Controlled Polymerization in Flow Microreactor Systems

  • Aiichiro Nagaki
  • Jun-ichi YoshidaEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 259)


Flow microreactors are expected to make a revolutionary change in chemical synthesis in various fields of polymer synthesis. In fact, extensive studies on cationic polymerization, anionic polymerization, radical polymerization, coordination polymerization, polycondensation, and ring-opening polymerization using flow microreactor systems have opened new possibilities in polymer chemistry and the polymer industry. This article provides, in a concise form, a current overall picture of polymerization using flow microreactors.

Graphical Abstract


Controlled polymerization Fast mixing Flow Microreactor Molecular weight control Molecular weight distribution control Residence time control Temperature control 


  1. 1.
    Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering. Wiley, WeinheimGoogle Scholar
  2. 2.
    Wirth T (2008) Microreactors in organic synthesis and catalysis. Wiley, WeinheimGoogle Scholar
  3. 3.
    Hessel V, Renken A, Schouten JC et al (2009) Micro process engineering. Wiley, WeinheimGoogle Scholar
  4. 4.
    Watts P, Wiles C (2011) Micro reaction technology in organic synthesis. CRC, New YorkGoogle Scholar
  5. 5.
    Fletcher PDI, Haswell SJ, Pombo-Villar E et al (2002) Micro reactors: principles and applications in organic synthesis. Tetrahedron 58:4735–4757Google Scholar
  6. 6.
    Jähnisch K, Hessel V, Löwe H et al (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446Google Scholar
  7. 7.
    Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110:2–14Google Scholar
  8. 8.
    Doku GN, Verboom W, Reinhoudt DN et al (2005) On-microchip multiphase chemistry – a review of microreactor design principles and reagent contacting modes. Tetrahedron 61:2733–2742Google Scholar
  9. 9.
    Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246Google Scholar
  10. 10.
    Geyer K, Codee JDC, Seeberger PH (2006) Microreactors as tools for synthetic chemists-the chemists’ round-bottomed flask of the 21st century? Chem Eur J 12:8434–8442Google Scholar
  11. 11.
    Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368–373Google Scholar
  12. 12.
    deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402Google Scholar
  13. 13.
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356Google Scholar
  14. 14.
    Kobayashi J, Mori Y, Kobayashi S (2006) Multiphase organic synthesis in microchannel reactors. Chem Asian J 1:22–35Google Scholar
  15. 15.
    Brivio M, Verboom W, Reinhoudt DN (2006) Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip 6:329–344Google Scholar
  16. 16.
    Mason BP, Price KE, Steinbacher JL et al (2007) Greener approaches to organic synthesis using microreactor technology. Chem Rev 107:2300–2318Google Scholar
  17. 17.
    Ahmed-Omer B, Brandtand JC, Wirth T (2007) Advanced organic synthesis using microreactor technology. Org Biomol Chem 5:733–740Google Scholar
  18. 18.
    Watts P, Wiles C (2007) Recent advances in synthetic micro reaction technology. Chem Commun 443–467Google Scholar
  19. 19.
    Fukuyama T, Rahman MT, Sato M et al (2008) Adventures in inner space: microflow systems for practical organic synthesis. Synlett 151–163Google Scholar
  20. 20.
    Lin W, Wang Y, Wang S et al (2009) Integrated microfluidic reactors. Nano Today 4:470–481Google Scholar
  21. 21.
    McMullen JP, Jensen KF (2010) Integrated microreactors for reaction automation: new approaches to reaction development. Annu Rev Anal Chem 3:19–42Google Scholar
  22. 22.
    Ley SV (2010) The changing face of organic synthesis. Tetrahedron 66:6270–6292Google Scholar
  23. 23.
    Webb D, Jamison TF (2010) Continuous flow multi-step organic synthesis. Chem Sci 1:675–680Google Scholar
  24. 24.
    Yoshida J, Kim H, Nagaki A (2011) Green and sustainable chemical synthesis using flow microreactors. ChemSusChem 4:331–340Google Scholar
  25. 25.
    Chambers RD, Holling D, Spink RCH et al (2001) Elemental fluorine. Part 13. Gas-liquid thin film microreactors for selective direct fluorination. Lab Chip 1:132–137Google Scholar
  26. 26.
    Jähnisch K, Baerns M, Hessel V et al (2000) Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J Fluor Chem 105:117–123Google Scholar
  27. 27.
    Ducry L, Roberge DM (2005) Controlled autocatalytic nitration of phenol in a microreactor. Angew Chem Int Ed 44:7972–7975Google Scholar
  28. 28.
    Wakami H, Yoshida J (2005) Grignard exchange reaction using a microflow system: from bench to pilot plan. Org Process Res Dev 9:787–791Google Scholar
  29. 29.
    Usutani H, Tomida Y, Nagaki A et al (2007) Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. J Am Chem Soc 129:3046–3047Google Scholar
  30. 30.
    Nagaki A, Tomida Y, Usutani H et al (2007) Integrated micro flow synthesis based on sequential Br-Li exchange reactions of p-, m-, and o-dibromobenzenes. Chem Asian J 2:1513–1523Google Scholar
  31. 31.
    Nagaki A, Kim H, Yoshida J (2008) Aryllithium compounds bearing alkoxycarbonyl groups. Generation and reactions using a microflow system. Angew Chem Int Ed 47:7833–7836Google Scholar
  32. 32.
    Nagaki A, Takizawa E, Yoshida J (2009) Oxiranyl anion methodology using microflow systems. J Am Chem Soc 131:1654–1655Google Scholar
  33. 33.
    Nagaki A, Kim H, Yoshida J (2009) Nitro-substituted aryl lithium compounds in microreactor synthesis: switch between kinetic and thermodynamic control. Angew Chem Int Ed 48:8063–8065Google Scholar
  34. 34.
    Tomida Y, Nagaki A, Yoshida J (2009) Carbolithiation of conjugated enynes with aryllithiums in microflow system and applications to synthesis of allenylsilanes. Org Lett 11:3614–3617Google Scholar
  35. 35.
    Nagaki A, Takizawa E, Yoshida J (2009) Generation and reactions of α-silyloxiranyllithium in a microreactor. Chem Lett 38:486–487Google Scholar
  36. 36.
    Nagaki A, Takizawa E, Yoshida J (2009) Generations and reactions of N-tert-butylsulfonyl-aziridinyllithiums using microreactors. Chem Lett 38:1060–1061Google Scholar
  37. 37.
    Nagaki A, Kim H, Matsuo C et al (2010) Generation and reaction of cyano-substituted aryllithium compounds using microreactors. Org Biomol Chem 8:1212–1217Google Scholar
  38. 38.
    Nagaki A, Kim H, Moriwaki Y et al (2010) A flow microreactor system enables organolithium reactions without protecting alkoxycarbonyl groups. Chem Eur J 16:11167–11177Google Scholar
  39. 39.
    Nagaki A, Takizawa E, Yoshida J (2010) Generation and reactions of oxiranyllithiums by use of a flow microreactor system. Chem Eur J 16:14149–14158Google Scholar
  40. 40.
    Tomida Y, Nagaki A, Yoshida J (2011) Asymmetric carbolithiation of conjugated enynes: a flow microreactor enables the use of configurationally unstable intermediates before they epimerize. J Am Chem Soc 133:3744–3747Google Scholar
  41. 41.
    Kim H, Nagaki A, Yoshida J (2011) A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. Nat Commun 2:264Google Scholar
  42. 42.
    Nagaki A, Yamada S, Doi M et al (2011) Flow microreactor synthesis of disubstituted pyridines from dibromopyridines via Br/Li exchange without using cryogenic conditions. Green Chem 13:1110–1113Google Scholar
  43. 43.
    Nagaki A, Tokuoka S, Yamada S et al (2011) Perfluoroalkylation in flow microreactors: generation of perfluoroalkyllithiums in the presence and absence of electrophiles. Org Biomol Chem 9:7559–7563Google Scholar
  44. 44.
    Asai T, Takata A, Nagaki A et al (2012) Practical synthesis of photochromic diarylethenes in integrated flow microreactor. ChemSusChem 5:339–350Google Scholar
  45. 45.
    Nagaki A, Matsuo C, Kim S et al (2012) Lithiation of 1,2-dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. Angew Chem Int Ed 51:3245–3248Google Scholar
  46. 46.
    He P, Watts P, Marken F et al (2006) Self-supported and clean one-step cathodic coupling of … Derivatives in a micro flow reactor. Angew Chem Int Ed 45:4146–4149Google Scholar
  47. 47.
    Tanaka K, Motomatsu S, Koyama K et al (2007) Large-scale synthesis of immunoactivating natural product, pristane, by continuous microfluidic dehydration as the key step. Org Lett 9:299–302Google Scholar
  48. 48.
    Sahoo HR, Kralj JG, Jensen KF (2007) Multi-step continuous flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Ed 46:5704–5708Google Scholar
  49. 49.
    Hornung CH, Mackley MR, Baxendale IR et al (2007) A microcapillary flow disc reactor for organic synthesis. Org Process Res Dev 11:399–405Google Scholar
  50. 50.
    Fukuyama T, Kobayashi M, Rahman MT et al (2008) Spurring radical reactions of organic halides with tin hydride and TTMSS using microreactors. Org Lett 10:533–536Google Scholar
  51. 51.
    Tricotet T, O’Shea DF (2010) Automated generation and reactions of 3-hydroxymethylindoles in continuous-flow microreactors. Chem Eur J 16:6678–6686Google Scholar
  52. 52.
    Browne DL, Baumann M, Harji BH et al (2011) A new enabling technology for convenient laboratory scale continuous flow processing at low temperatures. Org Lett 13:3312–3315Google Scholar
  53. 53.
    Carter CF, Lange H, Sakai D et al (2011) Diastereoselective chain elongation reactions using microreactors for application in complex molecule assembly. Chem Eur J 17:3398–3405Google Scholar
  54. 54.
    Zaborenko N, Bedore MW, Jamison TF et al (2011) Kinetic and scale-up investigations of epoxide aminolysis in microreactors at high temperatures and pressures. Org Process Res Dev 15:131–139Google Scholar
  55. 55.
    Noél T, Kuhn S, Musachio AJ et al (2011) Suzuki–Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. Angew Chem Int Ed 50:5943–5946Google Scholar
  56. 56.
    Gutierrez AC, Jamison TF (2011) Continuous photochemical generation of catalytically active [CpRu]+ complexes from CpRu(η6-C6H6)PF6. Org Lett 13:6414–6417Google Scholar
  57. 57.
    Hessel V, Serra C, Löwe H et al (2005) Polymerisationen in mikrostrukturierten reaktoren: ein überblick. Chem Ing Technol 77:1693–1714Google Scholar
  58. 58.
    Steinbacher JL, Mcquade DT (2006) Polymer chemistry in flow: new polymers, beads, capsules, and fibers. J Polym Sci A Polym Chem 44:6505–6533Google Scholar
  59. 59.
    Wilms D, Klos J, Frey H (2008) Microstructured reactors for polymer synthesis: a renaissance of continuous flow processes for tailor-made macromolecules? Macromol Chem Phys 209:343–356Google Scholar
  60. 60.
    Bally F, Serra CA, Hessel V et al (2010) Homogeneous polymerization: benefits brought by microprocess technologies to the synthesis and production of polymers. Macromol React Eng 4:543–561Google Scholar
  61. 61.
    Bally F, Serra CA, Hessel V et al (2011) Micromixer-assisted polymerization processes. Chem Eng Sci 66:1449–1462Google Scholar
  62. 62.
    Serra CA, Chang Z (2008) Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol 31:1099–1115Google Scholar
  63. 63.
    Kakuta M, Bessoth FG, Manz A (2001) Microfabricated devices for fluid mixing and their application for chemical synthesis. Chem Rec 1:395–405Google Scholar
  64. 64.
    Hessel V, Löwe H, Schönfeld F (2005) Micromixers – a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501Google Scholar
  65. 65.
    Ehrfeld W, Golbig K, Hessel V et al (1999) Characterization of mixing in micromixers by a test reaction: single mixing unites and mixer arrays. Ind Eng Chem Res 38:1075–1082Google Scholar
  66. 66.
    Lu H, Schmidt MA, Jensen KF (2001) Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip 1:22–28Google Scholar
  67. 67.
    Ueno K, Kitagawa F, Kitamura N (2002) Photocyanation of pyrene across an oil/water interface in a polymer microchannel. Lab Chip 2:231–234Google Scholar
  68. 68.
    Fukuyama T, Hino Y, Kamata N et al (2004) Quick execution of [2+2] type photochemical cycloaddition reaction by continuous flow system using a glass-made microreactor. Chem Lett 33:1430–1431Google Scholar
  69. 69.
    Maeda H, Mukae H, Mizuno K (2005) Enhanced efficiency and regioselectivity of intramolecular (2π+2π) photocycloaddition of 1-cyanonaphthalene derivative using microreactors. Chem Lett 34:66–67Google Scholar
  70. 70.
    Jähnisch K, Dingerdissen U (2005) For an example of endoperoxide quenching in a continuous flow system. Chem Eng Technol 28:426–427Google Scholar
  71. 71.
    Hook BD, Dohle W, Hirst PR et al (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564Google Scholar
  72. 72.
    Matsushita Y, Kumada S, Wakabayashi K et al (2006) Photocatalytic reduction in microreactors. Chem Lett 35:410–411Google Scholar
  73. 73.
    Sugimoto A, Sumino Y, Takagi M et al (2006) High throughput evaluation of the production of substituted acetylenes by the Sonogashira reaction followed by the Mizoroki–Heck reaction in ionic liquids, in situ, using a novel array reactor. Tetrahedron Lett 47:6197–6200Google Scholar
  74. 74.
    Matsushita Y, Ohba N, Suzuki T et al (2008) Photocatalytic reduction of CO2 in a photocatalytic microreactor under gas-liquid-solid multiphase-flow condition excited by 365-nm UV-LEDs. Catal Today 132:153–158Google Scholar
  75. 75.
    Horie T, Sumino M, Tanaka T et al (2010) Photodimerization of maleic anhydride in a microreactor without clogging. Org Process Res Dev 14:405–410Google Scholar
  76. 76.
    Yoshida J, Kataoka K, Horcajada R et al (2008) Modern strategies in electroorganic synthesis. Chem Rev 108:2265–2299Google Scholar
  77. 77.
    Yoshida J (2009) Organic electrochemistry, microreactors, and their synergy. ECS Interface, Summer 40–45Google Scholar
  78. 78.
    Löwe H, Ehrfeld W (1999) State-of-the-art in microreaction technology: concepts, manufacturing and applications. Electrochim Acta 44:3679–3689Google Scholar
  79. 79.
    Suga S, Okajima M, Fujiwara K et al (2001) “Cation flow” method. A new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems. J Am Chem Soc 123:7941–7942Google Scholar
  80. 80.
    Kupper M, Hessel V, Löwe H et al (2003) Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochim Acta 48:2889–2896Google Scholar
  81. 81.
    Paddon CA, Pritchard GJ, Thiemann T et al (2002) Paired electrosynthesis: micro-flow cell processes with and without added electrolyte. Electrochem Commun 4:825–831Google Scholar
  82. 82.
    Horii D, Atobe M, Fuchigami T et al (2005) Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte. Electrochem Commun 7:35–39Google Scholar
  83. 83.
    Horcajada R, Okajima M, Suga S et al (2005) Microflow electroorganic synthesis without supporting electrolyte. Chem Commun 1303–1305Google Scholar
  84. 84.
    Suga S, Okajima M, Fujiwara K et al (2005) Electrochemical combinatorial organic syntheses using micro flow systems. QSAR Comb Sci 24:728–741Google Scholar
  85. 85.
    Horii D, Atobe M, Fuchigami T et al (2006) Self-supported methoxylation and acetoxylation electrosynthesis using a simple thin-layer flow cell. J Electrochem Soc 153:D143–D147Google Scholar
  86. 86.
    Horii D, Fuchigami T, Atobe M (2007) A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor. J Am Chem Soc 129:11692–11693Google Scholar
  87. 87.
    Yoshida J (2008) Flash chemistry. Fast organic synthesis in microsystems. Wiley-Blackwell, HobokenGoogle Scholar
  88. 88.
    Yoshida J (2010) Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. Chem Rec 10:332–341Google Scholar
  89. 89.
    Yoshida J, Nagaki A, Yamada T (2008) Flash chemistry: fast chemical synthesis by using microreactors. Chem Eur J 14:7450–7459Google Scholar
  90. 90.
    Yoshida J (2005) Flash chemistry using electrochemical method and microsystems. Chem Commun 4509–4516Google Scholar
  91. 91.
    Higashimura T (1971) Cationic polymerization. Kagaku Dojin, KyotoGoogle Scholar
  92. 92.
    Matyjaszewski K, Sawamoto M (1996) In: Matyjaszewski K (ed) Cationic polymerizations. Dekker, New YorkGoogle Scholar
  93. 93.
    Prakash GKS, Schleyer PVR (1997) Stable carbocation chemistry. Wiley Interscience, New YorkGoogle Scholar
  94. 94.
    Olah GA (1995) My search for carbocations and their role in chemistry (Nobel lecture). Angew Chem Int Ed 34:1393–1405Google Scholar
  95. 95.
    Olah GA (2001) 100 years of carbocations and their significance in chemistry. J Org Chem 66:5943–5957Google Scholar
  96. 96.
    Miyamoto M, Sawamoto M, Higashimura T (1984) Living polymerization of isobutyl vinyl ether with the hydrogen iodide/iodine initiating system. Macromolecules 17:265–268Google Scholar
  97. 97.
    Aoshima S, Higashimura T (1989) Living cationic polymerization of vinyl monomers by organoaluminum halides. Living polymerization of isobutyl vinyl ether by EtA1C12 in the presence of ester additives. Macromolecules 22:1009–1013Google Scholar
  98. 98.
    Kishimoto Y, Aoshima S, Higashimura T (1989) Living cationic polymerization of vinyl monomers by organoaluminum halides. Polymerization of isobutyl vinyl ether by EtA1C12 in the presence of ether additives. Macromolecules 22:3877–3882Google Scholar
  99. 99.
    Puskas JE, Kaszas J (2000) Living carbocationic polymerization of resonance-stabilized monomers. Prog Polym Sci 25:403–452Google Scholar
  100. 100.
    Inagaki N, Ando T, Sawamoto M et al (2004) Living cationic polymerization with micromixer: syntheses of end-functinalized polymers and multiblock copolymer. Polym Repr Jpn 53:2416–2417Google Scholar
  101. 101.
    Rys P (1976) Disguised chemical selectivities. Acc Chem Res 10:345–351Google Scholar
  102. 102.
    Yoshida J, Nagaki A, Iwasaki T et al (2005) Enhancement of chemical selectivity by microreactors. Chem Eng Technol 3:259–266Google Scholar
  103. 103.
    Nagaki A, Togai M, Suga S et al (2005) Control of extremely fast competitve consecutive reactions using micromixing. J Am Chem Soc 127:11666–11675Google Scholar
  104. 104.
    Suga S, Nagaki A, Yoshida J (2003) Highly selective Friedel–Crafts monoalkylation using micromixing. Chem Commun 354–355Google Scholar
  105. 105.
    Suga S, Nagaki A, Tsutsui Y et al (2003) “N-Acyliminium ion pool” as hetero diene in [4+2] cycloaddition reaction. Org Lett 5:945–949Google Scholar
  106. 106.
    Suga S, Tsutsui Y, Nagaki A et al (2005) Cycloaddition of “N-acyliminium ion pool” with carbon-carbon multiple bond. Bull Chem Soc Jpn 78:1206–1217Google Scholar
  107. 107.
    Nagaki A, Takabayashi N, Tomida Y et al (2008) Synthesis of unsymmetrical biaryls by means of mono-selective reaction of polyhaloarenes using integrated microflow system. Org Lett 18:3937–3940Google Scholar
  108. 108.
    Nagaki A, Takabayashi N, Tomida Y et al (2009) Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems. Beilstein J Org Chem 5:16Google Scholar
  109. 109.
    Ishigaki Y, Suzuki T, Nishida J et al (2011) Hysteretic tricolor electrochromic systems based on the dynamic redox properties of unsymmetrically substituted dihydrophenanthrenes and biphenyl-2,2′-diyl dications: efficient precursor synthesis by a flow microreactor method. Materials 4:1906–1926Google Scholar
  110. 110.
    Suzuki T, Uchimura Y, Ishigaki Y et al (2012) Non-additive substituent effects on expanding prestrained C–C bond in crystal: X-ray analyses on unsymmetrically substituted tetraarylpyracenes prepared by a flow microreactor method. Chem Lett 41:541–543Google Scholar
  111. 111.
    Midorikawa K, Suga S, Yoshida J (2006) Selective monoiodination of aromatic compounds with electrochemically generated I+ using micromixing. Chem Commun 3794–3796Google Scholar
  112. 112.
    Kataoka K, Hagiwara Y, Midorikawa K et al (2008) Practical electrochemical iodination of aromatic compounds. Org Process Res Dev 12:1130–1136Google Scholar
  113. 113.
    Hessel V, Hofmann C, Löwe H et al (2004) Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors. Org Process Res Dev 8:511–523Google Scholar
  114. 114.
    Yoshida J, Suga S, Suzuki S et al (1999) Direct oxidative carbon-carbon bond formation using the “cation pool” method. Generation of iminium cation pools and their reaction with carbon nucleophiles. J Am Chem Soc 121:9546–9549Google Scholar
  115. 115.
    Yoshida J, Suga S (2002) Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chem Eur J 8:2650–2658Google Scholar
  116. 116.
    Suga S, Nishida T, Yamada D et al (2004) Three-component coupling based on the “cation pool” method. J Am Chem Soc 126:14338–14339Google Scholar
  117. 117.
    Suga S, Suzuki S, Yamamoto A et al (2000) Electrooxidative generation and accumulation of alkoxycarbenium ions and their reactions with carbon nucleophiles. J Am Chem Soc 122:10244–10245Google Scholar
  118. 118.
    Suga S, Matsumoto K, Ueoka K et al (2006) Indirect cation pool method. Rapid generation of alkoxycarbenium ion pools from thioacetals. J Am Chem Soc 128:7710–7711Google Scholar
  119. 119.
    Suzuki S, Matsumoto K, Kawamura K et al (2004) Generation of alkoxycarbenium ion pools from thioacetals and applications to glycosylation chemistry. Org Lett 6:3755–3758Google Scholar
  120. 120.
    Okajima M, Suga S, Itami K et al (2005) “Cation pool” method based on C–C bond dissociation. Effective generation of monocations and dications. J Am Chem Soc 127:6930–6931Google Scholar
  121. 121.
    Saito K, Ueoka K, Matsumoto K et al (2011) Indirect cation flow method. Flash generation of alkoxycarbenium ions and studies on stability of glycosyl cations. Angew Chem Int Ed 50:5153–5156Google Scholar
  122. 122.
    Okajima M, Soga K, Nokami T et al (2006) Oxidative generation of diarylcarbenium ion pools. Org Lett 8:5005–5007Google Scholar
  123. 123.
    Okajima M, Soga K, Watanabe T et al (2009) Generation of diarylcarbenium ion pools via electrochemical C–H bond dissociation. Bull Chem Soc Jpn 82:594–599Google Scholar
  124. 124.
    Nokami T, Shibuya A, Tsuyama H et al (2007) Electrochemical generarion of glycosyl triflate pools. J Am Chem Soc 129:10922–10928Google Scholar
  125. 125.
    Nagaki A, Kawamura K, Suga S et al (2004) “Cation pool” initiated controlled/living polymerization using microsystems. J Am Chem Soc 126:14702–14703Google Scholar
  126. 126.
    Cho CG, Feit BA, Webster OW (1990) Cationic polymerization of isobutyl vinyl ether: livingness enhancement by dialkyl sulfide. Macromolecules 23:1918–1923Google Scholar
  127. 127.
    Iwasaki T, Nagaki A, Yoshida J (2007) Microsystem controlled cationic polymerization of vinyl ethers initiated by CF3SO3H. Chem Commun 1263–1265Google Scholar
  128. 128.
    Nagaki A, Iwasaki T, Kawamura K et al (2008) Microflow system controlled carbocationic polymerization of vinyl ethers. Chem Asian J 3:1558–1567Google Scholar
  129. 129.
    Dittmer T, Gruber F, Nuyken O (1989) Cationic polymerization of bis(1-alkylvinyl)benzenes and related monomers – structure elucidation of 1,1,3-trimetnyl substituted polyindane. Makromol Chem 190:1755–1770Google Scholar
  130. 130.
    Dittmer T, Gruber F, Nuyken O (1989) Cationic polymerization of bis(1-alkylvinyl)benzenes and related monomers – controlled syntheses of 1,1,3-trimetnyl substitued polyindanes. Makromol Chem 190:1771–1790Google Scholar
  131. 131.
    Iwasaki T, Yoshida J (2007) CF3SO3H initiated cationic polymerization of diisopropenylbenzenes in macrobatch and microflow systems. Macromol Rapid Commun 28:1219–1224Google Scholar
  132. 132.
    Szwarc M (1956) Living polymers. Nature 178:1168–1169Google Scholar
  133. 133.
    Hsieh HL, Quirk RP (1996) Anionic polymerization: principles and practical applications. Dekker, New YorkGoogle Scholar
  134. 134.
    Jagur-grodzinski J (2002) Functional polymers by living anionic polymerization. J Polym Sci A Polym Chem 40:2116–2133Google Scholar
  135. 135.
    Hong K, Uhrig D, Mays JW (1999) Living anionic polymerization. Curr Opin Solid State Mater Sci 4:531Google Scholar
  136. 136.
    Hirao A, Loykulnant S, Ishizone T (2002) Recent advance in living anionic polymerization of functionalized styrene derivatives. Prog Polym Sci 27:1399–1471Google Scholar
  137. 137.
    Hadjichristidis N, Pitsikalis M, Pispas S et al (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792Google Scholar
  138. 138.
    Frechet JMJ (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715Google Scholar
  139. 139.
    Percec V (2001) Frontiers in polymer chemistry. Chem Rev 101(12):3579–3580Google Scholar
  140. 140.
    Jagur-Grodzinski J (2006) Living and controlled polymerization: synthesis, characterization, and properties of the respective polymers and copolymers. NOVA, New YorkGoogle Scholar
  141. 141.
    Bhattacharyya DN, Lee CL, Smid J et al (1965) J Phys Chem 69:612Google Scholar
  142. 142.
    Figini RV, Hostalka H, Hurm K et al (1965) Z Phys Chem 45:269Google Scholar
  143. 143.
    Baskaran D, Müller AHE (1997) Kinetic investigation on metal free anionic polymerization of methyl methacrylate using tetraphenylphosphonium as the counterion in tetrahydrofuran. Macromolecules 30:1869–1874Google Scholar
  144. 144.
    Hofe T, Maurer A, Müller AHE (1998) GIT Labor Fahz 42:1127Google Scholar
  145. 145.
    Tonhauser C, Frey H (2010) A road less traveled to functional polymers: epoxide termination in living carbanionic polymer synthesis. Macromol Rapid Commun 31:1938–1947Google Scholar
  146. 146.
    Nagaki A, Tomida Y, Yoshida J (2008) Microflow system controlled anionic polymerization of styrenes. Macromolecules 41:6322–6330Google Scholar
  147. 147.
    Wurm F, Wilms D, Klos J et al (2008) Carbanions on trap – living anionic polymerization in a microstructured reactor. Macromol Chem Phys 209:1106–1114Google Scholar
  148. 148.
    Yoshida J, Saito K, Nokami T et al (2011) Space integration of reactions: an approach to increase capability of organic synthesis. Synlett 9:1189–1194Google Scholar
  149. 149.
    Suga S, Yamada D, Yoshida J (2010) Cationic three-component coupling involving an optically active enamine derivative. From time integration to space integration of reactions. Chem Lett 39:404–405Google Scholar
  150. 150.
    Nagaki A, Kenmoku A, Moriwaki Y et al (2010) Cross-coupling in a flow microreactor. Space integration of lithiation and Murahashi coupling. Angew Chem Int Ed 49:7543–7547Google Scholar
  151. 151.
    Nagaki A, Uesugi Y, Tomida Y et al (2011) Homocoupling of aryl halides in flow: space integration of lithiation and FeCl3 promoted homocoupling. Beilstein J Org Chem 7:1064–1069Google Scholar
  152. 152.
    Nagaki A, Imai K, Kim H et al (2011) Flash synthesis of TAC-101 and its analogues from 1,3,5-tribromobenzene using integrated flow microreactor systems. RSC Adv 1:758–760Google Scholar
  153. 153.
    Nagaki A, Moriwaki Y, Haraki S et al (2012) Cross-coupling of aryllithiums with aryl and vinyl halides in flow microreactors. Chem Asian J 7:1061–1068Google Scholar
  154. 154.
    Tonhauser C, Wilms D, Wurm F et al (2010) Multihydroxyl-functional polystyrenes in continuous flow. Macromolecules 43:5582–5588Google Scholar
  155. 155.
    Pennisi RW, Fetters LJ (1988) Preparation of asymmetric three-arm polybutadiene and polystyrene stars. Macromolecules 21:1094–1099Google Scholar
  156. 156.
    Iatrou H, Hadjichristidis N (1992) Synthesis of a model 3-miktoarm star terpolymer. Macromolecules 25:4649–4651Google Scholar
  157. 157.
    Rózga-Wijas K, Chojnowski J, Fortuniak W et al (2003) Branched functionalised polysiloxane–silica hybrids for immobilisation of catalysts. J Mater Chem 13:2301–2310Google Scholar
  158. 158.
    Iida K, Chastek TQ, Beers KL et al (2009) Living anionic polymerization using a microfluidic reactor. Lab Chip 9:339–345Google Scholar
  159. 159.
    Zune C, Jérôme R (1999) Anionic polymerization of methacrylic monomers: characterization of the propagating species. Prog Polym Sci 24:631–664Google Scholar
  160. 160.
    Baskaran D (2003) Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog Polym Sci 28:521–581Google Scholar
  161. 161.
    Nagaki A, Tomida Y, Miyazaki A et al (2009) Microflow system controlled anionic polymerization of MMA. Macromolecules 42:4384–4387Google Scholar
  162. 162.
    Nagaki A, Miyazaki A, Tomida Y et al (2011) Anionic polymerization of alkyl methacrylates using flow microreactor systems. Chem Eng J 167:548–555Google Scholar
  163. 163.
    Nagaki A, Miyazaki A, Yoshida J (2010) Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system. Macromolecules 43:8424–8429Google Scholar
  164. 164.
    Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, New YorkGoogle Scholar
  165. 165.
    Iwasaki T, Yoshida J (2005) Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules 38:1159–1163Google Scholar
  166. 166.
    Leveson P, Dunk WAE, Jachuck RJ (2004) Investigation of shear effects on styrene free radical polymerization using a narrow channel reactor. J Appl Polym Sci 94:1365–1369Google Scholar
  167. 167.
    Iwasaki T, Kawano N, Yoshida J (2006) Radical polymerization using micro flow system. Numbering-up of microreactors and continuous operation. Org Process Res Dev 10:1126–1131Google Scholar
  168. 168.
    Bayer T, Pysall D, Wachsen O (2000) Micro mixing effects in continuous radical polymerization. In: Ehrfeld W (ed) Proceedings 3rd international conference on microreaction technology. Springer, Berlin, pp 165–170Google Scholar
  169. 169.
    Axiva GmbH, Pysall D, Wachsen O et al (1999) Method and device for continuous production of polymers. Patent WO/1999/054362Google Scholar
  170. 170.
    Serra C, Sary N, Schlatter G et al (2005) Numerical simulation of polymerization in interdigital multilamination micromixers. Lab Chip 5:966–973Google Scholar
  171. 171.
    Serra C, Schlatter G, Sary N et al (2007) Free radical polymerization in multilaminated microreactors: 2D and 3D multiphysics CFD modelling. Microfluid Nanofluid 3:451–461Google Scholar
  172. 172.
    Rollin AL, Patterson I, Huneault R et al (1977) The effect of flow regime on the continuous emulsion polymerization of styrene in a tubular reactor. Can J Chem Eng 55:565–571Google Scholar
  173. 173.
    Dalpe J, Bataille P (1989) Loop polymerization of vinyl acetate. J Appl Polym Sci 38:2237–2244Google Scholar
  174. 174.
    Abad C, de la Cal JC, Asua JM (1995) Start-up procedures in the emulsion copolymerization of vinyl esters in a continuous loop reactor. Polymer 36:4293–4299Google Scholar
  175. 175.
    Ouzine K, Graillat C, McKenna T (2004) Continuous tubular reactors for latex production: conventional emulsion and miniemulsion polymerizations. J Appl Polym Sci 91:2195–2207Google Scholar
  176. 176.
    Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley-Interscience, New YorkGoogle Scholar
  177. 177.
    Moad G, Solomon DH (2006) The chemistry of radical polymerization. Elsevier, AmsterdamGoogle Scholar
  178. 178.
    Braunecke WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146Google Scholar
  179. 179.
    Matyjaszewski K (1998) Controlled radical polymerization, vol 685. American Chemical Society, WashingtonGoogle Scholar
  180. 180.
    Matyjaszewski K (2000) Controlled/living radical polymerization: progress in ATRP, NMP, and RAFT, vol 768. American Chemical Society, WashingtonGoogle Scholar
  181. 181.
    Otsu T (2000) Iniferter concept and living radical polymerization. J Polym Sci Polym Chem 38:2121–2136Google Scholar
  182. 182.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990Google Scholar
  183. 183.
    Ouchi M, Terashima T, Sawamoto M (2008) Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers. Acc Chem Res 41:1120–1132Google Scholar
  184. 184.
    Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746Google Scholar
  185. 185.
    Wang J, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901–7910Google Scholar
  186. 186.
    Wang J, Matyjaszewski K (1995) Atom transfer radical polymerization in the presence of transition metal complexes. J Am Chem Soc 117:5614–5615Google Scholar
  187. 187.
    Kato M, Kamigaito M, Sawamoto M et al (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28:1721–1723Google Scholar
  188. 188.
    Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131Google Scholar
  189. 189.
    Löwe AB, McCormick CL (2007) Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351Google Scholar
  190. 190.
    Chiefari J, Chong YKB, Ercole F et al (1998) Living free-radical polymerization by reversible addition-fragmentation. Chain transfer: the RAFT process. Macromolecules 31:5559–5562Google Scholar
  191. 191.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688Google Scholar
  192. 192.
    Studer A (2004) Tin-free radical chemistry using the persistent radical effect: alkoxyamine isomerization, addition reactions and polymerizations. Chem Soc Rev 33:267–273Google Scholar
  193. 193.
    Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51:104–137Google Scholar
  194. 194.
    David G, Boyer C, Tonnar J, Ameduri B et al (2006) Use of iodocompounds in radical polymerization. Chem Rev 106:3936–3962Google Scholar
  195. 195.
    Poli R (2006) Relationship between one-electron transition-metal reactivity and radical polymerization processes. Angew Chem Int Ed 45:5058–5070Google Scholar
  196. 196.
    Yamago S (2009) Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain transfer agents. Chem Rev 109:5051–5068Google Scholar
  197. 197.
    Yamago S (2006) The development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions. J Polym Sci A Polym Chem 44:1–12Google Scholar
  198. 198.
    Goto A, Kwak Y, Fukuda T et al (2003) Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J Am Chem Soc 125:8720–8721Google Scholar
  199. 199.
    Yamago S, Iida K, Yoshida J (2002) Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc 124:2874–2875Google Scholar
  200. 200.
    Kwak Y, Goto A, Fukuda T et al (2006) A systematic study on activation processes in organotellurium-mediated living radical polymerizations (TERPs) of styrene, methyl methacrylate, methyl acrylate, and vinyl acetate. Macromolecules 39:4671–4679Google Scholar
  201. 201.
    Yamago S, Iida K, Yoshida J (2002) Synthesis of poly(meth)acrylate derivatives and their di- and triblock copolymers. J Am Chem Soc 124:13666–13667Google Scholar
  202. 202.
    Matyjaszewski K (1997) Controlled radical polymerization, ACS Symposium Series, vol 685. American Chemical Society, WashingtonGoogle Scholar
  203. 203.
    Shen Y, Zhu S, Pelton R (2000) Packed column reactor for continuous atom transfer radical polymerization: methyl methacrylate polymerization using silica gel supported catalyst. Macromol Rapid Commun 21:956–959Google Scholar
  204. 204.
    Shen Y, Zhu S (2002) Continuous atom transfer radical block copolymerization of methacrylates. AIChE J 48:2609–2619Google Scholar
  205. 205.
    Wu T, Mei Y, Cabral JT et al (2004) A new synthetic method for controlled polymerization using a microfluidic system. J Am Chem Soc 126:9880–9881Google Scholar
  206. 206.
    Save M, Weaver JVM, Armes SP et al (2002) Atom transfer radical polymerization of hydroxy-functional methacrylates at ambient temperature: comparison of glycerol monomethacrylate with 2-hydroxypropyl methacrylate. Macromolecules 35:1152–1159Google Scholar
  207. 207.
    Wu T, Mei Y, Xu C et al (2005) Block copolymer PEO-b-PHPMA synthesis using controlled radical polymerization on a chip. Macromol Rapid Commun 26:1037–1042Google Scholar
  208. 208.
    Russum JP, Jones CW, Schork FJ (2004) Continuous reversible addition-fragmentation chain transfer polymerization in miniemulsion utilizing a multi-tube reaction system. Macromol Rapid Commun 25:1064–1068Google Scholar
  209. 209.
    Russum JP, Jones CW, Schork FJ (2005) Continuous living polymerization in miniemulsion using reversible addition fragmentation chain transfer (RAFT) in a tubular reactor. Ind Eng Chem Res 44:2484–2493Google Scholar
  210. 210.
    Diehl C, Laurino P, Azzouz N et al (2010) Accelerated continuous flow RAFT polymerization. Macromolecules 43:10311–10314Google Scholar
  211. 211.
    Hornung CH, Guerrero-Sanchez C, Brasholz M et al (2011) Controlled RAFT polymerization in a continuous flow microreactor. Org Process Res Dev 15:593–601Google Scholar
  212. 212.
    Rosenfeld C, Serra C, Brochon C et al (2007) High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: towards a better control of the polymerization reaction. Chem Eng Sci 62:5245–5250Google Scholar
  213. 213.
    Enright TE, Cunningham MF, Keoshkerian B (2005) Nitroxide-mediated polymerization of styrene in a continuous tubular reactor. Macromol Rapid Commun 26:221–225Google Scholar
  214. 214.
    Enright TE, Cunningham MF, Keoshkerian B (2010) Nitroxide-mediated bulk and miniemulsion polymerization in a continuous tubular reactor: synthesis of homo-, di- and triblock copolymers. Macromol React Eng 4:186–196Google Scholar
  215. 215.
    Rosenfeld C, Serra C, Brochon C et al (2008) Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations. Chem Eng J 135S:S242–S246Google Scholar
  216. 216.
    Rosenfeld C, Serra C, Brochon C et al (2008) Influence of micromixer characteristics on polydispersity index of block copolymers synthesized in continuous flow microreactors. Lab Chip 8:1682–1687Google Scholar
  217. 217.
    Miele S, Nesvadba P, Studer A (2009) 1-tert-Butyl-3,3,5,5-tetraalkyl-2-piperazinon-4-oxyls: highly efficient nitroxides for controlled radical polymerization. Macromolecules 42:2419–2427Google Scholar
  218. 218.
    Knoop CA, Studer A (2003) Hydroxy- and silyloxy-substituted TEMPO derivatives for the living free-radical polymerization of styrene and n-butyl acrylate: synthesis, kinetics, and mechanistic studies. J Am Chem Soc 125:16327–16333Google Scholar
  219. 219.
    Fukuyama T, Kajihara Y, Ryu I et al (2012) Nitroxide-mediated polymerization of styrene, butyl acrylate, or methyl methacrylate by microflow reactor technology. Synthesis 44:2555–2559Google Scholar
  220. 220.
    Rosenfeld C, Serra C, O’Donohue S et al (2007) Continuous online rapid size exclusion chromatography monitoring of polymerizations – CORSEMP. Macromol React Eng 1:547–552Google Scholar
  221. 221.
    Zitlalpopoca-Soriano AG, Vivaldo-Lima E, Flores-Tlacuahuac A (2010) Bifurcation analysis of a tubular reactor for nitroxide-mediated radical polymerization of styrene. Macromol React Eng 4:599–612Google Scholar
  222. 222.
    Zitlalpopoca-Soriano AG, Vivaldo-Lima E, Flores-Tlacuahuac A (2010) Grade transition dynamic optimization of the living nitroxide-mediated radical polymerization of styrene in a tubular reactor. Macromol React Eng 4:516–533Google Scholar
  223. 223.
    Stridsberg KM, Ryner M, Albertsson AC (2002) Controlled ring opening polymerization: polymers with controlled architecture. In: Albertsson AC (ed) Advances in polymers science. Springer, BerlinGoogle Scholar
  224. 224.
    Sanda F, Endo T (1999) Syntheses and functions of polymers based on amino acids. Macromol Chem Phys 200:2651–2661Google Scholar
  225. 225.
    Deming TJ (2000) Living polymerization of α-amino acid-N-carboxyanhydrides. J Polym Sci A Polym Chem 38:3011–3018Google Scholar
  226. 226.
    Bamfold CH, Block H (1961) The initiation step in the polymerization of N-carboxy α-amino acid anhydrides. J Chem Soc IV:4989–4991Google Scholar
  227. 227.
    Honda T, Miyazaki M, Nakamura H et al (2005) Controllable polymerization of N-carboxy anhydrides in a microreaction system. Lab Chip 5:812–818Google Scholar
  228. 228.
    Yamaguchi Y, Ogino K, Yamashita K et al (2004) Rapid micromixing based on multilayer laminar flows. J Chem Eng Jpn 37:1265–1270Google Scholar
  229. 229.
    Miyazaki M, Honda T, Nakamura H et al (2007) Development of a microreactor for amino acid polymerization. Chem Eng Technol 30:300–304Google Scholar
  230. 230.
    Kainthan RK, Janzen J, Levin E et al (2006) Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709Google Scholar
  231. 231.
    Wilms D, Nieberle J, Klos J et al (2007) Synthesis of hyperbranched polyglycerol in a continuous flow microreactor. Chem Eng Technol 30:1519–1524Google Scholar
  232. 232.
    Paulus RM, Erdmenger T, Becer CR et al (2007) Scale-up of microwave-assisted polymerizations in continuous-flow mode: cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 28:484–491Google Scholar
  233. 233.
    Rogers ME, Long TE, Turner SR (2003) Introduction to synthetic methods in step-growth polymers. In: Rogers ME, Long TE (eds) Synthetic methods in step-growth polymers. Wiley, Chichester, pp 1–16Google Scholar
  234. 234.
    Kuboyama T, Yoshida J (2005) Synthesis of terminally modified polymer with a micromixer. In: Proceedings of the 8th topical conference on microreaction technology. American Institute of Chemical Engineers, New York, 132dGoogle Scholar
  235. 235.
    Liu S, Chang CH (2007) High rate convergent synthesis and deposition of polyamide dendrimers using a continuous-flow microreactor. Chem Eng Technol 30:334–340Google Scholar
  236. 236.
    Miller RD (1999) In search of low-k dielectrics. Science 286:421–423Google Scholar
  237. 237.
    Chiang CL, Ma CCM (2003) Synthesis, characterization and properties of novolac ladder-like polysilsesquioxanes containing phosphorus. J Polym Sci A Polym Chem 41:1371–1379Google Scholar
  238. 238.
    Kessler D, Theato P (2008) Synthesis of functional inorganic-organic hybrid polymers based on poly(silsesquioxanes) and their thin film properties. Macromolecules 41:5237–5244Google Scholar
  239. 239.
    de Boer B, Simon HK, Werts MPL et al (2000) “Living” free radical photopolymerization initiated from surface-grafted iniferter monolayers. Macromolecules 33:349–356Google Scholar
  240. 240.
    Kessler D, Löwe H, Theato P (2009) Synthesis of defined poly(silsesquioxane)s: fast polycondensation of trialkoxysilanes in a continuous-flow microreactor. Macromol Chem Phys 210:807–813Google Scholar
  241. 241.
    Andresen A, Cordes HG, Herwig H et al (1976) Influence of long-chain branching on the viscoelastic properties of low-density polyethylenes. Angew Chem Int Ed 15:630–632Google Scholar
  242. 242.
    Sinn H, Kaminsky W, Vollmer HJ et al (1980) Living polymers on polymerization with extremely productive Ziegler catalysts. Angew Chem Int Ed 19:390–392Google Scholar
  243. 243.
    Santos LS, Metzger JO (2006) Study of homogeneously catalyzed Ziegler-Natta polymerization of ethene by ESI-MS. Angew Chem Int Ed 45:977–981Google Scholar
  244. 244.
    Luo N, Hutchinson JB, Anseth KS et al (2002) Integrated surface modification of fully polymeric microfluidic devices using living radical photopolymerization chemistry. J Polym Sci A Polym Chem 40:1885–1891Google Scholar
  245. 245.
    Luo N, Metters AT, Hutchison JB et al (2003) Methacrylated photoiniferter as a chemical basis for microlithography: micropatterning based on photografting polymerization. Macromolecules 36:6739–6745Google Scholar
  246. 246.
    Hutchison JB, Haraldsson KT, Good BT et al (2004) Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Lab Chip 4:658–662Google Scholar
  247. 247.
    Simms HM, Brotherton CM, Good BT et al (2005) In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching. Lab Chip 5:151–157Google Scholar
  248. 248.
    Xu C, Wu T, Drain CM et al (2005) Microchannel confined surface-initiated polymerization. Macromolecules 38:6–8Google Scholar
  249. 249.
    Jeon NL, Dertinger SKW, Chiu DT et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316Google Scholar
  250. 250.
    Dertinger SKW, Chiu DT, Jeon NL et al (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246Google Scholar
  251. 251.
    Jiang X, Xu Q, Dertinger SKW et al (2005) A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal Chem 77:2338–2347Google Scholar
  252. 252.
    Stroock A, Dertinger SKW, Ajdari A et al (2002) Chaotic mixer for microchannels. Science 295:647–651Google Scholar
  253. 253.
    Xu C, Barnes SE, Wu T et al (2006) Solution and surface composition gradients via microfluidic confinement: fabrication of a statistical-copolymer-brush composition gradient. Adv Mater 18:1427–1430Google Scholar
  254. 254.
    Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–5156Google Scholar
  255. 255.
    Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655Google Scholar
  256. 256.
    Weigl BH, Yager P (1999) Microfluidic diffusion-based separation and detection. Science 283:346–347Google Scholar
  257. 257.
    Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85Google Scholar
  258. 258.
    Kenis PJA, Ismagilov RF, Takayama S et al (2000) Fabrication inside microchannels using fluid flow. Acc Chem Res 33:841–847Google Scholar
  259. 259.
    Zhao B, Viernes NOL, Moore JS et al (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284–5285Google Scholar
  260. 260.
    Hisamoto H, Shimizu Y, Uchiyama K et al (2003) Chemicofunctional membrane for integrated chemical processes on a microchip. Anal Chem 75:350–354Google Scholar
  261. 261.
    Uozumi Y, Yamada YMA, Beppu T et al (2006) Instantaneous carbon–carbon bond formation using a microchannel reactor with a catalytic membrane. J Am Chem Soc 128:15994–15995Google Scholar
  262. 262.
    Yamada YMA, Torii K, Uozumi Y (2009) Oxidative cyclization of alkenols with oxone using a miniflow reactor. Beilstein J Org Chem 5:18Google Scholar
  263. 263.
    Yamada YMA, Watanabe T, Torii K et al (2009) Catalytic membrane-installed microchannel reactors for one-second allylic arylation. Chem Commun 5594–5596Google Scholar
  264. 264.
    Yamada YMA, Watanabe T, Torii K et al (2010) Palladium membrane-installed microchannel devices for instantaneous Suzuki–Miyaura cross-coupling. Chem Eur J 16:11311–11319Google Scholar
  265. 265.
    Yamada YMA, Watanabe T, Ohno A et al (2012) Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation. ChemSusChem 5:293–299Google Scholar
  266. 266.
    Gargiuli J, Shapiro E, Gulhane H et al (2006) Microfluidic systems for in situ formation of nylon 6,6 membranes. J Membr Sci 282:257–265Google Scholar
  267. 267.
    Honda T, Miyazaki M, Nakamura H et al (2006) Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface. Adv Synth Catal 348:2163–2171Google Scholar
  268. 268.
    Cao L, Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Synthetic and Biological Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations