Advertisement

Relaxation Phenomena During Polyelectrolyte Complex Formation

  • Saskia LindhoudEmail author
  • Martien A. Cohen Stuart
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 255)

Abstract

Polyelectrolyte complex formation is a well-studied subject in colloid science. Several types of complex formation have been studied, including PEMs, macroscopic polyelectrolyte complexes, soluble complexes and polyelectrolyte complex micelles. The chemical nature of the complex-forming polyelectrolytes and the environmental conditions (e.g., pH, ionic strength and temperature) influence the final structural properties of these complexes. This chapter deals with the kinetics of polyelectrolyte complex formation and discusses how ionic strength, charge density and pH influence the dynamics of the complexes, which can range from glass-like (solid) precipitates to liquid-like phases. The switching between the glass-like and liquid-like phase as a function of the ionic strength has a strong analogy to the phase behaviour of polymer melts as function of temperature.

By performing calorimetry during complex formation it has been found that the enthalpy of complex formation of systems that form glass-like phases has an opposite sign to the enthalpy of systems that form liquid-like phases, i.e., the formation of glass-like phases is exothermic and the formation of liquid-like phases is endothermic. The free energy (Δf G), enthalpy (Δf H) and entropy (Δf S) of polyelectrolyte complex formation and how they vary as a function of the ionic strength will be discussed.

Results from dynamic light scattering (DLS) titrations, Atomic Force Microscopy (AFM), surface force measurements and rheology will be used to illustrate how differences in kinetics show up in experiments on colloidal micellar systems. In the section on DLS titrations, three-component systems containing two oppositely charged polyelectrolytes and protein molecules will be discussed. This chapter concludes with a section dedicated to the complex formation of oppositely charged protein molecules.

Keywords

AFM DLS Kinetics PEC PEM Relaxation time Rheology 

References

  1. 1.
    Lindhoud S (2009) Polyelectrolyte complex micelles as wrapping for enzymes. PhD thesis, University of Wageningen, WageningenGoogle Scholar
  2. 2.
    von Klitzing R (2006) Phys Chem Chem Phys 8(43):5012–5033CrossRefGoogle Scholar
  3. 3.
    Zintchenko A, Rother G, Dautzenberg H (2003) Langmuir 19(6):2507–2513CrossRefGoogle Scholar
  4. 4.
    Bakeev KN, Izumrudov VA, Kuchanov SI, Zezin AB, Kabanov VA (1992) Macromolecules 25(17):4249–4254CrossRefGoogle Scholar
  5. 5.
    Hofs B, de Keizer A, Cohen Stuart MA (2007) J Phys Chem B 111(20):5621–5627CrossRefGoogle Scholar
  6. 6.
    Itano K, Choi JY, Rubner MF (2005) Macromolecules 38(8):3450–3460CrossRefGoogle Scholar
  7. 7.
    Bungenberg de Jong H (1949) In: Kruyt HR (ed) Complex colloid systems. Colloid science, vol 2. Elsevier, Amsterdam, pp 336–432Google Scholar
  8. 8.
    Weinbreck F, Tromp RH, de Kruif CG (2004) Biomacromolecules 5(4):1437–1445CrossRefGoogle Scholar
  9. 9.
    Weinbreck F, Wientjes RHW (2004) J Rheol 48(6):1215–1228CrossRefGoogle Scholar
  10. 10.
    de Kruif CG, Weinbreck F, de Vries R (2004) Curr Opin Colloid Interface Sci 9(5):340–349CrossRefGoogle Scholar
  11. 11.
    Kaibara K, Okazaki T, Bohidar HB, Dubin PL (2000) Biomacromolecules 1(1):100–107CrossRefGoogle Scholar
  12. 12.
    Kayitmazer AB, Strand SP, Tribet C, Jaeger W, Dubin PL (2007) Biomacromolecules 8:3568–3577CrossRefGoogle Scholar
  13. 13.
    Spruijt E, Westphal AH, Borst JW, Cohen Stuart MA, van der Gucht J (2010) Macromolecules 43(15):6476–6484CrossRefGoogle Scholar
  14. 14.
    Overbeek JTG, Voorn MJ (1957) J Cell Comp Physiol 49(S1):7–26CrossRefGoogle Scholar
  15. 15.
    Cohen Stuart M, de Vries R, Lyklema H (2005) Polyelectrolytes. In: Lyklema J (ed) Soft colloids. Fundamentals of interface and colloid science, vol 5. Academic, New York, pp 1–84Google Scholar
  16. 16.
    Nakajima A, Sato H (1972) Biopolymers 11(7):1345–1355CrossRefGoogle Scholar
  17. 17.
    Castelnove M, Joanny J-F (2001) Eur Phys J E: Soft Matter Biol Phys 6:377–386CrossRefGoogle Scholar
  18. 18.
    Kramarenko E, Khokhlov A (2007) Polym Sci Ser A 49:1053–1063CrossRefGoogle Scholar
  19. 19.
    Biesheuvel PM, Cohen Stuart MA (2004) Langmuir 20(11):4764–4770CrossRefGoogle Scholar
  20. 20.
    Fuoss RM, Sadek H (1949) Science 110(2865):552–554CrossRefGoogle Scholar
  21. 21.
    Michaels AS (1965) Ind Eng Chem 57(10):32–40CrossRefGoogle Scholar
  22. 22.
    Schlenoff JB, Ly H, Li M (1998) J Am Chem Soc 120(30):7626–7634CrossRefGoogle Scholar
  23. 23.
    Steitz R, Jaeger W, von Klitzing R (2001) Langmuir 17(15):4471–4474CrossRefGoogle Scholar
  24. 24.
    Glinel K, Moussa A, Jonas AM, Laschewsky A (2002) Langmuir 18(4):1408–1412CrossRefGoogle Scholar
  25. 25.
    Schoeler B, Kumaraswamy G, Caruso F (2002) Macromolecules 35(3):889–897CrossRefGoogle Scholar
  26. 26.
    Voigt U, Jaeger W, Findenegg GH, Klitzing RV (2003) J Phys Chem B 107(22):5273–5280CrossRefGoogle Scholar
  27. 27.
    Lavalle P, Gergely C, Cuisinier FJG, Decher G, Schaaf P, Voegel JC, Picart C (2002) Macromolecules 35(11):4458–4465CrossRefGoogle Scholar
  28. 28.
    Lavalle P, Picart C, Mutterer J, Gergely C, Reiss H, Voegel JC, Senger B, Schaaf P (2004) J Phys Chem B 108(2):635–648CrossRefGoogle Scholar
  29. 29.
    Hubsch E, Ball V, Senger B, Decher G, Voegel JC, Schaaf P (2004) Langmuir 20(5):1980–1985CrossRefGoogle Scholar
  30. 30.
    Shiratori SS, Rubner MF (2000) Macromolecules 33(11):4213–4219CrossRefGoogle Scholar
  31. 31.
    Kovacevic D, van der Burgh S, de Keizer A, Cohen Stuart MA (2002) Langmuir 18(14):5607–5612CrossRefGoogle Scholar
  32. 32.
    Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, Voegel JC, Lavalle P (2002) Proc Natl Acad Sci USA 99(20):12531–12535CrossRefGoogle Scholar
  33. 33.
    Lavalle P, Vivet V, Jessel N, Decher G, Voegel JC, Mesini P, Schaaf P (2004) Macromolecules 37:1159–1162CrossRefGoogle Scholar
  34. 34.
    Sui ZJ, Salloum D, Schlenoff JB (2003) Langmuir 19(6):2491–2495CrossRefGoogle Scholar
  35. 35.
    Burke SE, Barrett CJ (2003) Langmuir 19(8):3297–3303CrossRefGoogle Scholar
  36. 36.
    Burke SE, Barrett CJ (2004) Pure Appl Chem 76(7–8):1387–1398CrossRefGoogle Scholar
  37. 37.
    Yoo D, Shiratori SS, Rubner MF (1998) Macromolecules 31(13):4309–4318CrossRefGoogle Scholar
  38. 38.
    Petrov AI, Antipov AA, Sukhorukov GB (2003) Macromolecules 36(26):10079–10086CrossRefGoogle Scholar
  39. 39.
    Xie AF, Granick S (2002) Macromolecules 35(5):1805–1813CrossRefGoogle Scholar
  40. 40.
    Izumrudov V, Sukhishvili SA (2003) Langmuir 19(13):5188–5191CrossRefGoogle Scholar
  41. 41.
    Porcel C, Lavalle P, Ball V, Decher G, Senger B, Voegel JC, Schaaf P (2006) Langmuir 22(9):4376–4383CrossRefGoogle Scholar
  42. 42.
    Porcel C, Lavalle P, Decher G, Senger B, Voegel JC, Schaaf P (2007) Langmuir 23(4):1898–1904CrossRefGoogle Scholar
  43. 43.
    Spruijt E, Sprakel J, Lemmers M, Cohen Stuart MA, van der Gucht J (2010) Phys Rev Lett 105(20):208301CrossRefGoogle Scholar
  44. 44.
    Jomaa HW, Schlenoff JB (2005) Macromolecules 38(20):8473–8480CrossRefGoogle Scholar
  45. 45.
    Büscher K, Graf K, Ahrens H, Helm CA (2002) Langmuir 18(9):3585–3591CrossRefGoogle Scholar
  46. 46.
    Tan HL, McMurdo MJ, Pan G, Van Patten PG (2003) Langmuir 19(22):9311–9314CrossRefGoogle Scholar
  47. 47.
    Laugel N, Betscha C, Winterhalter M, Voegel J-C, Schaaf P, Ball V (2006) J Phys Chem B 110(39):19443–19449CrossRefGoogle Scholar
  48. 48.
    Hofs B, Voets IK, de Keizer A, Cohen Stuart MA (2006) Phys Chem Chem Phys 8(36):4242–4251CrossRefGoogle Scholar
  49. 49.
    Ou ZY, Muthukumar M (2006) J Chem Phys 124(15):154902CrossRefGoogle Scholar
  50. 50.
    Lindhoud S, Norde W, Cohen Stuart MA (2009) J Phys Chem B 113(16):5431–5439CrossRefGoogle Scholar
  51. 51.
    Lindhoud S, de Vries R, Schweins R, Cohen Stuart MA, Norde W (2009) Soft Matter 5:242–250CrossRefGoogle Scholar
  52. 52.
    Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing RV, Steitz R (2007) Colloids Surf A Physicochem Eng Asp 303(1–2):14–29CrossRefGoogle Scholar
  53. 53.
    Farhat T, Yassin G, Dubas ST, Schlenoff JB (1999) Langmuir 15(20):6621–6623CrossRefGoogle Scholar
  54. 54.
    Jaber JA, Schlenoff JB (2007) Langmuir 23(2):896–901CrossRefGoogle Scholar
  55. 55.
    Glinel K, Prevot M, Krustev R, Sukhorukov GB, Jonas AM, Mohwald H (2004) Langmuir 20(12):4898–4902CrossRefGoogle Scholar
  56. 56.
    Halthur TJ, Elofsson UM (2004) Langmuir 20(5):1739–1745CrossRefGoogle Scholar
  57. 57.
    Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A (1996) Macromolecules 29(21):6797–6802CrossRefGoogle Scholar
  58. 58.
    Harada A, Kataoka K (1995) Macromolecules 28(15):5294–5299CrossRefGoogle Scholar
  59. 59.
    Cohen Stuart MA, Besseling NAM, Fokkink RG (1998) Langmuir 14(24):6846–6849CrossRefGoogle Scholar
  60. 60.
    Voets IK, de Keizer A, Cohen Stuart MA (2009) Adv Colloid Interface Sci 147–148:300–318Google Scholar
  61. 61.
    van der Burgh S, de Keizer A, Cohen Stuart MA (2004) Langmuir 20(4):1073–1084CrossRefGoogle Scholar
  62. 62.
    Lindhoud S, de Vries R, Norde W, Cohen Stuart MA (2007) Biomacromolecules 8(7):2219–2227CrossRefGoogle Scholar
  63. 63.
    Biesheuvel PM, Cohen Stuart MA (2004) Langmuir 20(7):2785–2791CrossRefGoogle Scholar
  64. 64.
    Harada A, Kataoka K (1998) Macromolecules 31(2):288–294CrossRefGoogle Scholar
  65. 65.
    Galisteo F, Norde W (1995) Colloids Surf B Biointerfaces 4(6):389–400CrossRefGoogle Scholar
  66. 66.
    Lindhoud S, Voorhaar L, de Vries R, Schweins R, Cohen Stuart MA, Norde W (2009) Langmuir 25:11425–11430Google Scholar
  67. 67.
    Yan Y, de Keizer A, Cohen Stuart MA, Drechsler M, Besseling NAM (2008) J Phys Chem B 112(35):10908–10914CrossRefGoogle Scholar
  68. 68.
    Lemmers M, Voets IK, Cohen Stuart MA, van der Gucht J (2011) Soft Matter 7:1378–1389CrossRefGoogle Scholar
  69. 69.
    Lindhoud S, Norde W, Cohen Stuart MA (2010) Langmuir 26(12):9802–9808CrossRefGoogle Scholar
  70. 70.
    Lindhoud S, Cohen Stuart MA, Norde W, Leermakers FAM (2009) Phys Rev E 80(5):051406CrossRefGoogle Scholar
  71. 71.
    Mjahed H, Voegel J-C, Chassepot A, Senger B, Schaaf P, Boulmedais F, Ball V (2010) J Colloid Interface Sci 346(1):163–171CrossRefGoogle Scholar
  72. 72.
    Spruijt E, Cohen Stuart MA, van der Gucht J (2010) Macromolecules 43(3):1543–1550CrossRefGoogle Scholar
  73. 73.
    Johansson E, Blomberg E, Lingström R, Wågberg L (2009) Langmuir 25(5):2887–2894CrossRefGoogle Scholar
  74. 74.
    Creton C, Kramer EJ, Hui CY, Brown HR (1992) Macromolecules 25(12):3075–3088CrossRefGoogle Scholar
  75. 75.
    Spruijt E, Sprakel J, Cohen Stuart MA, van der Gucht J (2010) Soft Matter 6(1):172–178CrossRefGoogle Scholar
  76. 76.
    de Ruiter L, de Bungenberg de Jong H (1947) Proc Sect Sci (Koninklijke Nederlandse Akademie van Wetenschappen) 50:836–848Google Scholar
  77. 77.
    Sprakel J, Besseling NAM, Leermakers FAM, Cohen Stuart MA (2007) Phys Rev Lett 99:104504CrossRefGoogle Scholar
  78. 78.
    van der Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA (2011) J Colloid Interface Sci 361(2):407–422CrossRefGoogle Scholar
  79. 79.
    Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Angew Chem Int Ed 49(4):708–711CrossRefGoogle Scholar
  80. 80.
    Lemmers M, Spruijt E, Beun L, Fokkink R, Leermakers F, Portale G, Cohen Stuart MA, van der Gucht J (2012) Soft Matter 8:104–117Google Scholar
  81. 81.
    van der Veen M, Norde W, Cohen Stuart MA (2004) Colloids Surf B Biointerfaces 35(1):33–40CrossRefGoogle Scholar
  82. 82.
    Biesheuvel PM, Lindhoud S, de Vries R, Cohen Stuart MA (2006) Langmuir 22(3):1291–1300CrossRefGoogle Scholar
  83. 83.
    Alexander S, Chaikin PM, Grant P, Morales GJ, Pincus P, Hone D (1984) J Chem Phys 80(11):5776–5781CrossRefGoogle Scholar
  84. 84.
    Hansson P (2001) Langmuir 17(14):4167–4180CrossRefGoogle Scholar
  85. 85.
    Allen RJ, Warren PB (2004) Langmuir 20(5):1997–2009CrossRefGoogle Scholar
  86. 86.
    Biesheuvel PM, Wittemann A (2005) J Phys Chem B 109(9):4209–4214CrossRefGoogle Scholar
  87. 87.
    Carnahan NF, Starling KE (1972) AIChE J 18(6):1184–1189CrossRefGoogle Scholar
  88. 88.
    Biesheuvel PM, Lindhoud S, Cohen Stuart MA, de Vries R (2006) Phys Rev E 73(4):041408CrossRefGoogle Scholar
  89. 89.
    Nigen M, Croguennec T, Madec MN, Bouhallab S (2007) FEBS J 274(23):6085–6093CrossRefGoogle Scholar
  90. 90.
    Nigen M, Croguennec T, Bouhallab S (2009) Food Hydrocolloids 23(2):510–518CrossRefGoogle Scholar
  91. 91.
    Nigen M, Gaillard C, Croguennec T, Madec MN, Bouhallab S (2010) Biophys Chem 146(1):30–35CrossRefGoogle Scholar
  92. 92.
    Salvatore D, Croguennec T, Bouhallab S, Forge V, Nicolai T (2011) Biomacromolecules 12(5):1920–1926CrossRefGoogle Scholar
  93. 93.
    Desfougeres Y, Croguennec T, Lechevalier V, Bouhallab S, Nau F (2010) J Phys Chem B 114(12):4138–4144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory of Physical Chemistry and Colloid ScienceWageningen UniversityWageningenThe Netherlands

Personalised recommendations