Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 254))

Abstract

Newly developed nanomaterials offer unique opportunities in the fields of industry and medical sciences that are complementary to current technology. Nanomaterials can be obtained through physicochemical processes from various inorganic and organic substances. The properties and functions of materials can be tuned through controlling the composition, structure, and morphology of the nanoparticles. Chitosan is the principle derivative of chitin, which is the second-most naturally occurring polysaccharide after cellulose. Chitosan has an amino group in the C-2 position and OH groups in the C-3 and C-5 positions of each repeat unit and can react with functional nanomaterials through various kinds of reaction mechanisms. There have been several reports on the preparation of nanoparticles and functional nanomaterials and their uses. This chapter summarizes the main advancements in the design and preparation of nanomaterials over the last 10 years, with an emphasis on functionalized metal nanoparticles, carbon nanotubes, graphene, fullerene, liposomes, quantum dots, and nanocomposites, and outlines the current developing interest in functionalization of chitosan derivatives in the form of nanomaterials to provide new strategies for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nalwa HS (ed) (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, New York

    Google Scholar 

  2. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    CAS  Google Scholar 

  3. Brettreich M, Burghardt S, Bottcher C, Bayerl T, Bayerl S, Hirsch A (2000) Globular amphiphiles: membrane-forming hexaadducts of C60. Angew Chem Int Ed 39:1845–1848

    CAS  Google Scholar 

  4. Burghardt S, Hirsch A, Schade B, Ludwig K, Bottcher C (2005) Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene. Angew Chem Int Ed 44:2976–2979

    CAS  Google Scholar 

  5. Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758:404–412

    CAS  Google Scholar 

  6. He X, Wu X, Cai X, Lin S, Xie M, Zhu X, Yan D (2012) Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties. Langmuir 28:11929–11938

    CAS  Google Scholar 

  7. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    CAS  Google Scholar 

  8. Villalonga-Barber C, Micha-Screttas M, Steele BR, Georgopoulos A, Demetzos C (2008) Dendrimers as biopharmaceuticals: synthesis and properties. Curr Top Med Chem 8:1294–1309

    CAS  Google Scholar 

  9. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851

    CAS  Google Scholar 

  10. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37

    CAS  Google Scholar 

  11. Eaton M (2007) Nanomedicine: industry-wise research. Nat Mater 6:251–253

    CAS  Google Scholar 

  12. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    CAS  Google Scholar 

  13. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23

    CAS  Google Scholar 

  14. Ydens I, Degee P, Nouvel C, Dellacherie E, Six JL, Dubois P (2005) Surfactant-free stable nanoparticles from biodegradable and amphiphilic poly(ε caprolactone)-grafted dextran copolymers. e-Polymers 46:1–11

    Google Scholar 

  15. Csaba N, Koping-Hoggard M, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Alonso MJ (2009) Ionically crosslinked chitosan nanoparticles as gene delivery systems: effect of PEGylation degree on in vitro and in vivo gene transfer. J Biomed Nanotechnol 5:162–171

    CAS  Google Scholar 

  16. Dutta J, Dutta PK (2005) Chitosan a material for 21st century. In: Dutta PK (ed) Chitin and chitosan: opportunities and challenges. SSM Intl. Publication, Contai, pp 1–34

    Google Scholar 

  17. Kickelbick G, Schubert U (2003) Organic functionalization of metal oxide nanoparticles. In: Baraton MI (ed) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publishers, Stevenson Ranch, p 91

    Google Scholar 

  18. Grancharov SG, Zeng H, Sun S, Wang SX, O’Brien S, Murray CB, Kirtley JR, Held GA (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 109:13030–13035

    CAS  Google Scholar 

  19. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17:4630–4635

    CAS  Google Scholar 

  20. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research 42:1097–1107

    CAS  Google Scholar 

  21. Trindade T, O'Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    CAS  Google Scholar 

  22. Grieve K, Mulvaney P, Grieser F (2000) Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr Opin Colloid Interface Sci 5:168–172

    CAS  Google Scholar 

  23. Nedeljkovic JM (2000) Nanoengineering of inorganic and hybrid composites. Trends Adv Mater Processes Mater Sci Forum 352:79–85

    CAS  Google Scholar 

  24. Farmer SC, Patten TE (2001) Photoluminescent polymer/quantum dot composite nanoparticles. Chem Mater 13:3920–3926

    CAS  Google Scholar 

  25. Hodak JH, Henglein A, Hartland GV (2001) Tuning the spectral and temporal response in Pt/Au coreshell nanoparticles. J Chem Phys 114:2760–2765

    CAS  Google Scholar 

  26. Hughes MP (2002) Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion. J Colloid Interface Sci 250:291–294

    CAS  Google Scholar 

  27. Xu XJ, Chow PY, Gan LM (2002) Nanoparticles of latexes from commercial polystyrene. J Nanosci Nanotechnol 2:61–65

    CAS  Google Scholar 

  28. Patra A, Koenen JM, Scherf U (2011) Fluorescent nanoparticles based on a microporous organic polymer network: fabrication and efficient energy transfer to surface-bound dyes. Chem Commun 47:9612–9614

    CAS  Google Scholar 

  29. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloid Surf A 202:175–186

    CAS  Google Scholar 

  30. Lue JT (2001) A review of characterization and physical property studies of metallic nanoparticles. J Phys Chem Solids 62:1599–1612

    CAS  Google Scholar 

  31. Bönnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480

    Google Scholar 

  32. Sun S, Murray CB, Weller O, Falks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    CAS  Google Scholar 

  33. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    CAS  Google Scholar 

  34. Zheng Z, Yang M, Zhang B (2008) Reversible nanopatterning on self-assembled monolayers on gold. J Phys Chem C 112:6597–6604

    CAS  Google Scholar 

  35. Rowe MP, Stienecker WH, Zellers ET (2007) Exploiting charge-transfer complexation for selective measurement of gas-phase olefins with nanoparticle-coated chemiresistors. Anal Chem 79:1164–1172

    CAS  Google Scholar 

  36. Rao CNR, Kulkarni GU, Govindaraj A, Satishkumar BC, Thoms PJ (2000) Metal nanoparticles, nanowires and carbon nanotubes. Pure Appl Chem 72:21–36

    CAS  Google Scholar 

  37. Xu S, Hartvickson S, Zhao JS (2008) Engineering of SiO2−Au−SiO2 sandwich nanoaggregates using a building block: single, double, and triple cores for enhancement of near infrared fluorescence. Langmuir 24:7492–7499

    CAS  Google Scholar 

  38. Mohr C, Hofmeister H, Radnik J, Claus P (2003) Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc 125:1905–1911

    CAS  Google Scholar 

  39. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  40. Tang Z, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties and promise. Adv Mater 17:951–962

    CAS  Google Scholar 

  41. Shipway AN, Katz E, Williner I (2000) Nanoparticle arrays on surfaces for electronic, optical and sensor applications. Chem Phys Chem 1:18–52

    CAS  Google Scholar 

  42. Kalsin AM, Fialkowski M, Pazewski M, Smoukov SK, Bishop KJM, Grzybowski BA (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424

    CAS  Google Scholar 

  43. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, Roij R, Blaadern A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240

    CAS  Google Scholar 

  44. Jackson AM, Hu Y, Silva PJ, Stellacci F (2006) From homoligand to mixed-ligand-monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc 128:11135–11149

    CAS  Google Scholar 

  45. Li H, Park SH, Reif JH, LaBean TH, Yan H (2004) DNA-templated self-assembly of protein and nanoparticle linear arrays. J Am Chem Soc 126:418–419

    CAS  Google Scholar 

  46. Nath N, Chilkoti A (2001) Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance. J Am Chem Soc 123:8197–8202

    CAS  Google Scholar 

  47. Wang G, Murray RW (2004) Controlled assembly of monolayer-protected gold clusters by dissolved DNA. Nano Lett 4:95–101

    CAS  Google Scholar 

  48. Gyorvary E, Schroedter A, Talapin DV, Weller H, Pum D, Sleyter UB (2004) Formation of nanoparticle arrays on S-layer protein lattices. J Nanosci Nanotechnol 4:115–120

    Google Scholar 

  49. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    CAS  Google Scholar 

  50. McConnell WP, Nowak JP, Brousseau LC, Fuierer RR, Tenent RC, Feldheim DL (2000) Electronic and optical properties of chemically modified metal nanoparticles and molecular bridged nanoparticle arrays. J Phys Chem B 104:8925–8930

    CAS  Google Scholar 

  51. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) GNPs with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:6065–6075

    CAS  Google Scholar 

  52. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized GNPs. J Am Chem Soc 129:11653–11661

    CAS  Google Scholar 

  53. Hong R, Han G, Fernandez JM, Kim BJ, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128:1078–1079

    CAS  Google Scholar 

  54. Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) Doxorubicin conjugated GNPs as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19:7879–7884

    CAS  Google Scholar 

  55. Kim CK, Ghosh P, Pagliuca C, Zhu ZJ, Menichetti S, Rotello VM (2009) Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc 131:1360–1361

    CAS  Google Scholar 

  56. Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378

    CAS  Google Scholar 

  57. Jans H, Liu X, Huo Q, Austin L, Maes G (2009) Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 81:9425–9432

    CAS  Google Scholar 

  58. Zhong Z, Patskovsky S, Bouvrette P, Luong HT, Gedanken A (2004) The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 108:4046–4052

    CAS  Google Scholar 

  59. Shibu ES, Muhammed MAH, Kimura K, Pradeep T (2009) Fluorescent superlattices of GNPs: a new class of Functional nanomaterials. Nano Res 2:220–234

    CAS  Google Scholar 

  60. Cui R, Huany H, Yin Z, Gao D, Zhu JJ (2008) Horseradish peroxide-functionalized GNPs label for amplified immunoanalysis based on GNPs/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673

    CAS  Google Scholar 

  61. Chai F, Wang C, Wang T, Ma Z, Su Z (2010) L-cysteine functionalized GNPs for the colorimetric detection of Hg+2 induced by ultraviolet light. Nanotechnology 21:025501

    Google Scholar 

  62. Guo S, Huany Y, Jiang Q, Sun Y, Deng L, Liang Z, Du Q, Xing J, Zhao Y, Wang PC, Dong A, Liang XJ (2010) Enhanced gene delivery and siRNA silencing by GNPs coated with charge-reversal polyelectrolyte. ACS Nano 4:5505–5511

    CAS  Google Scholar 

  63. Thomas M, Klibnove AM (2003) Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 100:9138–9143

    CAS  Google Scholar 

  64. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    CAS  Google Scholar 

  65. Ghosh P, Yang X, Arvizo R, Zhu ZJ, Agasti SS, Mo Z, Rotello VM (2010) Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized GNPs. J Am Chem Soc 132:2642–2645

    CAS  Google Scholar 

  66. Deng F, Yang Y, Hwany S, Shon YS, Chen S (2004) Fullerene-functionalized GNPs: electrochemical and spectroscopic properties. Anal Chem 76:6102–6107

    CAS  Google Scholar 

  67. Tian D, Zhang H, Chai Y, Cui H (2011) Synthesis of N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanomaterials for chemiluminescent bio-probe. Chem Commun 47:4959–4961

    CAS  Google Scholar 

  68. De la Fuente JM, Berry CC, Riehle MO, Curtis ASG (2006) Nanoparticle targeting at cells. Langmuir 22:3286–3293

    Google Scholar 

  69. Wang Z, Tan B, Hussain I, Schaeffer N, Wyatt MF, Brust M, Cooper AI (2007) Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23:885–895

    CAS  Google Scholar 

  70. Baker CO, Shedd B, Tseng RJ, Martinez-Morales AF, Ozkan CS, Ozkan M, Yang Y, Kaner RB (2011) Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices. ACS Nano 5:3469–3474

    CAS  Google Scholar 

  71. Huang X, Li B, Zhang H, Hussain I, Liang L, Tan B (2011) Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands. Nanoscale 3:1600–1607

    CAS  Google Scholar 

  72. Li D, He Q, Cui Y, Wang K, Zhang X, Li J (2007) Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chemistry 13:2224–2229

    CAS  Google Scholar 

  73. Maus L, Spatz JP, Fiammengo R (2009) Quantification and reactivity of functional groups in the ligand shell of PEGylated GNPs via a fluorescence-based Assay. Langmuir 25:7910–7917

    CAS  Google Scholar 

  74. Chakraborty S, Bishoni SW, Perez-Luna VH (2010) GNPs with poly(N-isopropylacrylamide) formed via surface initiated atom transfer free radical polymerization exhibit unusually slow aggregation kinetics. J Phys Chem C 114:5947–5955

    CAS  Google Scholar 

  75. Jordan R, West N, Ulman A, Chou YM, Nuyken O (2001) Nanocompositees by surface-initiated living cationic polymerization of 2-oxazolines on functionalized GNPs. Macromolecules 34:1606–1611

    CAS  Google Scholar 

  76. Moreno M, Hernandez R, Lokez D (2010) Crosslinking of poly(vinyl alcohol) using functionalized GNPs. Eur Polym J 46:2099–2104

    CAS  Google Scholar 

  77. Zhang T, Wu Y, Pan X, Zheng Z, Ding X, Peng Y (2009) An approach for the surface functionalized gold nanoparticles with pH-responsive polymer by combination of RAFT and click chemistry. Eur Polym J 45:1625–1633

    CAS  Google Scholar 

  78. Xu S, Tu G, Peng B, Han X (2006) Self-assembling GNPs on thiol-functionalized poly(styrene C-CO-arylic acid) nanospheres for fabrication of a mediatorless biosensors. Anal Chim Acta 570:151–157

    CAS  Google Scholar 

  79. Aryal S, Remant Bahadur KC, Bhattarai N, Lee BM, Kim HY (2006) Stablization of GNPs by thiol Functionalized poly (ε-caprolactone) for the labeling of PCL biocarrier. Mater Chem Phys 98:463–469

    CAS  Google Scholar 

  80. Zhao H, Kang X, Liu L (2005) Comb−coil polymer brushes on the surface of silica nanoparticles. Macromolecules 38:10619–10622

    CAS  Google Scholar 

  81. Luo S, Xu J, Zhu Z, Wu C, Liu S (2006) Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J Phys Chem B 110:9132–9139

    CAS  Google Scholar 

  82. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    CAS  Google Scholar 

  83. Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135

    CAS  Google Scholar 

  84. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Robert N (2008) Muller magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  Google Scholar 

  85. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. J Mater Process Technol 191:235–237

    CAS  Google Scholar 

  86. Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305:12–15

    CAS  Google Scholar 

  87. Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330

    CAS  Google Scholar 

  88. Wan J, Chen X, Wang Z, Yang X, Qian Y (2005) A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J Cryst Growth 276:571–576

    CAS  Google Scholar 

  89. Kimata M, Nakagawa D, Hasegawa M (2003) Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technol 132:112–118

    CAS  Google Scholar 

  90. Alvarez GS, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633

    Google Scholar 

  91. Basak S, Chen DR, Biswas P (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62:1263–1268

    CAS  Google Scholar 

  92. Herrmann IK, Grass RN, Mazunin D, Stark WJ (2009) Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 21:3275–3281

    CAS  Google Scholar 

  93. Bhattacharya D, Das M, Mishra D, Banerjee I, Sahu SK, Maiti TK, Pramanik P (2011) Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale 3:1653–1662

    CAS  Google Scholar 

  94. Mikhaylova M, Kim DK, Berry CC, Zagorodni A, Toprak M, Curtis ASG, Muhammed M (2004) BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354

    CAS  Google Scholar 

  95. Qu H, Caruntu D, Liu H, O’Connor CJ (2011) Water-dispersible iron oxide magnetic nanoparticles with versatile surface functionalities. Laungmuir 27:2271–2278

    CAS  Google Scholar 

  96. Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417

    CAS  Google Scholar 

  97. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Ménager C, Cabuil V (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22:5385–5391

    CAS  Google Scholar 

  98. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Stealth Me VM (1995) PEG–PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    CAS  Google Scholar 

  99. Lyu YK, Kyung KJ, Lee WX (2009) Functionalized magnetic nanoparticles with poly(3-thiophenaacetic acid) and its application for electrogenerated chemiluminescence sensor. Synth Met 159:571–575

    CAS  Google Scholar 

  100. Gang ZY, Yu SH, Dong PS, Qin HM (2010) Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr(vi) wastewater. J Hazard Mater 182:295–302

    Google Scholar 

  101. Zhang J, Rana S, Srivastava RS, Mishra RDK (2008) On the chemical synthesis and drug delivery response of folate receptor or activated, polyethylene glycol-functionalized magnetic nanoparticles. Acta Biomater 4:40–48

    CAS  Google Scholar 

  102. Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh JT, Nguyen KT (2010) In vitro evaluation of novel-polymer coated magnetic nanoparticles for controlled drug delivery. Nanomedicine 6:672–680

    CAS  Google Scholar 

  103. Zhou SX, Wu LM, Sun J, Shen WD (2000) The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coat 45:33–42

    Google Scholar 

  104. Arrighi V, McEwen IJ, Qian H, Serrano PMB (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofillers. Polymer 44:6259–6266

    CAS  Google Scholar 

  105. Arkhireeva A, Hay JN (2004) Synthesis of organically-modified silica particles for use as nanofillers in polymer systems. Polym Polym Compos 12:101–110

    CAS  Google Scholar 

  106. Von Hohenesche CF, Unger KK, Eberle T (2004) Agglomerated non-porous silica nanoparticles as model carriers in polyethylene synthesis. J Mol Cat A Chem 221:185–199

    Google Scholar 

  107. Kim YK, Lewis AF, Patra PK, Warner SB, Mhetre SK, Shah MA, Nam D (2002) Nanocomposite fibres. Mater Res Soc Symp - Proc 740:441–446

    CAS  Google Scholar 

  108. He XX, Wang KM, Tan WH et al (2003) Concentration of trace amounts oligonucleotide using super-paramagnetic DNA nano-en-richer. Chem J Chin Univ 24:40–42

    CAS  Google Scholar 

  109. Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21:7029–7035

    CAS  Google Scholar 

  110. He XX, Wang KM, Tan WH et al (2001) A novel fluorescent label based on biological fluorescent nanoparticles and its application in cell recognition. Chin Sci Bull 46:1353–1356

    Google Scholar 

  111. Wang L, Yang CY, Tan WH (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43

    CAS  Google Scholar 

  112. Shin JH, Metzger SK, Schoenfisch MH (2007) Synthesis of nitric oxide-releasing silica nanoparticles. J Am Chem Soc 129:4612–4619

    CAS  Google Scholar 

  113. Chi F, Guo YN, Liu J, Liu Y, Huo Q (2010) Size-tunable and functional core-shell structured silica nanoparticles for drug release. J Phys Chem C 114:2519–2523

    CAS  Google Scholar 

  114. Tymish Y, Ohulchanskyy, Roy I, Lalit N, Goswami, Chen Y, Bergey EJ, Pandey RK, Oseroff AR, Prasad PN (2007) Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 7:2835–2842

    Google Scholar 

  115. Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HG, Chang HN, Hwang M, Park JG, Kim J, Hyeon T (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance. Biocatalysts. Small 4:143–152

    CAS  Google Scholar 

  116. Deng Y, Deng C, Yang D, Wang C, Fu S, Zhang X (2005) Preparation. characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chem Commun 44:5548–5550

    Google Scholar 

  117. Chandran SP, Hotha S, Prasad BLV (2008) Tunable surface modification of silica nanoparticles through ‘click’ chemistry. Curr Sci 95:1327–1333

    CAS  Google Scholar 

  118. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and non-specific binding. Langmuir 22:4357–4362

    CAS  Google Scholar 

  119. Zhou H, Zhang C, Li H, Du Z (2011) Fabrication of silica nanoparticles on the surface of functionalized multi-walled carbon nanotubes. Carbon 49:126–132

    CAS  Google Scholar 

  120. Wei L, Zhang Y (2009) Emulsion polymerization of ethylene from mesoporous silica nanoparticles with vinyl functionalized monolayers. J Polym Sci A Polym Chem 47:1393–1402

    CAS  Google Scholar 

  121. Cho Y, Shi R, Borgenes R, Ivanisevic A (2008) Functionalized mesoporous silica nanoparticles-based drug delivery system to rescue acrolein-mediated cell death. Nanomedicine 3:507–519

    CAS  Google Scholar 

  122. Gao D, Zhang Z, Wu M, Xie C, Guan G, Wang D (2007) A surface functional monomer-directing strahegy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129:7859–7866

    CAS  Google Scholar 

  123. Li Y, Benicewicz BC (2008) Functionalization of silica nanoparticles via the combination of surface-Initited RAFT polymerization and click reactions. Macromolecules 41:7986–7992

    CAS  Google Scholar 

  124. He P, Greenway G, Haswell SJ (2008) The on-line synthesis of enzyme functionalized silica nanoparticles in a microfluidic reactor using polyethylenimine polymer and R5 peptide. Nanotechnology 19:315603–315610

    Google Scholar 

  125. Liu CH, Pan CY (2007) Grafting polystyrene on to silica nanoparticles via RAFT polymerization. Polymer 48:3679–3685

    CAS  Google Scholar 

  126. Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S (2001) Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 337:48–54

    CAS  Google Scholar 

  127. Hea L, Zhua YZ, Zhenga JY, Mab YF, Chen YS (2010) Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes. J Photochem Photobiol A Chem 216:15–23

    Google Scholar 

  128. Li Q, Zhang J, Yan H, He M, Liu Z (2004) Thionine-mediated chemistry of carbon nanotubes. Carbon 42:287–291

    CAS  Google Scholar 

  129. Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DK, Jain NK (2009) Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine 5:432–442

    CAS  Google Scholar 

  130. Xia HS, Wang Q, Li KS, Hu GH (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93:378–386

    CAS  Google Scholar 

  131. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194

    CAS  Google Scholar 

  132. Andrews R, Jacques D, Qian DL, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35:1008–1017

    CAS  Google Scholar 

  133. Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    CAS  Google Scholar 

  134. Potschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Composite Interfaces 10:389–404

    Google Scholar 

  135. Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:125422–125431

    Google Scholar 

  136. Meng QH, Hu JF (2008) Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning. Compos Part A Appl Sci Manuf 39:314–321

    Google Scholar 

  137. Shen LM, Gao XS, Tong Y, Yeh A, Li RX, Wu DC (2008) Influence of different functionalized multiwall carbon nanotubes on the mechanical properties of poly(ethylene terephthalate) fibers. J Appl Polym Sci 108:2865–2871

    CAS  Google Scholar 

  138. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    CAS  Google Scholar 

  139. Zhang R, Hummelgard Lu G, Olin H (2011) Real time monitoring of the drug release of rhodamine B on graphene oxide. Carbon 49:1126–1132

    CAS  Google Scholar 

  140. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nanographene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    CAS  Google Scholar 

  141. Liu Z, Robinson JT, Sun XM, Dai HJ (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    CAS  Google Scholar 

  142. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2009) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Google Scholar 

  143. Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    CAS  Google Scholar 

  144. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    CAS  Google Scholar 

  145. Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    CAS  Google Scholar 

  146. Yan X, Chen J, Xang J, Xue Q, Miele P (2010) Fabrication of free-standing electrochemically active and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    CAS  Google Scholar 

  147. Park S, Dikin DA, Ngyyen ST, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem 113:15801–15804

    CAS  Google Scholar 

  148. Fang H, Wang S, Xiao S, Yang J, Li Y, Shi Z, Li H, Liu H, Xiao S, Zhu D (2003) Three-point hydrogen bonding assembly between a conjugated PPV and a functionalized fullerene. Chem Mater 15:1593–1597

    CAS  Google Scholar 

  149. Ikeda A, Doi Y, Hashizume M, Kikuchi JI, Konishi T (2007) An extremely effective DNA photocleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer. J Am Chem Soc 129:4140–4141

    CAS  Google Scholar 

  150. Chamberlain TW, Camenisch A, Champness NR, Briggs GAD, Benjamin SC, Ardavan A, Khlobystov AN (2007) Toward controlled spacing in one-dimensional molecular chains: alkyl-chain-functionalized fullerenes in carbon nanotubes. J Am Chem Soc 129:8609–8614

    CAS  Google Scholar 

  151. Sun YP, Guduru R, Lawson GE, Mullins JE, Guo Z, Quinlan J, Bunker CE, Gord JR (2000) Photophysical and electron-transfer properties of mono and multiple-functionalized fullerene derivatives. J Phys Chem B 104:4625–4632

    CAS  Google Scholar 

  152. Souza FD, Chitta R, Gadde S, McCarty AL, Karr PA, Zandler ME, Sandanayaka ASD, Araki Y, Ito O (2006) Design, syntheses and studies of supramolecular porphyrin-fullerene conjugates, using bis-18-crown-6 appended porphyrins and pyridine or alkyl ammonium functionalized fullerenes. J Phys Chem B 110:5905–5913

    Google Scholar 

  153. Sudeep PK, Ipe BI, Thomas KG, George MV (2002) Fullerene-functionalized GNPs. A self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2:29–35

    CAS  Google Scholar 

  154. Yen CF, Peddinti RK, Liao CC (2000) Highly functionalized bicyclo[2.2.2]octenone-fused b[60] fullerenes from masked o-benzoquinones and C60. Org Lett 2:2909–2912

    CAS  Google Scholar 

  155. Zhou Z, Magriotis PA (2005) A new method for the functionalization of [60] fullerene: an unusual 1,3-dipolar cycloaddition pathway leading to a C60 housane derivative. Org Lett 7:5849–5851

    CAS  Google Scholar 

  156. Zhong YW, Matsuo Y, Nakamura E (2006) Convergent synthesis of a polyfunctionalized fullerene by regioselective five-fold addition of a functionalized organocopper reagent to C60. Org Lett 8:1463–1466

    CAS  Google Scholar 

  157. Goh HW, Goh SH, Xu GQ (2002) Synthesis and miscibility studies of [60] fullerenated poly(2-hydroxyethyl methacrylate). J Polym Sci Part A: Polym Chem 40:1157–1166

    CAS  Google Scholar 

  158. Zhang F, Svensson M, Andersson MR, Maggini M, Bucella S, Menna E, Inganas O (2001) Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv Mater 13:1871–1874

    CAS  Google Scholar 

  159. Charrois GJR, Allen TM (2003) Rate of biodistribution of STEALTH liposomes to tumor and skin: influence of liposome diameter and implications for toxicity and therapeutic activity. Biochim Biophys Acta 1609:102–108

    CAS  Google Scholar 

  160. Martina MS, Fortin JP, Menager C, Clement O, Barratt G, Gabrielle-Madelmont C, Gazeau F, Cabuil V, Lesieur S (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685

    CAS  Google Scholar 

  161. Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostaleros K (2008) Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 4:1406–1415

    CAS  Google Scholar 

  162. Al-Jamal WT, Kostarelos K (2007) Liposome nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine 2:85–98

    CAS  Google Scholar 

  163. Soenen SJH, Hodenius M, Cuyper MD (2009) Magneto liposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine 4:177–191

    CAS  Google Scholar 

  164. Elbayoumi TA, Torchilin VP (2009) Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin loaded, long-circulating liposomes modified with cancer specific monoclonal antibody. Clin Cancer Res 15:1973–1980

    CAS  Google Scholar 

  165. Sau TP, Urban AS, Dondapati SK, Fedoruk M, Horton MR, Rogach AL, Stefani FD, Radler JO, Feldmann J (2009) Controlling loading and optical properties of GNPs on liposome membranes. Colloids Surf A 342:92–96

    CAS  Google Scholar 

  166. Wu GH, Milkhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA (2008) Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 130:8175–8177

    CAS  Google Scholar 

  167. Chen Y, Bose A, Bothun GD (2010) Controlled release from bilayer- decorated magnetoliposomes via electromagnetic heating. ACS Nano 4:3215–3221

    CAS  Google Scholar 

  168. Dave N, Liu J (2011) Programmable assembly of DNA functionalized liposomes by DNA. ACS Nano 5:1304–1312

    CAS  Google Scholar 

  169. Cavalli S, Tipton AR, Overhand M, Kros A (2006) The chemical modification of liposome surfaces via a copper-mediated [3+2] azide–alkyne cycloaddition monitored by a colorimetric assay. Chem Commun 30:3193–3195

    Google Scholar 

  170. Smith AM, Jaime-fonseca MR, Grover LM, Bakalis S (2010) Alginate-Loaded liposomes can protect encapsulated alkaline phosphatase functionality when exposed to gastric ph. J Agric Food Chem 58:4719–4724

    CAS  Google Scholar 

  171. He X, Na MH, Kim JS, Lee GY, Park JY, Hoffman AS, Nam JO, Han SE, Sim GY, Oh YK, Kim LS, Lee BH (2011) A novel peptide probe for imaging and targeted delivery of liposomal Doxorubicin to lung tumor. Mol Pharm 8:430–438

    CAS  Google Scholar 

  172. Weng KC, Noble CO, Sternberg BP, Chen FF, Drummond DC, Kirpotin DB, Wang D, Hom YK, Hann B, Park JW (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8:2851–2857

    CAS  Google Scholar 

  173. Gonc ALO, Bernardes JL, Kikkeri R, Maglinao M, Laurino P, Collot M, Hong SY, Lepenies B, Seeberger PH (2010) Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting. Org Biomol Chem 8:4987–4996

    Google Scholar 

  174. Paasonen L, Romberg B, Storm G, Yliperttula M, Urtti A, Hennink WE (2007) Temperature-senstive poly (N-(2-hydroxypropyl) methacrylamide mono/dilactat)-coated liposomes for triggered contents release. Bioconjug Chem 18:2131–2136

    CAS  Google Scholar 

  175. Hofmann AM, Wurm F, Huhn E, Nawroth T, Langguth P, Kney H (2010) Hyperbranched polyglycerol-based Lipids via oxyanionic polymerization: toward multifunctional stealth Liposomes. Biomacromolecules 11:568–574

    CAS  Google Scholar 

  176. Kumar A, Erasquin UJ, Qin G, Li K, Cai C (2010) Clickable, polymerized liposomes as a versatile and stable platform for rapid optimization of their peripheral compositions. Chem Commun 46:5746–5748

    CAS  Google Scholar 

  177. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    CAS  Google Scholar 

  178. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  Google Scholar 

  179. Han M, Gao XH, Su JZ, Nie SM (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    CAS  Google Scholar 

  180. Yong KT, Roy I, Swihart MT, Prasad PN (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19:4655–4672

    CAS  Google Scholar 

  181. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    CAS  Google Scholar 

  182. Hashizume K, Matsubayashi M, Vacha M, Tani T (2002) Individual mesoscopic structures studied with sub-micrometer optical detection techniques: CdSe nanocrystals capped with TOPO and ZnS-overcoated system. J Lumin 98:49–56

    CAS  Google Scholar 

  183. Xue M, Wang X, Wang H, Tang B (2011) The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta 83:1680–1686

    CAS  Google Scholar 

  184. Ingolea PP, Abhyankara RM, Prasa BLV, Haram SK (2010) Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions. Mater Sci Eng B 168:60–65

    Google Scholar 

  185. Liu P, Wang Q, Li X (2009) Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labeling. J Phys Chem C 113:7670–7676

    CAS  Google Scholar 

  186. Chen Y, Chen Z, He Y, Lin H, Sheng P, Liu C, Luo S, Cai Q (2010) L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology 21:125502–125507

    Google Scholar 

  187. Bardi G, Malvindi MA, Gherardini L, Costa M, Pompa PP, Cingolani R, Pizzorusso T (2010) The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 31:6555–6566

    CAS  Google Scholar 

  188. Koneswaran M, Narayanaswamy R (2009) L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens Actuators B 139:104–109

    CAS  Google Scholar 

  189. Pong BK, Trout BL, Jim-Yang LEE (2002) Preparation of DNA-functionalised CdSe/ZnS Quantum Dots. Curr Opin Biotechnol 13:40–46

    Google Scholar 

  190. Aguilera-Sigalat J, Rocton S, Galian RE, Prieto JP (2011) Fluorescence enhancement of amine-capped CdSe/ZnS quantum dots by thiol addition. Can J Chem 89:359–363

    CAS  Google Scholar 

  191. Zhou D, Ying L, Hong X, Hall EA, Abell C, Klenerman D (2008) A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection. Langmuir 24:1659–1664

    CAS  Google Scholar 

  192. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties and applications. Chem Rev 108:3893–3957

    CAS  Google Scholar 

  193. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    CAS  Google Scholar 

  194. Krishnamoorti R, Vaia RA (2007) Polymer nanocomposites. J Polym Sci, Part B: Polym Phys 45:3252–3256

    CAS  Google Scholar 

  195. Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410

    CAS  Google Scholar 

  196. Wang H, Peng C, Peng F, Yu H, Yang J (2011) Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors. Mater Sci Eng B 176:1073–1078

    CAS  Google Scholar 

  197. Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. Appl Mater Interfaces 2:3506–3514

    CAS  Google Scholar 

  198. Tan WB, Zhang Y (2005) Multifunctional based QD based magnetic chitosan beads. Adv Mater 17:2375–2380

    CAS  Google Scholar 

  199. Nie Q, Tan WB, Zhang Y (2006) Synthesis and characterization of monodispersed chitosan nanoparticles with embedded QDs. Nanotechnology 17:140–144

    CAS  Google Scholar 

  200. Kang B, Chang SQ, Dai YD, Chen D (2008) Synthesis of green CdSe/chitosan quantum dots using a polymer-assisted g-radiation route. Radiat Phys Chem 77:859–863

    CAS  Google Scholar 

  201. Lin Y, Zhang L, Yao W, Qian H, Ding D, Wu W, Jiang X (2011) Water soluble chitosan QD hybrid nanospheres towards bioimaging and biolabeling. ACS Appl Mater Interfaces 3:995–1002

    CAS  Google Scholar 

  202. Dutta PK, Kumar H, Tiwari DK, Archana D, Rizvi KS, Kumar A, Singh BK, Srivastava R (2011) The glimpses of chitosan nanoparticles. Asian Chitin J 7:103–106

    Google Scholar 

  203. Laxmi K (2011) Nanotechnology and nanoscale devices applications in the treatment of cancer. Everyman’s Science 45:301–307

    Google Scholar 

  204. Perry JL, Martin CR, Stewart JD (2011) Drug-delivery strategies by using template-synthesized nanotubes. Chemistry 17:6296–6302

    CAS  Google Scholar 

  205. Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B (2010) Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26:5426–5434

    Google Scholar 

  206. Kulys J, Stupak R (2008) Glucose biosensor based on chitosan-gold and Prussian blue-gold nanoparticles. Open Nanosci J 2:34–38

    CAS  Google Scholar 

  207. Wang W, Cui H (2008) Chitosan-Luminol reduced gold nanoflowers: from one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. J Phys Chem C 112:10759–10766

    CAS  Google Scholar 

  208. Hortiguela MJ, Aranaz I, Gutiérrez MC, Ferrer ML, del Monte (2011) Chitosan gelation induced by the in situ formation of gold nanoparticles and its processing into macroporous scaffolds. Biomacromolecules 12:179–186

    CAS  Google Scholar 

  209. Shana C, Yanga H, Hana D, Zhanga Q, Ivaskab A, Niua L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    Google Scholar 

  210. Gee Y, Yu Z, He S, Nie F, Teng G, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295

    Google Scholar 

  211. Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8

    CAS  Google Scholar 

  212. Wang Y, Zhang X, Chen Y, Xu H, Tan Y, Wang S (2010) Detection of dopamine based on tyrosinase-Fe3O4 nanoparticles-chitosan nanocomposite biosensor. Am J Biomed Sci 2:209–216

    Google Scholar 

  213. Kaushika A, Solankia PR, Ansaria AA, Sumanaa G, Ahmadb S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138:572–580

    Google Scholar 

  214. Liu Y-L, Hsu C-Y, Su Y-H, Lai J-Y (2005) Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules 6:368–373

    CAS  Google Scholar 

  215. Qiu S, Wu L, Shi G, Zhang L, Chen H, Gao C (2010) Preparation and pervaporation property of chitosan membrane with functionalized multiwalled carbon nanotubes. Ind Eng Chem Res 49:11667–11675

    CAS  Google Scholar 

  216. Venkatesana J, Qianb Z-J, Ryua B, Kumar NA, Kima S-K (2011) Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577

    Google Scholar 

  217. Wua H, Wanga J, Kanga X, Wanga C, Wanga D, Liua D, Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406

    Google Scholar 

  218. Hua H, Wanga X, Wanga J, Liua F, Zhanga M, Xu C (2011) Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl Surf Sci 257:2637–2642

    Google Scholar 

  219. Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351

    CAS  Google Scholar 

  220. Jayasree A, Sasidharan S, Koyakutty M, Nair S, Menon D (2011) Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydr Polym 85:37–43

    CAS  Google Scholar 

  221. Yuan Q, Hein S, Misra RDK (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6:2732–2739

    CAS  Google Scholar 

  222. Wang Y, Tu S, Li R, Yang XY, Liu L, Zhang Q, Wang Y, Tu S, Li R, Yang XY, Liu L, Zhang Q (2010) Cholesterol succinyl chitosan anchored liposomes: preparation, characterization, physical stability, and drug release behaviour. Nanomedicine 6:471–477

    CAS  Google Scholar 

  223. Wang H, Zhao P, Liang X, Gong X, Song T, Niu R, Chang J (2010) Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 31:4129–4138

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the financial assistance from University Grants Commission and CSIR, New Delhi in the form of major research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dutta, P.K., Srivastava, R., Dutta, J. (2012). Functionalized Nanoparticles and Chitosan-Based Functional Nanomaterials. In: Dutta, P., Dutta, J. (eds) Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Advances in Polymer Science, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_200

Download citation

Publish with us

Policies and ethics