Ion Conduction in Solid Polyelectrolyte Complex Materials

  • Cornelia Cramer
  • Monika SchönhoffEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 255)


This chapter describes the progress made in understanding the mechanisms of ion conduction in polyelectrolyte complexes (PEC). Understanding of ion dynamics is based on frequency-dependent conductivity data obtained by impedance spectroscopy as a function of temperature, hydration, and composition. In most of the work, strong polyelectrolytes such as poly(alkali 4-styrene sulfonate) (AlkaliPSS) and poly(diallyldimethyl ammoniumchloride) (PDADMAC) are employed, forming complexes of type xAlkaliPSS · (1 − x) PDADMAC. The dc conductivity is always determined by the alkali ions, which exhibit a size-dependent mobility. This holds even in PEC with an excess of PDADMAC. The ion dynamics and transport mechanisms are different in PDADMAC-rich and in NaPSS-rich PEC. We review the treatment of the frequency-dependent shape of conductivity spectra by scaling concepts and by models involving forward–backward hopping motions of small ions as well as localized motions of charges. Thus, many quantitative concepts established in other disordered ion conductors can be transferred to PEC. In addition to the well-known time–temperature superposition principle (TTSP), the novel concept of time–humidity superposition (THSP) was established for PEC and describes the dependence of ion dynamics on water content.


Dielectric spectroscopy Electrolyte Impedance spectroscopy Ion conductor Ion dynamics Polyelectrolyte complex 


  1. 1.
    Bungenberg de Jong HG (1949) In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 232–55, 59–330, 5–429 and 33–80Google Scholar
  2. 2.
    Michaels AS (1965) Polyelectrolyte complexes. J Ind Eng Chem 57:32–40CrossRefGoogle Scholar
  3. 3.
    Michaels AS, Falkenstein GL, Schneider NS (1965) Dielectric properties of polyanion– polycation complexes. J Phys Chem 69:1456–1465CrossRefGoogle Scholar
  4. 4.
    Michaels AS, Miekka RG (1961) Polycation–polyanion complexes: preparation and properties of poly(vinylbenzyltrimethylammonium styrenesulfonate). J Phys Chem 65:1765–1773CrossRefGoogle Scholar
  5. 5.
    Michaels AS, Mir L, Schneider NS (1965) A conductometric study of polycation–polyanion reactions in dilute aqueous solution. J Phys Chem 69:1447–1455CrossRefGoogle Scholar
  6. 6.
    Philipp B, Dautzenberg H, Linow KJ, Koetz J, Dawydoff W (1989) Polyelectrolyte complexes – recent developments and open problems. Prog Polym Sci 14:91–172CrossRefGoogle Scholar
  7. 7.
    Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21CrossRefGoogle Scholar
  8. 8.
    Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. In: Schmidt M (ed) Polyelectrolytes with defined molecular architechture II. Advances in Polymer Science, vol. 166. Springer, Berlin, pp 113–171Google Scholar
  9. 9.
    Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. 2. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber Bunsen Ges Phys Chem 95:1430–1434CrossRefGoogle Scholar
  10. 10.
    Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835CrossRefGoogle Scholar
  11. 11.
    Bieker P, Schönhoff M (2010) Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules 43:5052–5059CrossRefGoogle Scholar
  12. 12.
    Büscher K, Graf K, Ahrens H, Helm CA (2002) Influence of adsorption conditions on the structure of polyelectrolyte multilayers. Langmuir 18:3585–3591CrossRefGoogle Scholar
  13. 13.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  14. 14.
    Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348CrossRefGoogle Scholar
  15. 15.
    Schönhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15:R1781–R1808CrossRefGoogle Scholar
  16. 16.
    Sukhishvili SA (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid Interface Sci 10:37–44CrossRefGoogle Scholar
  17. 17.
    Rodriguez LNJ, De Paul SM, Barrett CJ, Reven L, Spiess HW (2000) Fast magic-angle spinning and double-quantum H-1 solid-state NMR spectroscopy of polyelectrolyte multilayers. Adv Mater 12:1934–1938CrossRefGoogle Scholar
  18. 18.
    Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC (2002) Kinetics of formation and dissolution of weak polyelectrolyte multilayers: role of salt and free polyions. Langmuir 18:5607–5612CrossRefGoogle Scholar
  19. 19.
    Sukhishvili SA, Kharlampieva E, Izumrudov V (2006) Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules 39:8873–8881CrossRefGoogle Scholar
  20. 20.
    van der Gucht J, Spruijt E, Lemmers M, Stuart MAC (2011) Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interfae Sci 361:407–422CrossRefGoogle Scholar
  21. 21.
    Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39CrossRefGoogle Scholar
  22. 22.
    Cui MZ, Li ZY, Zhang J, Feng SY (2008) Siloxane-based polymer electrolytes. Prog Chem 20:1987–1997Google Scholar
  23. 23.
    Karatas Y, Kaskhedikar N, Burjanadze M, Wiemhofer HD (2006) Synthesis of cross-linked comb polysiloxane for polymer electrolyte membranes. Macromol Chem Phys 207:419–425CrossRefGoogle Scholar
  24. 24.
    Kunze M, Karatas Y, Wiemhöfer HD, Eckert H, Schönhoff M (2010) Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study. Phys Chem Chem Phys 12:6844–6851CrossRefGoogle Scholar
  25. 25.
    Dubreuil F, Elsner N, Fery A (2003) Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur Phys J E Soft Matter Biol Phys 12:215–221CrossRefGoogle Scholar
  26. 26.
    Picart C, Senger B, Sengupta K, Dubreuil F, Fery A (2007) Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques. Colloids Surf A 303:30–36CrossRefGoogle Scholar
  27. 27.
    Durstock MF, Rubner MF (2001) Dielectric properties of polyelectrolyte multilayers. Langmuir 17:7865–7872CrossRefGoogle Scholar
  28. 28.
    DeLongchamp DM, Hammond PT (2003) Fast ion conduction in layer-by-layer polymer films. Chem Mater 15:1165–1173CrossRefGoogle Scholar
  29. 29.
    DeLongchamp DM, Hammond PT (2004) Highly ion conductive poly(ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 20:5403–5411CrossRefGoogle Scholar
  30. 30.
    Akgöl Y, Hofmann C, Karatas Y, Cramer C, Wiemhöfer HD, Schönhoff M (2007) Conductivity spectra of polyphosphazene-based polyelectrolyte multilayers. J Phys Chem B 111:8532–8539CrossRefGoogle Scholar
  31. 31.
    Argun AA, Ashcraft JN, Herring MK, Lee DKY, Allcock HR, Hammond PT (2010) Ion conduction and water transport in polyphosphazene-based multilayers. Chem Mater 22:226–232CrossRefGoogle Scholar
  32. 32.
    Hoogeveen N, Stuart M, Fleer G, Böhmer M (1996) Formation and stability of multilayers of polyelectrolytes. Langmuir 12:3675–3681CrossRefGoogle Scholar
  33. 33.
    Jaber JA, Schlenoff JB (2007) Counterions and water in polyelectrolyte multilayers: a tale of two polycations. Langmuir 23:896–901CrossRefGoogle Scholar
  34. 34.
    Crouzier T, Picart C (2009) Ion pairing and hydration in polyelectrolyte multilayer films containing polysaccharides. Biomacromolecules 10:433–442CrossRefGoogle Scholar
  35. 35.
    Daiko Y, Katagiri K, Matsuda A (2008) Proton conduction in thickness-controlled ultrathin polycation/nafion multilayers prepared via layer-by-layer assembly. Chem Mater 20:6405–6409CrossRefGoogle Scholar
  36. 36.
    Xi JY, Wu ZH, Teng XG, Zhao YT, Chen LQ, Qiu XP (2008) Self-assembled polyelectrolyte multilayer modified nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18:1232–1238CrossRefGoogle Scholar
  37. 37.
    Jiang SP, Liu ZC, Tian ZQ (2006) Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072CrossRefGoogle Scholar
  38. 38.
    Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816CrossRefGoogle Scholar
  39. 39.
    Akgöl Y, Cramer C, Hofmann C, Karatas Y, Wiemhöfer HD, Schönhoff M (2010) Humidity-dependent dc conductivity of polyelectrolyte multilayers: protons or other small ions as charge carriers? Macromolecules 43:7282–7287CrossRefGoogle Scholar
  40. 40.
    Imre ÁW, Schönhoff M, Cramer C (2008) A conductivity study and calorimetric analysis of dried poly(sodium 4-styrene sulfonate)/poly(diallyldimethylammonium chloride) polyelectrolyte complexes. J Chem Phys 128:134905CrossRefGoogle Scholar
  41. 41.
    Imre ÁW, Schönhoff M, Cramer C (2009) Unconventional scaling of electrical conductivity spectra for PSS-PDADMAC polyelectrolyte complexes. Phys Rev Lett 102:255901CrossRefGoogle Scholar
  42. 42.
    Funke K, Cramer C, Wilmer D (2005) Concept of mismatch and relaxation for self-diffusion and conduction in ionic materials with disordered structures. In: Kärger J, Heitjans P (eds) Diffusion in condensed matter. Springer, Berlin, pp 857–893Google Scholar
  43. 43.
    Pas SJ, Banhatti RD, Funke K (2006) Conductivity spectra and ion dynamics of a salt-in-polymer electrolyte. Solid State Ionics 177:3135–3139CrossRefGoogle Scholar
  44. 44.
    Santic A, Wrobel W, Mutke M, Banhatti RD, Funke K (2009) Frequency-dependent fluidity and conductivity of an ionic liquid. Phys Chem Chem Phys 11:5930–5934CrossRefGoogle Scholar
  45. 45.
    Causemann S, Schönhoff M, Eckert H (2011) Local environment and distribution of alkali ions in polyelectrolyte complexes studied by solid-state NMR. Phys Chem Chem Phys 13:8967–8976CrossRefGoogle Scholar
  46. 46.
    Carrière D, Dubois M, Schönhoff M, Zemb T, Möhwald H (2006) Counter-ion activity and microstructure in polyelectrolyte complexes as determined by osmotic pressure measurements. Phys Chem Chem Phys 8:3141–3146CrossRefGoogle Scholar
  47. 47.
    Schönhoff M, Imre ÁW, Bhide A, Cramer C (2010) Mechanisms of ion conduction in polyelectrolyte multilayers and complexes. Z Phys Chem 224:1555–1589CrossRefGoogle Scholar
  48. 48.
    Bhide A, Schönhoff M, Cramer C (2012) Cation conductivity in dried poly(4-styrene sulfonate) poly(diallydimethylammonium chloride) based polyelectrolyte complexes. Solid State Ionics 214:13–18CrossRefGoogle Scholar
  49. 49.
    Bunde A, Ingram MD, Maass P (1994) The dynamic structure model for ion transport in glasses. J Non-Cryst Solids 172:1222–1236CrossRefGoogle Scholar
  50. 50.
    Imre ÁW, Berkemeier F, Mehrer H, Gao Y, Cramer C, Ingram MD (2008) Transition from a single-ion to a collective diffusion mechanism in alkali borate glasses. J Non-Cryst Solids 354:328–332CrossRefGoogle Scholar
  51. 51.
    Gao Y, Cramer C (2005) Mixed cation effects in glasses with three types of alkali ions. Solid State Ionics 176:2279–2284CrossRefGoogle Scholar
  52. 52.
    Roling B (2001) Modeling of ion transport processes in disordered solids: Monte Carlo simulations of the low-temperature particle dynamics in the random barrier model. Phys Chem Chem Phys 3:5093–5098CrossRefGoogle Scholar
  53. 53.
    Schrøder TB, Dyre JC (2000) Scaling and universality of ac conduction in disordered solids. Phys Rev Lett 84:310–313CrossRefGoogle Scholar
  54. 54.
    Maass P, Rinn B, Schirmacher W (1999) Hopping dynamics in random energy landscapes: an effective medium approach. Philos Mag B 79:1915–1922CrossRefGoogle Scholar
  55. 55.
    Dieterich W, Maass P (2002) Non-Debye relaxations in disordered ionic solids. Chem Phys 284:439–467CrossRefGoogle Scholar
  56. 56.
    Cramer C, Brunklaus S, Gao Y, Funke K (2003) Dynamics of mobile ions in single- and mixed-cation glasses. J Phys Condens Matter 15:S2309–S2321CrossRefGoogle Scholar
  57. 57.
    Cramer C, Akgöl Y, Imre ÁW, Bhide A, Schönhoff M (2009) Ion dynamics in solid polyelectrolyte materials. Z Phys Chem 223:1171–1185CrossRefGoogle Scholar
  58. 58.
    Cramer C, Funke K (1992) Observatio of 2 relaxatio processes in an ion conducting glass yields new structural information. Ber Bunsen Ges Phys Chem 96:1725–1727CrossRefGoogle Scholar
  59. 59.
    Cramer C, Funke K, Saatkamp T, Wilmer D, Ingram MD (1995) High frequency conductivity plateau and ionic hopping processes in a ternary lithium borate glass. Z Naturforsch A Phys Sci 50:613–623Google Scholar
  60. 60.
    Funke K, Maue T, Wilmer D, Cramer C, Saatkamp T (1994) Different kinds of localized hopping in solid electrolytes. In: Ramanarayanan TA, Worrell WL, Tuller HL (eds) Ionic and mixed conducting ceramics. The Electrochemical Society Softbound Proceedings, Pennington, pp 564–573Google Scholar
  61. 61.
    Laughman DM, Banhatti RD, Funke K (2009) Nearly constant loss effects in borate glasses. Phys Chem Chem Phys 11:3158–3167CrossRefGoogle Scholar
  62. 62.
    Rinn B, Dieterich W, Maass P (1998) Stochastic modelling of ion dynamics in complex systems: dipolar effects. Philos Mag B 77:1283–1292CrossRefGoogle Scholar
  63. 63.
    Knödler D, Dieterich W, Petersen J (1992) Coulombic traps and ion conduction in glassy electrolytes. Solid State Ionics 53:1135–1140CrossRefGoogle Scholar
  64. 64.
    Köhler R, Dönch I, Ott P, Laschewsky A, Fery A, Krastev R (2009) Neutron reflectometry study of swelling of polyelectrolyte multilayers in water vapors: influence of charge density of the polycation. Langmuir 25:11576–11585CrossRefGoogle Scholar
  65. 65.
    Kügler R, Schmitt J, Knoll W (2002) The swelling behavior of polyelectrolyte multilayers in air of different relative humidity and in water. Macromol Chem Phys 203:413–419CrossRefGoogle Scholar
  66. 66.
    De S, Cramer C, Schönhoff M (2011) Humidity dependence of the ionic conductivity of polyelectrolyte complexes. Macromolecules 44:8936–8943CrossRefGoogle Scholar
  67. 67.
    Cramer C, De S, Schönhoff M (2011) Time-humidity-superposition principle in electrical conductivity spectra of ion-conducting polymers. Phys Rev Lett 107:028301CrossRefGoogle Scholar
  68. 68.
    Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys 72: 046501Google Scholar
  69. 69.
    Summerfield S (1985) Universal low-frequency behavior in the ac hopping conductivity of dispersed systems. Philos Mag B 52:9–22CrossRefGoogle Scholar
  70. 70.
    Summerfield S, Butcher PN (1985) Universal behavior of ac hopping conductivity of disordered systems. J Non-Cryst Solids 77–8:135–138CrossRefGoogle Scholar
  71. 71.
    Murugavel S, Roling B (2002) Ac conductivity spectra of alkali tellurite glasses: composition-dependent deviations from the Summerfield scaling. Phys Rev Lett 89:195902CrossRefGoogle Scholar
  72. 72.
    Murugavel S, Roling B (2004) Ionic transport in glassy networks with high electronic polarizabilities: conductivity spectroscopic results indicating a vacancy-type transport mechanism. J Phys Chem B 108:2564–2567CrossRefGoogle Scholar
  73. 73.
    Baranovskii SD, Cordes H (1999) On the conduction mechanism in ionic glasses. J Chem Phys 111:7546–7557CrossRefGoogle Scholar
  74. 74.
    Ravaine D, Souquet JL (1977) Thermodynamic approachto ionic conductivity in oxide glasses. 1. Correlation of ionic conductivity with chemical potential of alkali oxide in oxide glasses. Phys Chem Glasses 18:27–31Google Scholar
  75. 75.
    Spruijt E, Sprakel J, Lemmers M, Stuart MAC, van der Gucht J (2010) Relaxation dynamics at different time scales in electrostatic complexes: time-salt superposition. Phys Rev Lett 105:208301CrossRefGoogle Scholar
  76. 76.
    Imre ÁW, Voss S, Mehrer H (2002) Ionic transport in 0.2[XNa2O·(1-X)Rb2O]·0.8B2O3 mixed-alkali glasses. Phys Chem Chem Phys 4:3219–3224Google Scholar
  77. 77.
    Cramer C, Brückner S, Gao Y, Funke K (2002) Ion dynamics in mixed alkali glasses. Phys Chem Chem Phys 4:3214–3218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Physical ChemistryUniversity of MuensterMünsterGermany

Personalised recommendations