genet C, Ebbesen T (2007) Nature 445:39–46

    CAS  Google Scholar 

  117. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Hales NR (2008) Nano Lett 8:1212–1218

    CAS  Google Scholar 

  118. Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137–141

    Google Scholar 

  119. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Nature 415:617–620

    CAS  Google Scholar 

  120. Tsu R (2005) Superlattice to nanoelectronics. Elsevier, Amsterdam

    Google Scholar 

  121. Williams BS (2007) Nat Photonics 1:517–525

    CAS  Google Scholar 

  122. Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nano Lett 7:3849–3853

    CAS  Google Scholar 

  123. Yan R, Gargas D, Yang P (2009) Nat Photonics 3:569–576

    CAS  Google Scholar 

  124. Wade A, Fedorov G, Smirnov D, Kumar S, Williams BS, Hu Q, Reno JL (2009) Nat Photonics 3:41–45

    CAS  Google Scholar 

  125. Björ MT, Ohlsson BJ, Sass T, Persson AI, Thelander C, Magnusson MH, Deppert K, Wallenberg LR, Samuelson L (2002) Nano Lett 2:87–89

    Google Scholar 

  126. Choi JR, Oh SJ, Ju H, Cheon J (2005) Nano Lett 5:2179–2183

    CAS  Google Scholar 

  127. Lee JH, Wu JH, Liu HL, Cho JU, Cho MK, An BH, Min JH, Noh SJ, Kim YK (2007) Angew Chem Int Ed 46:3663–3667

    CAS  Google Scholar 

  128. Algra RE, Verheijen MA, Borgström MT, Feiner LF, Immink G, Van Enckevort WJP, Vlieg E, Bakkers EPAM (2008) Nature 456:369–372

    CAS  Google Scholar 

  129. Bulbarello A, Sattayasamitsathit S, Crevillen AG, Burdick J, Mannino S, Kanatharana P, Thavarungkul P, Escarpa A, Wang J (2008) Small 4:597–600

    CAS  Google Scholar 

  130. Caroff P, Dick KA, Johansson J, Messing ME, Deppert K, Samuelson L (2009) Nat Nanotechnol 4:50–55

    CAS  Google Scholar 

  131. Park DH, Hong YK, Cho EH, Kim MS, Kim DC, Bang J, Kim J, Joo J (2010) ACS Nano 4:5155–5162

    CAS  Google Scholar 

  132. Krasheninnikov AV, Banhart F (2007) Nat Mater 6:723–733

    CAS  Google Scholar 

  133. Krasheninnikov AV, Nordlund K (2010) J Appl Phys 107:071301

    Google Scholar 

  134. Shi G, Xu J, Fu M (2002) J Phys Chem B 106:288–292

    CAS  Google Scholar 

  135. Chen F, Shi G, Zhang J, Fu M (2003) Thin Solid Films 424:283–290

    CAS  Google Scholar 

  136. Devoret MH, Grabert H (1992) Single charge tunneling: coulomb blockade phenomena in nanostructures. Plenum, New York

    Google Scholar 

  137. Delsing P, Claeson T, Likharev KK, Kuzmin LS (1990) Phys Rev B 42:7439–7449

    Google Scholar 

  138. Aleshin AN, Lee HJ, Jhang SH, Kim HS, Akagi K, Park YW (2005) Phys Rev B 72:1532021–1532024

    Google Scholar 

  139. Park DH, Kim N, Cui C, Hong YK, Kim MS, Yang DH, Kim DC, Lee H, Kim J, Ahn DJ, Joo J (2011) Chem Commun 47:7944–7946

    CAS  Google Scholar 

  140. Facchetti A (2011) Chem Mater 23:733–758

    CAS  Google Scholar 

  141. Kim K, Shin JW, Lee YB, Cho MY, Lee SH, Park DH, Jang DK, Lee CJ, Joo J (2010) ACS Nano 4:4197–4205

    CAS  Google Scholar 

  142. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Nature 449:885–889

    CAS  Google Scholar 

  143. Briseno AL, Holcombe TW, Boukai AI, Garnett EC, Shelton SW, Fréchet JJM, Yang P (2010) Nano Lett 10:334–340

    CAS  Google Scholar 

  144. Kim K, Lee JW, Lee SH, Lee YB, Cho EH, Noh HS, Jo SG, Joo J (2011) Org Electron 12:1695–1700

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported from the National Research Foundation (NRF) grant funded by the Korean government (MEST) (No. 2012R1A2A2A01045102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsoo Joo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, Y.K., Park, D.H., Lee, S.H., Joo, J. (2013). Synthesis, Characteristics, and Applications of Intrinsically Light-Emitting Polymer Nanostructures. In: Abe, A., Lee, KS., Leibler, L., Kobayashi, S. (eds) Controlled Polymerization and Polymeric Structures. Advances in Polymer Science, vol 259. Springer, Cham. https://doi.org/10.1007/12_2012_207

Download citation

Publish with us

Policies and ethics