Skip to main content

Spontaneous Assembly and Induced Aggregation of Food Proteins

  • Chapter
  • First Online:
Polyelectrolyte Complexes in the Dispersed and Solid State II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 256))

Abstract

Beyond their nutritional value, food proteins are a versatile group of biopolymers with a considerable number of functionalities throughout their extensive structures, conformations and interaction–aggregation behaviour in solution. In the present paper, we give an overview of the induced aggregation and spontaneous reversible assembly of food proteins that lead to a diversity of supramolecular structures. After a brief description of the properties of some food proteins, the first part summarises the aggregation processes that lead to supramolecular structures with a variety of morphologies and sizes. The second part reports on the requirements that drive spontaneous assembly of oppositely charged proteins into reversible supramolecular structures. The promising new applications of these structures in food and non-food sectors are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-La:

α-Lactalbumin

β-Lg:

β-Lactoglobulin

BSA:

Bovine serum albumin

Lf:

Lactoferrin

LYS:

Lysozyme

Ova:

Ovalbumin

References

  1. Graveland-Bikker JF, Ipsen R, Otte J et al (2004) Influence of calcium on the self-assembly of partially hydrolyzed α-lactalbumin. Langmuir 20:6841–6846

    CAS  Google Scholar 

  2. Graveland-Bikker JF, de Kruifs CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203

    CAS  Google Scholar 

  3. Nigen M, Croguennec T, Renard D et al (2007) Temperature affects the supramolecular structures resulting from alpha-lactalbumin-lysozyme interaction. Biochemistry 46:1248–1255

    CAS  Google Scholar 

  4. Ipsen R, Otte J (2007) Self-assembly of partially hydrolysed alpha-lactalbumin. Biotechnol Adv 25:602–605

    CAS  Google Scholar 

  5. Desfougères Y, Croguennec T, Lechevalier V et al (2010) Charge and size drive spontaneous self-assembly of oppositely charged globular proteins into microspheres. J Phys Chem 114:4138–4144

    Google Scholar 

  6. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

    CAS  Google Scholar 

  7. Donald AM (2008) Aggregation in β-lactoglobulin. Soft Matter 4:1147–1150

    CAS  Google Scholar 

  8. Krebs MRH, Domike KR, Cannon D et al (2008) Common motif in protein self-assembly. Faraday Discuss 139:265–274

    CAS  Google Scholar 

  9. Dickinson E, Semenova MG, Belyakova LE et al (2001) Analysis of light scattering data on the calcium ion sensitivity of caseinate solution thermodynamics: relationship to emulsion flocculation. J Colloid Interface Sci 239(1):87–97

    CAS  Google Scholar 

  10. Unterhaslberger G, Schmitt C, Sanchez C et al (2006) Heat denaturation and aggregation of beta-lacto globulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. Food Hydrocolloid 20:1006–1019

    CAS  Google Scholar 

  11. Yang F Jr, Zhang M, Zhou BR et al (2006) Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. J Mol Biol 362:821–834

    CAS  Google Scholar 

  12. Nigen M, Croguennec T, Bouhallab S (2009) Formation and stability of alpha-lactalbumin-lysozyme spherical particles: involvement of electrostatic forces. Food Hydrocolloid 23:510–518

    CAS  Google Scholar 

  13. Thorn DC, Meehan S, Sunde M et al (2005) Amyloid fibril formation by bovine milk k-casein and its inhibition by the molecular chaperones αs- and β-casein. Biochemistry 44:17027–17036

    CAS  Google Scholar 

  14. Léonil J, Henry G, Jouanneau D et al (2008) Kinetics of fibril formation of bovine κ-casein indicate a conformational rearrangement as a critical step in the process. J Mol Biol 381:1267–1280

    Google Scholar 

  15. Schmitt C, Bovay C, Vuilliomenet A-M et al (2011) Influence of protein and mineral composition on the formation of whey protein heat-induced microgels. Food Hydrocolloid 25:558–567

    CAS  Google Scholar 

  16. Keskin O, Gursoy A, Ma B (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244

    CAS  Google Scholar 

  17. Min Y, Akbulut M, Kristiansen K et al (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538

    CAS  Google Scholar 

  18. Krebs MRH, Wilkins DK, Chung EW et al (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. J Mol Biol 300:541–549

    CAS  Google Scholar 

  19. Gosal WS, Clark AH, Pudney (2002) Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir 18:7174–7181

    CAS  Google Scholar 

  20. Gosal WS, Clark AH, Ross-Murphy SB (2004) Fibrillar β-lactoglobulin gels: part 1: fibril formation and structure. Biomacromolecules 5:2408–2419

    CAS  Google Scholar 

  21. Rasmussen P, Barbiroli A, Bonomi et al (2007) Formation of structured polymers upon controlled denaturation of β-lactoglobulin with different chaotropes. Biopolymers 86:57–72

    CAS  Google Scholar 

  22. Akkermans C, van der Goot AJ, Venema P et al (2007) Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J Agric Food Chem 55:9877–9882

    CAS  Google Scholar 

  23. Lara C, Adamcik J, Jordens S et al (2011) General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12:1868–1875

    CAS  Google Scholar 

  24. Gummel J, Cousin F, Boué F (2007) Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J Am Chem Soc 129:5806–5807

    CAS  Google Scholar 

  25. Semenova MG (2007) Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloid 21:23–45

    CAS  Google Scholar 

  26. Viney C (2004) Self-assembly as a route to fibrous materials: concepts, opportunities and challenges. Curr Opin Solid State Mater Sci 8:95–101

    CAS  Google Scholar 

  27. Velikov KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–1980

    CAS  Google Scholar 

  28. Gummel J, Boué F, Clemens D et al (2008) Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolytes. Soft Matter 4(8):1653–1664

    CAS  Google Scholar 

  29. Doubliez JL, Garnier C, Renard D et al (2000) Protein-polysaccharide interactions. Curr Opin Colloid Interface Sci 5:202–214

    Google Scholar 

  30. de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9:340–349

    Google Scholar 

  31. Cooper CL, Dubin PL, Kayitmazer AB et al (2005) Polyelectrolyte-protein complexes. Curr Opin Colloid Interface Sci 10:52–78

    CAS  Google Scholar 

  32. de Vries R, Cohen Stuart M (2006) Theory and simulations of macroion complexation. Curr Opin Colloid Interface Sci 11:295–301

    Google Scholar 

  33. Hales K, Pochan DJ (2006) Using polyelectrolyte block copolymers to tune nanostructure assembly. Curr Opin Colloid Interface Sci 11:330–336

    CAS  Google Scholar 

  34. Turgeon SL, Schmitt C, Sanchez C (2007) Protein-polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12(4–5):166–178

    CAS  Google Scholar 

  35. Jones GO, McClements DJ (2010) Functional biopolymer particles: design, fabrication, and application. Compr Rev Food Sci Food Safety 9:374–397

    CAS  Google Scholar 

  36. Brownlow S, Cabral JHM, Cooper R et al (1997) Bovine β-lactoglobulin at 1.8 Angstrom resolution – still an enigmatic lipocalin. Structure 5(4):481–495

    CAS  Google Scholar 

  37. Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochem Biophys Acta 1482:136–148

    CAS  Google Scholar 

  38. Kontopidis G, Holt G, Sawyer L (2002) The ligand-binding site of bovine β-lactoglobulin: evidence for a function? J Mol Biol 318(4):1043–1055

    CAS  Google Scholar 

  39. Papiz MZ, Sawyer L, Eliopoulos EE et al (1986) The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385

    CAS  Google Scholar 

  40. Kitabatake N, Wada R, Fujita Y (2001) Reversible conformational change in beta-lactoglobulin modified with N-ethylmaleimide and resistance to molecular aggregation on heating. J Agric Food Chem 49:4011–4018

    CAS  Google Scholar 

  41. Jayat D, Gaudin JC, Chobert JM et al (2004) A recombinant C121S mutant of bovine β-lactoglobulin is more susceptible to peptic digestion and to denaturation by reducing agent and heating. Biochemistry 43:6312–6321

    CAS  Google Scholar 

  42. Qi XL, Holt C, Mcnulty D et al (1997) Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, As determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem J 324:341–346

    CAS  Google Scholar 

  43. Mattison KW, Dubin PL, Brittain IJ (1998) Complex formation between bovine serum albumin and strong polyelectrolytes: effect of polymer charge density. J Phys Chem B 102:3830–3836

    CAS  Google Scholar 

  44. Brew K, Vanaman TC, Hill RL (1967) Comparison of the amino acid sequence of bovine α-lactalbumin and hen egg white lysozyme. J Biol Chem 242:3747–3748

    CAS  Google Scholar 

  45. Hendrix T, Griko YV, Privalov PL (2000) A calorimetric study of the influence of calcium on the stability of bovine α lactalbumin. Biophys Chem 84:27–34

    CAS  Google Scholar 

  46. Hiraoka Y, Secawa T, Kuwajima K et al (1980) α-Lactalbumin: a metalloprotein. Biochem Biophys Res Commun 95(3):1098–1104

    CAS  Google Scholar 

  47. Bernal V, Jelen P (1984) Effect of calcium binding on thermal denaturation of bovine α-lactalbumin. J Dairy Sci 67:2452–2454

    CAS  Google Scholar 

  48. DeWit JN, Klarenbeek G (1984) Effects of various heat treatments on structure and solubility of whey proteins. J Dairy Sci 67:2701–2710

    CAS  Google Scholar 

  49. Griko YV, Remeta DP (1999) Energetics of solvent and ligand induced conformational changes in α-lactalbumin. Protein Sci 8(3):554–561

    CAS  Google Scholar 

  50. Warner RC (1954) In: Neurath H, Bailey K (eds) The proteins, vol 2. Academic, New York, p 443

    Google Scholar 

  51. Li Chan E, Nakai S (1989) Biochemical basis for the properties of egg white. Crit Rev Poult Biol 2:21–57

    Google Scholar 

  52. Narita K, Ishii J (1962) N terminal sequence in ovalbumin. J Biochem (Tokyo) 52:367–373

    CAS  Google Scholar 

  53. Nisbet AD, Saundry RH, Moir AJ et al (1981) The complete amino acid sequence of hen ovalbumin. Eur J Biochem 115:335–345

    CAS  Google Scholar 

  54. Stein PE, Leslie AG, Finch JT et al (1990) Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347:99–102

    CAS  Google Scholar 

  55. Stein PE, Leslie AG, Finch JT et al (1991) Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J Mol Biol 221:941–959

    CAS  Google Scholar 

  56. Matsumoto T, Chiba J, Inoue H (1992) Effect of pH on colloidal properties of native ovalbumin aqueous systems. Colloid Polym Sci 270:687–693

    CAS  Google Scholar 

  57. Farrel HM Jr, Qi PX, Uversky VN (2006) New views of protein structure: applications to the caseins: protein structure and functionality. In: Fishman ML, Qi PX, Wisker L (eds) Advances in biopolymers: molecules, clusters, networks, and interactions. American Chemical Society, Washington, DC, pp 52–70

    Google Scholar 

  58. Holt C, Sawyer L (1993) Caseins as rheomorphic proteins: interpretation of the primary and secondary structures of the αS1, β and κ-caseins. J Chem Soc Faraday Trans 89:2683–2692

    CAS  Google Scholar 

  59. Fox PF, Brodkorb A (2008) The casein micelle: historical aspects, current concepts and significance. Int Dairy J 18:677–684

    CAS  Google Scholar 

  60. Moore SA, Anderson BF, Groom CR et al (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol 274(2):222–236

    CAS  Google Scholar 

  61. Baker EN (1994) Structure and reactivity of transferrins. Adv Inorg Chem 41:389–463

    CAS  Google Scholar 

  62. Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91(1):3–10

    CAS  Google Scholar 

  63. Spik G, Coddeville B, Mazurier J et al (1994) Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv Exp Med Biol 357:21–32

    CAS  Google Scholar 

  64. Antonini G, Rossi P, Pitari G et al (2000) Role of glycan in bovine lactoferrin. In: Shimakaki K, Tsuda H, Tomita M, Kuwata T, Perraudin JP (eds) Lactoferrin: structure, function and applications. Elsevier Science, Amsterdam, pp 3–16

    Google Scholar 

  65. Rossi P, Giansanti F, Boffi A et al (2002) Ca2+ Binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem Cell Biol 80:41–48

    CAS  Google Scholar 

  66. Chaufer B, Rabiller-Baudry M, Lucas D et al (2000) Selective extraction of lysozyme from a mixture with lactoferrin by ultrafiltration. Role of the physico-chemical environment. Lait 80:197–203

    CAS  Google Scholar 

  67. Mela I, Aumaitre E, Williamson A-M et al (2010) Charge reversal by salt-induced aggregation in aqueous lactoferrin solutions. Colloids Surf B 78(1):53–60

    CAS  Google Scholar 

  68. Wang J, Dauter M, Alkire H (2007) Triclinic lysozyme at 0.65 Å resolution. Acta Cristallogr D 63(12):1254–1268

    CAS  Google Scholar 

  69. Canfield RE, Liu AK (1965) The disulfide bonds of egg white lysozyme (muramidase). J Biol Chem 240:1997–2002

    CAS  Google Scholar 

  70. Stradner A, Sedgwick H, Cardinaux F et al (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432(7016):492–495

    CAS  Google Scholar 

  71. Liu Y, Porcar L, Chen J (2011) Lyzosyme protein solution with an intermediate range order structure. J Phys Chem B 115(22):7238–7247

    CAS  Google Scholar 

  72. Stradner A, Cardinaux F, Schurtenberger P et al (2006) A small angle scattering study on equilibrium clusters in lysozyme solution. J Phys Chem B 110(42):21222–21231

    CAS  Google Scholar 

  73. Bolder SG, Hendrickx H, Sagis LMC et al (2006) Fibril assemblies in aqueous whey protein mixtures. J Agric Food Chem 54:4229–4234

    CAS  Google Scholar 

  74. Krebs MRH, Domike KR, Donald AM (2009) Protein aggregation: more than just fibrils. Biochem Soc Trans 37(9):682–686

    CAS  Google Scholar 

  75. Schmitt C, Bovay C, Vuilliomenet A-M et al (2009) Multiscale characterization of individualized β-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir 25:7899–7909

    CAS  Google Scholar 

  76. Trexler AJ, Nilsoon MR (2007) The formation of amyloid fibrils from proteins in the lysozyme family. Curr Protein Pept Sci 8:537–557

    CAS  Google Scholar 

  77. Lomakin A, Chung DS, Benedek GB et al (1996) On the nucleation and growth of amyloid α-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    CAS  Google Scholar 

  78. Lomakin A, Teplow DB, Kirschner DA et al (1997) Kinetic theory of fibrillogenesis of amyloid b-protein. Proc Natl Acad Sci USA 94:7942–7947

    CAS  Google Scholar 

  79. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    CAS  Google Scholar 

  80. Pellarin R, Guarnera E, Caflisch A (2007) Pathways and intermediates of amyloid fibril formation. J Mol Biol 374:917–924

    CAS  Google Scholar 

  81. Arnaudov LN, de Vries R (2007) Theoretical modeling of the kinetics of fibrilar aggregation of bovine beta-lactoglobulin at pH 2. J Chem Phys 126:145106

    Google Scholar 

  82. Bolder SG, Sagis LMC, Venema P et al (2007) Effect of Stirling and seeding on whey proteína fibril formation. J Agric Food Chem 55:5661–5669

    CAS  Google Scholar 

  83. Loveday SM, Wang XL, Rao MA et al (2012) β-Lactoglobulin nanofibrils: effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloid 27:242–249

    CAS  Google Scholar 

  84. Farrell H, Cooke P, Wickham E et al (2003) Environmental influences on bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273

    CAS  Google Scholar 

  85. Akkermans C, Venema P, van der Goot AJ et al (2008) Peptides are building blocks of heat-induced fibrillar proteins aggregates of β-Lg formed at pH 2. Biomacromolecules 9:1474–1479

    CAS  Google Scholar 

  86. Kroes-Nijboer A, Venema P, Bouman J et al (2011) Influence of protein hydrolysis on the growth kinetics of β-Lg fibrils. Langmuir 27:5753–5761

    CAS  Google Scholar 

  87. Hamada D, Tanaka T, Tartaglia GG et al (2009) Competition between folding, native-state dimerisation and amyloid aggregation in β-lactoglobulin. J Mol Biol 386:878–890

    CAS  Google Scholar 

  88. Arnaudov LN, de Vries R, Ippel H et al (2003) Multiple steps during the formation of beta-lactoglobulin fibrils. Macromolecules 4:1614–1622

    CAS  Google Scholar 

  89. Arnaudov LN, de Vries R (2006) Strong impact of ionic strength on the kinetics of fibrilar aggregation of β-lactoglobulin. Biomacromolecules 7:3490–3498

    CAS  Google Scholar 

  90. Bromley EHC, Krebs MRH, Donald AM (2005) Aggregation across the length scales in β-lactoglobulin. Faraday Discuss 128:13–27

    CAS  Google Scholar 

  91. Krebs MRH, Bromley EHC, Rogers SS et al (2005) The mechanism of amyloid spherulite formation by bovine insulin. Biophys J 88:2013–2021

    CAS  Google Scholar 

  92. Domike KR, Hardin E, Armstead DN et al (2009) Investigating the inner structure of irregular β-lactoglobulin spherulites. Eur Phys J E 29:173–182

    CAS  Google Scholar 

  93. Rogers SS, Krebs MRH, Bromley EHC, van der Linden E, Donald AM (2006) Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro. Biophys J 90:1043–1054

    CAS  Google Scholar 

  94. Domike KR, Donald AM (2007) Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin. Biomacromolecules 8:3930–3937

    CAS  Google Scholar 

  95. Bromley E, Krebs M, Donald A (2006) Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. Soft Matter 21:145–152

    CAS  Google Scholar 

  96. Krebs MRH, Devlin GL, Donald AM (2007) Protein particulates: another generic form of protein aggregation? Biophys J 92:1336–1342

    CAS  Google Scholar 

  97. Bengoechea C, Peinado I, McClements DJ (2011) Formation of nanoparticles by controlled heat treatment of lactoferrin: factors affecting particles characteristics. Food Hydrocolloid 25:1354–1360

    CAS  Google Scholar 

  98. Baussay K, Le Bon C, Nicolai T et al (2004) Influence of ionic strength on the heat-induced aggregation of the globular protein β-lactoglobulin at pH 7.0. Int J Biol Macromol 34:21–28

    CAS  Google Scholar 

  99. Pouzot M, Nicolai T, Visschers RW et al (2005) X-ray and light scattering study of the structure of large protein aggregates at neutral pH. Food Hydrocolloid 19:231–238

    CAS  Google Scholar 

  100. Donato L, Schmitt C, Bovetto L et al (2009) Mechanism of formation of stable heat-induced β-lactoglobulin microgels. Int Dairy J 19:295–306

    CAS  Google Scholar 

  101. Le Bon C, Nicolaï T, Durand D (1999) Growth and structure of aggregates of heat-denatured β-lactoglobulin. Int J Food Sci Technol 34:451–465

    Google Scholar 

  102. Mossa S, Sciortino F, Tartaglia P et al (2004) Ground-state clusters for short-range attractive and lon-range repulsive potentials. Langmuir 20:10756–10763

    CAS  Google Scholar 

  103. Sun XS, Wang D, Zhang L et al (2008) Morpholgy and phase separation of hydrophobic clusters of soy globular protein polymers. Macromol Biosci 2008:295–303

    Google Scholar 

  104. Zuniga RN, Tolkach A, Kulozik U et al (2010) Kinetics of formation and physicochemical characterization of thermally-induced β-lactoglobulin aggregates. J Food Sci 75:E261–E268

    CAS  Google Scholar 

  105. Yu S, Yao P, Jiang M et al (2006) Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers 83:148–158

    CAS  Google Scholar 

  106. Hu J, Yu S, Yao P (2007) Stable amphoteric nanogels made of ovalbumin and ovotransferrin via self-assembly. Langmuir 23:6358–6364

    CAS  Google Scholar 

  107. Pan XY, Yu S, Yao P et al (2007) Self-assembly of β-casein and lysozyme. J Colloid Interface Sci 316:405–412

    CAS  Google Scholar 

  108. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    CAS  Google Scholar 

  109. Ipsen R, Otte J, Qvist KB (2001) Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. J Dairy Res 68:277–286

    CAS  Google Scholar 

  110. Ubbink J, Burbidge A, Mezzenga R (2008) Food structure and functionality: a soft matter perspective. Soft Matter 4:1569–1581

    CAS  Google Scholar 

  111. Jones GO, McClements DJ (2011) Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein–polysaccharide complexes. Adv Colloid Interfac 67:49–62

    Google Scholar 

  112. Schmitt C, Turgeon SL (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interface 167:63–70

    CAS  Google Scholar 

  113. Voets IK, de Keizer A, Cohen Stuart MA (2009) Complex coacervate core micelles. Adv Colloid Interface 147–148:300–318

    Google Scholar 

  114. Becker AL, Henzler K, Welsch N et al (2012) Proteins and polyelectrolytes: a charged relationship. Curr Opin Colloid Interface Sci 17:90–96

    CAS  Google Scholar 

  115. Sperber BLHM, Cohen Stuart MA, Schols HA et al (2010) Overall charge and local charge density of pectin determines the enthalpic and entropic contributions to complexation with β-lactoglobulin. Biomacromolecules 11:3578–3583

    CAS  Google Scholar 

  116. Ball V, Winterhalter M, Schwinte P et al (2002) Complexation mechanism of bovine serum albumin and poly(allylamine hydrochloride). J Phys Chem B 106:2357–2364

    CAS  Google Scholar 

  117. Muthukumar M (1995) Pattern recognition by polyelectrolytes. J Chem Phys 103:4723–4731

    CAS  Google Scholar 

  118. Romanini D, Braia M, Angarte RG et al (2007) Interaction of lysozyme with negatively charged flexible chain polymers. J Chromatogr B 857:25–31

    CAS  Google Scholar 

  119. Ivinova ON, Izumrudov VA, Muronetz VI et al (2003) Influence of complexing polyanions on the thermostability of basic proteins. Macromol Biosci 3:210–215

    CAS  Google Scholar 

  120. Gummel J, Boué F, Deme B et al (2006) Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system. J Phys Chem B 110:24837–24846

    CAS  Google Scholar 

  121. Chen YM, Yu CJ, Cheng TL et al (2008) Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir 24:3654–3660

    CAS  Google Scholar 

  122. Bayraktar H, Srivastava S, You C et al (2008) Controlled nanoparticle assembly through protein conformational changes. Soft Matter 4:629–904

    Google Scholar 

  123. Liu Y, Guo R (2007) Interaction between casein and the oppositely charged surfactant. Biomacromolecules 8:2902–2908

    CAS  Google Scholar 

  124. De M, Miranda OR, Rana S et al (2009) Size and geometry dependent protein–nanoparticle self-assembly. Chem Commun 2009(16):2157–2159

    Google Scholar 

  125. Morfin I, Buhler E, Cousin F et al (2011) Rodlike complexes of a polyelectrolyte (hyaluronan) and a protein (lysozyme) observed by SANS. Biomacromolecules 12:859–870

    CAS  Google Scholar 

  126. Müller M, Ouyang W, Bohata K et al (2010) Nanostructured complexes of polyelectrolytes and charged polypeptides. Adv Eng Mater 12:B519–B528

    Google Scholar 

  127. Mengarelli V, Auvray L, Zeghal M (2009) Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes. Eur Phys Lett 85:58001

    Google Scholar 

  128. Matsudomi N, Yamamura Y, Kobayashi K (1987) Agregation between lysozyme and heat-denatured ovalbumin. Agric Biol Chem 51(7):1811–1817

    CAS  Google Scholar 

  129. Howell N, Yeboah N, Lewis D (1995) Studies on the electrostatic interactions of lysozyme with α-lactalbumin and β-lactoglobulin. Int J Food Sci Technol 30:813–824

    CAS  Google Scholar 

  130. Biesheuvel PM, Lindhoud S, de Vries R et al (2006) Phase behavior of mixtures of oppositely charged nanoparticles: heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme. Langmuir 22:1291–1300

    CAS  Google Scholar 

  131. Biesheuvel PM, Lindhoud S, Cohen Stuart MA et al (2006) Phase behavior of mixtures of oppositely charged protein nanoparticles at asymmetric charge ratios. Phys Rev E 73(4):041408

    Google Scholar 

  132. Anema SG, de Kruif CG (2012) Co-acervates of lactoferrin and caseins. Soft Matter 8(16):4471–4478

    CAS  Google Scholar 

  133. Tiwari A, Bindal S, Bohidar HB (2009) Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix. Biomacromolecules 10:184–189

    CAS  Google Scholar 

  134. Nigen M, Croguennec T, Madec MN et al (2007) Apo alpha-lactalbumin and lysozyme are colocalized in their subsequently formed spherical supramolecular assembly. FEBS J 274:6085–6093

    CAS  Google Scholar 

  135. Nigen M, Le Tilly V, Croguennec T et al (2009) Molecular interaction between apo or holo α-lactalbumin and lysozyme: formation of heterodimers as assessed by fluorescence measurements. Biochim Biophys Acta 1794:709–715

    CAS  Google Scholar 

  136. Salvatore D, Duraffourg N, Favier A et al (2011) Investigation at residue level of the early steps during the assembly of two proteins into supramolecular objects. Biomacromolecules 12(6):2200–2210

    CAS  Google Scholar 

  137. Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 22:1–12

    Google Scholar 

  138. Salvatore D, Croguennec T, Bouhallab S et al (2011) Kinetics and structure during self-assembly of oppositely charged proteins in aqueous solution. Biomacromolecules 12(5):1920–6192

    CAS  Google Scholar 

  139. Persson BA, Lund M (2009) Association and electrostatic steering of α-lactalbumin– lysozyme heterodimers. Phys Chem Chem Phys 11:8879–8885

    CAS  Google Scholar 

  140. Xu Y, Mazzawi M, Chen K et al (2011) Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity. Biomacromolecules 12:1512–1522

    CAS  Google Scholar 

  141. Lampreave F, Piñeiro A, Brock JH et al (1990) Interaction of bovine lactoferrin with other proteins of milk whey. Int J Biol Macromol 12(1):2–5

    CAS  Google Scholar 

  142. Nigen M, Gaillard C, Croguennec T et al (2010) Dynamic and supramolecular organisation of α-lactalbumin/lysozyme microspheres: a microscopic study. Biophys Chem 146:30–35

    CAS  Google Scholar 

  143. Sugimoto Y, Kamada Y, Tokunaga Y et al (2011) Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils. Biochem Cell Biol 89:533–544

    CAS  Google Scholar 

  144. Maresov EA, Semenov AN (2008) Mesoglobule morphologies of amphiphilic polymers. Macromolecules 41:9439–9457

    CAS  Google Scholar 

  145. Nicolai T, Britten M, Schmitt C (2011) β-lactoglobulin aggregates: formation, structure and applications. Food hydrocolloid 25:1945–1962

    CAS  Google Scholar 

  146. Bachar M, Mandelbaum A, Portnaya I (2012) Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J Control Release 160:164–171

    CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to our collaborators: M. Nigen, D. Salvatore, P. Hamon and M.N. Madec. Part of the work performed in our laboratory was supported by INRA and by the French National Research Agency (Agence Nationale de la Recherche, grant ANR-07-PNRA-010, project LACLYS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Bouhallab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bouhallab, S., Croguennec, T. (2013). Spontaneous Assembly and Induced Aggregation of Food Proteins. In: Müller, M. (eds) Polyelectrolyte Complexes in the Dispersed and Solid State II. Advances in Polymer Science, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_201

Download citation

Publish with us

Policies and ethics